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Abstract: In times of global warming caused by the extensive use of fossil fuels, the need to cap-
ture gaseous carbon compounds is growing bigger. Several groups of microorganisms can fix the
greenhouse gas CO2. Out of these, acetogenic bacteria are role models in their ability to reduce CO2

with hydrogen to acetate, which makes acetogens prime candidates for genetic modification towards
biotechnological production of value-added compounds from CO2, such as biofuels. However,
growth of acetogens on gaseous substrates is strongly energy-limited, and successful metabolic
engineering requires a detailed knowledge of the bioenergetics. In 1939, Clostridium aceticum was
the first acetogen to be described. A recent genomic study revealed that this organism contains
cytochromes and therefore may use a proton gradient in its respiratory chain. We have followed up
these studies and will present data that C. aceticum does not use a H+ but a Na+ gradient for ATP
synthesis, established by a Na+-Rnf. Experimental data and in silico analyses enabled us to propose
the biochemistry and bioenergetics of acetogenesis from H2 + CO2 in C. aceticum.

Keywords: energy conservation; respiratory chain; acetogenic bacteria; Wood–Ljungdahl pathway;
ATP synthase; Rnf complex

1. Introduction

Acetogenic bacteria are a group of strictly anaerobic, facultative, chemolithoau-
totrophic bacteria [1]. During lithotrophic growth, H2 + CO2 is converted to acetate
by a specialized pathway, the Wood–Ljungdahl pathway (WLP) [2,3]. Out of the known
CO2-fixation pathways, the WLP is the only one that does not require net input of ATP [4].
The two molecules of CO2 that are converted to acetate are reduced in two branches [3–6].
In the carbonyl branch, one CO2 is reduced to enzyme-bound carbon monoxide by CO
dehydrogenase/acetyl-CoA synthase (CODH/ACS) [3,7]. In the methyl branch, CO2 is first
reduced to formate, which is bound in a reaction driven by ATP hydrolysis to the C1 carrier
tetrahydrofolate (THF) and then subsequently reduced via methenyl- and methylene-
THF to methyl-THF. The methyl group is then transferred by a methyltransferase to the
CODH/ACS, where it condenses with enzyme-bound CO and CoA to acetyl-CoA which is
further converted via acetyl-phosphate to acetate [8]. The last reaction regains the one mol
of ATP invested in the second reaction and thus, the amount of ATP synthesized in this
pathway is zero. Since the bacteria grow on H2 + CO2 while producing acetate, the entire
lithotrophic metabolism must be coupled to additional ATP synthesis [6].

In recent years it has been shown that acetogens use the electron transfer pathway to
the WLP as the site of energy conservation by a chemiosmotic mechanism [6,9]. So far, two
species have been investigated in detail. Thermoanerobacter kivui has a reduced ferredoxin:H+

oxidoreductase (Ech) [9] as a respiratory enzyme, whereas Acetobacterium woodii has a
reduced ferredoxin:NAD+ oxidoreductase (Rnf) as the one and only coupling site [10,11].
Both respiratory enzymes use the free energy change of electron transport to expel ions
(H+/Na+) from the cytoplasm, thus establishing a transmembrane electrochemical ion
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gradient across the membrane that drives ATP synthesis via a membrane-bound F1FO ATP
synthase [12]. The fuel for the electron transport chain (reduced ferredoxin) is generated
by electron bifurcation with hydrogen as reductant [13]. Every acetogen sequenced so
far has either Rnf or Ech and at present, the presence of ech and rnf genes are mutually
exclusive with a prevalence for Ech in thermophilic species [9,14]. The situation is more
complicated by the finding of cytochromes in some acetogens whose role in bioenergetics
is poorly understood [14,15]. Nevertheless, the presence of cytochromes is indicative of
proton-based bioenergetics. In 2015, the genome of the first isolated acetogen, Clostridium
aceticum was sequenced [14]. As well as rnf genes, cytochrome-encoding genes were found
and therefore, C. aceticum was considered a missing link between Rnf and cytochrome-
containing acetogens, although the same study questioned a role of cytochromes in the
bioenergetics in C. aceticum. It was postulated, based on the genome sequence, that C.
aceticum has a proton-based bioenergetic. We have checked this hypothesis by studying the
core components of energy conservation and their ion-dependence. These studies revealed
a Na+-dependent respiratory chain in C. aceticum with a Na+-dependent Rnf and ATP
synthase.

2. Materials and Methods
2.1. Conditions for Growth of C. aceticum

C. aceticum (DSM1496) was grown under strictly anoxic conditions in medium de-
scribed by Braun et al. (1981) and modified by Poehlein et al. (2015) [14,16]. Generally, cells
were grown at 30 ◦C in medium containing 20 mM fructose, and a gas atmosphere that
was changed from N2 + CO2 (80:20, [v/v]) to 100% H2 prior to inoculation, to increase the
pH to around 8.4, due to the partial conversion of carbonate to CO2 in the liquid, which
then diffuses into the headspace. For purification of the methylene-THF reductase cells
were grown in a 20 L-flask (Glasgerätebau Ochs, Bovenden-Lenglern, Germany) on 20 mM
fructose without the addition of H2.

2.2. Purification of Cytosol and Membranes from C. aceticum

All steps were performed at room temperature under anoxic conditions in an anaer-
obic chamber (Coy Laboratory Products, Grass Lake, MI, USA) filled with 96% N2 and
4% H2. For isolation of the cytosol of C. aceticum, cells were harvested and washed in
buffer A (50 mM Tris-HCl, 20 mM MgSO4, 2 mM dithioerythritol (DTE), 4 µM resazurin,
pH 8). To disrupt the cells, cells were resuspended in buffer A containing 0.5 mM phenyl-
methylsulfonyl fluoride (PMSF) and 0.1 mg/mL DNaseI, and were passed twice through a
French pressure cell at 110 MPa. The same procedure was performed for isolation of mem-
branes, with the only difference that buffer A was prepared with sodium-free chemicals.
Cell debris together with membranes were then separated from the cytosolic fraction by
ultracentrifugation at 130,000× g for 45 min. The membrane fraction was resuspended in
buffer A, and as with the cytosolic fraction, it was stored in an anoxic tube at 4 ◦C until use.

2.3. Purification of the Methylene-Tetrahydrofolate Reductase

77 mL of the cytosolic fraction (60 mg/mL protein) from a 20 L culture were applied
to a Q-Sepharose high-performance (HP) column (GE Healthcare, Chicago, IL, USA)
equilibrated with buffer 1 (50 mM Tris-HCl, 20 mM MgSO4, 20% glycerol, 2 mM DTE, 4 µM
resazurin, pH 7.6) using a flow rate of 2 mL/min. Protein was eluted with a linear gradient
of 150 mL from 0 to 500 mM NaCl in buffer 1. Methylene-THF-dependent oxidation
of reduced methyl viologen was detected in the eluate containing around 150–220 mM
NaCl. Ammonium sulfate (2.4 M) was added to the pooled fractions (13 mL, 15.5 mg/mL
protein). The pool was loaded onto a Phenyl-Sepharose HP column (GE Healthcare,
Chicago, IL, USA), equilibrated with buffer 1 containing 2.4 M (NH4)2SO4 under a flow
rate of 1.3 mL/min. Protein was eluted with a linear gradient of 200 mL from 2.4 to 0.0 M
(NH4)2SO4. Methylene-THF-dependent oxidation of reduced methyl viologen eluted in a
peak of around 480–160 mM remaining (NH4)2SO4. Pooled fractions were concentrated
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using ultrafiltration in 100-kDa Vivaspin tubes (Sartorius Stedim Biotech GmbH, Germany).
The concentrated sample was separated on a HiPrep Sephacryl S-300 HR column (GE
Healthcare, Chicago, IL, USA) equilibrated with buffer 1 containing 250 mM NaCl using a
flow rate of 0.5 mL/min. Activity was found in fractions, which eluted after 20–30 mL.

2.4. Measurement of Rnf Activity

Fdred:NAD+ oxidoreductase activity and its dependence on sodium ions was mea-
sured as described before [17]. Briefly, 1.8 mL anoxic cuvettes (Glasgerätebau Ochs, Boven-
den, Germany) were filled with buffer (20 mM Tris-HCl, 2 mM DTE, 2.2 µM resazurin,
pH 7.7, contaminating Na+ concentration 104 µM Na+) in an anaerobic chamber (Coy
Laboratory Products, Grass Lake, MI, USA) filled with 96% N2 and 4% H2 and sealed with
rubber stoppers. Different amounts of NaCl, KCl, and LiCl were added and the head space
of the cuvette was changed to CO. Reduction of NAD+ (3 mM) was monitored at 340 nm
over time after addition of ferredoxin (30 µM), purified from Clostridium pasteurianum [17]
and 250 µg of purified membrane. Ferredoxin was reduced by CODH/ACS, isolated from
A. woodii as described by [17].

2.5. Measurement of ATPase Activity

ATPase activity was measured in buffer (100 mM Tris-HCl, 100 mM maleic acid,
20 mM NaCl, 5 mM MgCl2, 10 µM Na+) at 30 ◦C. The pH was adjusted to 7.4 with KOH.
The sample was preincubated for 3 min at 30 ◦C before addition of 3 mM Tris-ATP to start
the reaction. ATP-dependent formation of inorganic phosphate was followed as described
by Heinonen and Lahti (1981) [18]. Samples were measured photometrically at 650 nm.

2.6. Measurements of Methylene-Tetrahydrofolate Reductase Activity

Methylene-THF activity was measured photometrically at 604 nm under anoxic con-
ditions in 1.8 mL anoxic cuvettes (Glasgerätebau Ochs, Bovenden, Germany) under a N2
atmosphere filled with buffer (50 mM KPO4, 5 mM MgCl2, 2 mM DTE, 4 µM resazurin,
pH 7.5). The oxidation of 10 mM methyl viologen (prereduced with sodium dithionite)
was observed over time after addition of 1.5 mM formaldehyde + 0.5 mM tetrahydrofolate
(THF) (Sigma-Aldrich, St. Louis, MO, USA), resulting in a racemic mixture containing
0.25 mM methylene-THF [19,20], and protein from the respective purification step of the
methylene-THF reductase.

2.7. Measurements of Methylene-Tetrahydrofolate Dehydrogenase Activity

Methylene-THF dehydrogenase activity was measured photometrically at 340 nm un-
der anoxic conditions in 1.8 ml anoxic cuvettes (Glasgerätebau Ochs, Bovenden, Germany)
under a N2 atmosphere filled with buffer (50 mM KPO4, 2 mM DTE, pH 7.0) [21]. The
reduction of NAD+ was measured after addition of 1.5 mM formaldehyde + 0.5 mM THF
(Sigma-Aldrich, St. Louis, MO, USA), resulting in a racemic mixture containing 0.25 mM
methylene-THF, and 30 µg of cytosol from C. aceticum.

2.8. Analytical Methods

Soluble proteins were quantified using the method of Bradford (1976) [22], and mem-
brane proteins by the method of Lowry et al. (1951) [23]. Proteins were separated in
12% SDS-polyacrylamide gels and stained with Coomassie Brilliant Blue. Native gel elec-
trophoresis was performed as described before [24]. For genetic analyses, the Basic Local
Alignment Search Tools (BLAST) from the National Center for Biotechnology Information
(NCBI, Bethesda, MD, USA) was used. Sequence comparisons were performed with the
Clustal Omega tool from the European Bioinformatics Institute (EMBL-EBI, Hinxton, UK).
The sodium ion concentration was measured using a Na+ specific electrode (Orion Star
A214, Thermo Scientific, Waltham MA, USA). To reduce Na+ contaminations, ultra-pure
chemicals and buffer with low concentrations of ingredients were used.
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3. Results
3.1. The Rnf Complex from C. aceticum Requires Na+ for Activity

C. aceticum contains six genes encoding an Rnf complex (CACET_c16320-CACET_c16
370), which are potentially organized in an operon (Figure 1). The order of the genes is
identical to A. woodii and the number of nucleotides of the genes are roughly the same. The
RnfB subunit can differ in length as shown for various organisms [25]; however, the RnfB
of A. woodii and RnfB of C. aceticum have almost the same amount of amino acids (334 in
A. woodii and 329 in C. aceticum) and show 51% homology. As in the RnfB of A. woodii, RnfB
of C. aceticum possesses six predicted Fe-S centers. In C. aceticum, four of the Fe-S centers
are coordinated by the motif C-X2-C-X2-C-X3-C-P and the two other centers are likely to
be coordinated by C140 and C219.
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Figure 1. Model and genetic organization of the rnf operon in C. aceticum. The rnf genes are organized
in a potential operon consisting of six genes, which code for a membrane-bound complex potentially
consisting of monomers of each subunit. The first one is CACET_c16320 coding for RnfC, followed
by CACET_c16330 coding for RnfD, CACET_c16340 coding for RnfG, CACET_c16350 coding for
RnfE, CACET_c16360 coding for RnfA and CACET_c16370 coding for RnfB. The operon is flanked
upstream by CACET_c16310, which has high similarity with an ATP-binding protein (sensor histidine
kinase) and downstream by CACET_c16380, which has similarity with a transporter protein.

To determine whether the Rnf complex is indeed present, C. aceticum was grown
on fructose and H2 + CO2 in medium modified after Braun et al. (1981) [16] to the late
exponential phase, harvested, and the cytoplasmic membrane was prepared. In order to
measure ferredoxin:NAD+ oxidoreductase activity we used ferredoxin isolated from C. pas-
teurianum that was reduced by CO, catalyzed by the CODH purified from A. woodii [17].
When membranes were incubated with CODH, ferredoxin and NAD+ under a CO at-
mosphere NAD+ was reduced with a rate of 85.5 ± 5.4 U/mg. NAD+ reduction strictly
required CO, CODH, ferredoxin, membranes and NAD+. When no NaCl was added to
the buffer, the contaminating Na+ concentration was only 104 µM. Under these conditions,
ferredoxin-dependent NAD+ reduction was very low (6.3 ± 0.4 U/mg). However, upon
addition of NaCl, activity was restored in a Michaelis–Menten-type fashion (Figure 2). Half
maximal activity was obtained at around 5.6 mM NaCl. KCl and LiCl did not stimulate
ferredoxin:NAD+ oxidoreductase activity (Figure 2). These data demonstrate that the Rnf
complex of C. aceticum requires Na+ for activity.
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of purified membrane were added to 1 mL buffer (20 mM Tris-HCl, 2 mM DTE, 2.2 µM resazurin,
pH 7.7) and FNO was measured as described in Materials and Methods. Increasing amounts
(0–20 mM) of NaCl (�), KCl (N) or LiCl (H) were applied to the assays. The contaminating Na+

concentration was 104 µM. Results show data from two replicates.

3.2. The ATP Synthase from C. aceticum Requires Na+ for Activity

The statement of Poehlein et al. (2015) [14] that the “ATPase from C. aceticum (en-
coded by CACET_c02130-CACET_c02220) does not contain an Na+-liganding amino acid
motif”, prompted us to reexamine the c subunit composition of the ATP synthase from
C. aceticum and its possible sodium ion dependence. The membrane-embedded rotor of
F1FO-ATP synthases is usually made by multiple copies of one subunit, the rotor subunit
c [26]. This subunit is membrane-integral, has two transmembrane helices and harbors
the ion binding site, which is either the so-called active carboxylate (Asp or Glu) that is
protonated/deprotonated in H+ ATPases or two more conserved residues, a glutamine in
helix one and a serine/threonine in helix two, that together with the active carboxylate
make the Na+ binding site [12,27]. The operon structure of the ATP synthases of A. woodii
(Awo_c02140-Awo_c02240) and C. aceticum (CACET_c02130-CACET_c02220) is conserved
(Figure 3). C. aceticum has two copies of genes encoding the c subunit of the ATP synthase
(atpE1 and atpE2, annotated as CACET_c02150 and CACET_c02160, respectively)—atpE1
encodes subunit c1 and atpE2 encodes subunit c2. Like in A. woodii, subunit c1 arose by
duplication of an ancestral gene giving rise to a protein with four transmembrane he-
lices [12] (Figure 4a). Hair pin one and hair pin two are 58% identical on the amino acid
level. Interestingly, like in A. woodii [28], the first hair pin has the conserved Na+ binding
site “Q....ET” but in the second hair pin, the gene duplication event resulted in the loss
of the active carboxylate, rendering the resulting protein unable to bind either protons or
sodium ions. Subunit c1 is, therefore, similar to the c subunit of eukaryotic ATPases that
share the same feature [29,30]. Like in A. woodii but unlike most bacterial ATP synthases,
there is a second gene encoding a c subunit (CACET_c02160). Subunit c2 is a “typical”
bacterial c subunit with two transmembrane helices, i.e., one hairpin. This subunit has the
conserved Na+-binding motif “Q....ET” (Figure 4b). A. woodii has a third gene, atpE3, that
encodes a protein identical to subunit c2 [31]; this gene is missing in C. aceticum.
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Figure 4. Alignment of the amino acids of subunits c1 and c2 of A. woodii and C. aceticum. Amino
acids of the c1 (a) and c2 subunit (b), which are part of the c ring of the ATP synthase from A. woodii
and C. aceticum were aligned using Clustal Omega. Highlighted in grey are the Na+-binding motif
Q....ET of one hairpin of the c subunit and the second motif within a second hair pin without a
functioning Na+-binding domain Q....QT.

The presence of a sodium ion binding site prompted us to examine the effect of Na+

on ATP hydrolysis. Therefore, membranes were prepared as described above and assayed
for ATP hydrolysis. As can be seen from Figure 5, ATPase activity was already 20 mU/µg
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in the presence of contaminating Na+ concentrations. This is in contrast to the Na+-Rnf.
For the latter, there are few data available with respect to the ion dependence and so far, it
has not been addressed whether a Na+-Rnf can translocate H+ in the absence of Na+. This
is different in ATP synthases. Every Na+ ATP synthase examined to date can translocate
H+ [32,33]. However, since at physiological conditions the Na+ concentration is much
higher (mM range) than the H+ concentration (10−4 mM at pH 7.0), the coupling ion under
physiological conditions is Na+ [33]. Activity of the enzymes is not strictly dependent on
Na+ (depending on the affinities of these enzymes to Na+ and H+, which is different in
different enzymes) but stimulated by Na+. This is also observed for ATP hydrolysis here.
Activity was not stimulated by KCl but by NaCl to around 200%. The dependence of ATP
hydrolysis on NaCl followed a Michaelis–Menten kinetic with half maximal activity at
around 0.06 mM NaCl. The Na+ ATP synthases can also translocate Li+ but have a weaker
affinity to Li+ [32]. The same is observed here—Li+ also stimulated, but stimulation was
reduced.
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membranes were added to 1200 µL ATPase buffer (100 mM Tris-HCl, 100 mM malic acid, pH 7.4)
containing NaCl (�), KCl (N) or LiCl (H). The sample was incubated for 3 min at 30 ◦C. The reaction
was started by adding 3 mM Tris-ATP. The contaminating Na+ concentration was 10 µM. Results
show data from two replicates.

3.3. The Methylene-THF Reductase Is of the MetF/MetV-Type

The methylene-THF reductase catalyzes the most exergonic reaction of the pathway
and was, therefore, suggested some 40 years ago to be involved in energy conservation [34].
Although it was speculated some time ago that the methylene-THF reductase is the accep-
tor of a membrane-bound electron transport chain [35], this hypothesis has been clearly
excluded by experimental data for the model acetogens analyzed [21]. However, the
methylene-THF reductase may be a site for electron-bifurcation with ferredoxin as electron
acceptor [36], thus providing additional fuel for the electron transport chain. This has been
clearly excluded for A. woodii [21] but hypothesized for Moorella thermoacetica [37]. The
A. woodii enzyme has the typical subunits MetF and MetV, but one additional subunit,
RnfC2. The latter provides the NADH binding site and catalyzes NADH oxidation with
the electron passing on to methylene-THF via MetF and MetV [21]. M. thermoacetica only
has metV/metF genes but upstream genes are found that encode proteins with similarity
to HdrC, HdrB, HdrA, and MvhD. Since these are known from electron bifurcating pro-
teins, the idea arose that MetV/F form a complex with HdrCBA and MvhD to bifurcate
electrons from NADH to methylene-THF and an unknown acceptor [37]. In contrast,
C. aceticum has only the metF/V genes. To analyze the subunit composition and function
of the methylene-THF reductase from C. aceticum, it was enriched by three consecutive
chromatography steps from a cell-free extract of C. aceticum grown on fructose. As can
be seen in Figure 6a, MetF and MetV with apparent molecular masses of 23 and 32 kDa
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were clearly visible. In addition, some minor contaminations were also visible. In a native
PAGE, complexes of around 55 and around 75 kDa were visible indicating a stoichiometry
of MetF and MetV of 1:1 (Figure 6b) or 2:1. The determination of the exact stoichiometry
requires additional experiments and, most important, a purified enzyme. Interaction of
MetF/MetV with EtfAB or other potential bifurcating subunits was not observed. The
enriched MetF/MetV preparation used neither NADH nor NADPH as electron donor
for methylene-THF reduction, even in the presence of ferredoxin. The only activity that
could be determined was methylene-THF-dependent methylviologen oxidation (around
400 U/mg).
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Figure 6. Enrichment of the methylene-THF reductase from C. aceticum. Samples (10 µg protein) of
the cytoplasm and the purification fractions of the Q-sepharose, phenyl sepharose, and the sephacryl
S300 column were separated via SDS PAGE (a). 10 µg of pooled active fractions of the sephacryl S300
column were also separated on a native PAGE (b). Gels were stained with Coomassie Brilliant Blue.

3.4. The Methylene-THF Dehydrogenase Is NAD Dependent

Another important question for the overall bioenergetics is whether the methylene-
THF dehydrogenase is NAD- or NADP-specific. To address this question, cells were grown
on fructose and H2 + CO2, harvested in late exponential growth phase and a cell-free extract
was prepared. This extract catalyzed methylene-THF oxidation with NAD+ (6.3 ± 1 U/mg)
but not with NADP+ (data not shown) as electron acceptor.

3.5. C. aceticum Has an Electron-Bifurcating Formate Dehydrogenase

As suggested by Poehlein et al. (2015), C. aceticum contains two potential genes coding
for formate dehydrogenases: CACET_c32690 and CACET_c07250. The latter is potentially
misannotated. The genetic organization and similarity analyses suggests that it is homolo-
gous to a subunit of the recently described novel NADH-dependent NADPH:ferredoxin
oxidoreductase (Stn) from Sporomusa ovata (SOV_1c07740-SOV_1c07760) [38] that is also
present in C. aceticum (CACET_c07230-CACET_c07250). The operon containing CACET_c3
2690 (fdhA) encodes a selenocysteine-containing formate dehydrogenase with 44% homol-
ogy to FdhF1/2 from A. woodii. Unlike A. woodii and Gottschalkia acidurici, C. aceticum has
only the selenocysteine-containing formate dehydrogenase. Upstream of fdhA are genes
encoding proteins with similarity to subunits of the electron-bifurcating formate dehydro-
genase from G. acidurici. FdhA, HdB, and HydC are highly similar to the homologous
protein from G. acidurici (with 60%–70% identity) [39]. However, compared to G. acidurici,
C. aceticum does not possess a gene coding for HylA but HylA has similarity (47%) to
the N-terminus of FdhA of C. aceticum. Interestingly, genes encoding HydB and HydD
occur twice in the operon of C. aceticum (Figure 7). The overall similarity of the genetic
organization and the gene products suggests that C. aceticum has an electron-bifurcating
formate dehydrogenase complex that, like G. acidurici, catalyzes the reduction of formate
with simultaneous oxidation of reduced ferredoxin and NADH.
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Figure 7. Genetic organization of the potential formate dehydrogenase (fdh) gene cluster in C. aceticum compared to the
fdh gene cluster of G. acidurici. Genes coding for a potential electron-bifurcating formate dehydrogenase in C. aceticum are
organized in a cluster consisting of six genes, whereas in G. acidurici there are only five [39]. The first one is CACET_c32740
coding for a 2Fe-2S protein (HydD3), which has 72% similarity to HydD2, another protein encoded in the fdh operon
(CACET_c32710). Both genes are not found in the fdh gene cluster of G. acidurici, but they are both similar (around 30%) to
the first 180 amino acids of HylB (encoded by Curi_c29400). HydB2 (encoded by CACET_c32730) and HydB3 (encoded
by CACET_c32700) in C. aceticum share 82% identity and are both similar to HylB of G. acidurici. HydC2 (encoded by
CACET_c32720) of C. aceticum is 62% similar to HylC of G. acidurici (Curi_c29410). In contrast to G. acidurici, which
has two fdhF genes (Curi_29370 and Curi_29380), C. aceticum possesses only one gene (CACET_c32690) coding for a
formate dehydrogenase (FdhA), which is around 60% homologous to both FdhFs of G. acidurici. The fdh gene cluster of
C. aceticum is flanked upstream by CACET_c32750, which has similarity with a HPr kinase (a phosphocarrier protein of
the phosphoenolpyruvate-dependent sugar phosphotransferase system) and downstream by CACET_c32680, which has
similarity with a rubredoxin.

4. Discussion

The data presented here demonstrate that C. aceticum has a sodium ion-dependent
respiratory chain with a Na+-Rnf and a Na+-F1Fo-ATP synthase. The latter has, like
the enzyme from A. woodii [29], a typical V-type ATPase c subunit (c1) and thus, like
A. woodii, a reduced Na+ to ATP stoichiometry, which is seen as an adaptation to low-energy
environments [40–42]. Unlike A. woodii, which has two identical F-type ATP synthase c
subunits [31], C. aceticum has only one. For the future, it would be interesting to determine
the number of the different subunits in the c ring.

The methylene-THF reductase has only two subunits, MetF and MetV, as evident after
enrichment of the enzyme and as suggested from the genomic organization. NADH was
not used as electron donor, neither was NADPH. As in every other case of MetF/MetV-type
methylene-THF reductases known to date, the physiological electron donor is unknown
and it remains elusive whether or not the enzyme uses a second, low-potential electron
acceptor that is reduced by electron bifurcation. Loss of loosely attached subunits cannot
be excluded but is unlikely since also the cell-free extract did not catalyze NAD(P)H-
dependent methylene-THF reduction. For our model, we assume electron bifurcation with
an unknown low-potential electron acceptor. The formate dehydrogenase is suggested to
be electron-bifurcating, like the homologous enzyme from G. acidurici [39] with NADH
and reduced ferredoxin as reductant. An electron-bifurcating FeFe-hydrogenase as in
A. woodii was described before in C. aceticum [14]. In sum, the data presented allowed us
to depict a model for the biochemistry and bioenergetics of acetogenesis from H2 + CO2
in C. aceticum. It should be noted, that, in contrast to other acetogens, electron bifurcation
in the course of methylene-THF reduction is not mandatory. Even without an electron-
bifurcating methylene-THF reductase, the redox balance is even and under these conditions,
0.3 mol of ATP are synthesized per mol of acetate (Figure 8a) (assuming the same Na+/ATP
stoichiometry for the ATP synthase as in A. woodii).
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Figure 8. Schematic overview of energy conservation during acetogenesis from H2 + CO2 in C. aceticum. The electron-
bifurcating hydrogenase converted 4 mol of H2 to 2 mol reduced ferredoxin and 2 mol NADH. Then, 0.5 mol of reduced
ferredoxin together with 0.5 mol NADH are used by the electron-bifurcating formate dehydrogenase to reduce 1 mol of CO2

to formate. Formate gets further reduced to methyl-THF via several reduction steps: if the methylene-THF reductase uses
only NADH as reductant (a), 2 mol NADH are required to reduce methenyl-THF to methyl-THF, whereas 3 mol NADH
would be required if the methylene-THF reductase is electron bifurcating (b), which leads to the reduction of another mol
of ferredoxin. After condensation of methyl-THF and 1 mol CO2 by the CODH/ACS, acetyl-CoA is further converted to
acetate. For energy conservation the Rnf complex in concert with the ATP synthase are used. A Na+/ATP stoichiometry
of 3.3 as in A. woodii [43] is assumed. Depending on the mode of operation of the methylene-THF reductase, either 0.3 or
0.9 mol ATP can be generated. Fd, ferredoxin; THF, tetrahydrofolate; CoFeSP, corrinoid iron-sulfur protein.

However, the redox balance is also even if an electron-bifurcating methylene-THF
reductase is assumed (Figure 8b). In this model, the ATP gain is increased by 200% to
0.9 ATP/acetate.
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