



## **Supplementary Information**

## Living lithic and sublithic microbial communities in Namibian drylands

## Steffi Genderjahn<sup>a\*</sup>, Simon Lewin<sup>a,1</sup>, Fabian Horn<sup>a</sup>, Anja M. Schleicher<sup>b</sup>, Kai Mangelsdorf<sup>c</sup>, Dirk Wagner<sup>a,e</sup>

- <sup>a</sup> GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, Potsdam, 14473, Germany
- <sup>b</sup> GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Telegrafenberg, Potsdam, 14473, Germany
- <sup>c</sup> GFZ German Research Centre for Geosciences, Section Anorganic Chemistry, Telegrafenberg, Potsdam, 14473, Germany
- <sup>d</sup> University of Potsdam, Institute of Geosciences, 14476 Potsdam, Germany
- <sup>1</sup> current address: Leibniz Centre for Agricultural Landscape Research, Section Microbial Biogeochemistry, Eberswalder Straβe 84, 15374, Müncheberg, Germany
- \* Correspondence: steffi.genderjahn@gfz-potsdam.de

## Supplementary table legends:

Figure S1: Mineral composition of rock samples using XRD.

Figure S2: Abundances of bacterial 16S rRNA gene revealed by quantitative PCR from Tsauchab Valley, Namibia. Limestone, quartz-rich shale and quartz-rich sandstone were quantified by three intersections across their weathering profile from unaltered core over the subsurface to the surface and compared to adjacent soil. Standard deviations are indicated by an error bar

Table S1: Sampling list including sample alias and location.

Table S2: Identification of microorganisms from limestone and quartz-rich sandstone based on Sanger sequencing. Medium R2S for facultative heterotrophic aerobes and SSM for mineral solubilizing bacteria (sucrose salt medium). N: Number of isolates







Figure S1: Mineral composition of rock samples using XRD.







**Figure S2:** Abundances of bacterial 16S rRNA gene revealed by quantitative PCR from Tsauchab Valley, Namibia. Limestone, quartz-rich shale and quartz-rich sandstone were quantified by three intersections across their weathering profile from unaltered core over the subsurface to the surface and compared to adjacent soil. Standard deviations are indicated by an error bar.





**Table S1:** Sampling list including sample alias and location.

| 03G0861B                        |  |  |
|---------------------------------|--|--|
| Lithic microbial communities of |  |  |
| dryland samples                 |  |  |
| 18.03.2017                      |  |  |
| Namibia                         |  |  |
| 24°26,37′S,                     |  |  |
| 016°10,31′E                     |  |  |
|                                 |  |  |
| 1160 m                          |  |  |
| Tsauchab River Valley, Namibia  |  |  |
|                                 |  |  |

| sample alias | DNA pool         | material              | section               |
|--------------|------------------|-----------------------|-----------------------|
| A1103        | eDNA             | limestone             | surface               |
| A1201        | eDNA             | limestone             | core                  |
| A1202        | eDNA             | limestone             | subsurface            |
| A1203        | eDNA             | limestone             | surface               |
| A1401        | eDNA             | quartz-rich sandstone | core                  |
| A1402        | eDNA             | quartz-rich sandstone | subsurface            |
| A1403        | eDNA             | quartz-rich sandstone | surface               |
| A1501        | eDNA             | quartz-rich sandstone | core                  |
| A1502        | eDNA             | quartz-rich sandstone | subsurface            |
| A1503        | eDNA             | quartz-rich sandstone | surface               |
| A1601        | eDNA             | quartz-rich shale     | core                  |
| A1602        | eDNA             | quartz-rich shale     | subsurface            |
| A1603        | eDNA             | quartz-rich shale     | surface               |
| B1101        | iDNA             | limestone             | core                  |
| B1202        | iDNA             | limestone             | subsurface            |
| B1203        | iDNA             | limestone             | subsurface            |
| B1402        | iDNA             | quartz-rich sandstone | subsurface            |
| B1403        | iDNA             | quartz-rich sandstone | core                  |
| B1601        | iDNA             | quartz-rich shale     | core                  |
| B1602        | iDNA             | quartz-rich shale     | subsurface            |
| B1602        | iDNA             | quartz-rich shale     | subsurface            |
| A1106        | eDNA             | soil                  | limestone             |
| A1206        | eDNA             | soil                  | limestone             |
| A1406        | eDNA             | soil                  | quartz-rich sandstone |
| A1506        | eDNA             | soil                  | quartz-rich sandstone |
| A1606        | eDNA             | soil                  | quartz-rich shale     |
| B1106        | iDNA             | soil                  | limestone             |
| B1206        | iDNA             | soil                  | limestone             |
| B1406        | iDNA             | soil                  | quartz-rich sandstone |
| B1506        | iDNA             | soil                  | quartz-rich sandstone |
| B1606        | iDNA             | soil                  | quartz-rich shale     |
|              | negative         |                       |                       |
| X00000       | control          |                       |                       |
| Z11111       | positive control | E. coli               |                       |
|              |                  |                       |                       |





**Table S2:** Identification of microorganisms from limestone and quartz-rich sandstone based on Sanger sequencing. Medium R2S for facultative heterotrophic aerobes and SSM for mineral solubilizing bacteria (sucrose salt medium). N: Number of isolates

|             |                            |            |   | % GenBank accession          |
|-------------|----------------------------|------------|---|------------------------------|
| Phylu       | ım Identification          | Medium     | Ν | Identity number              |
|             | Protaetiibacter sp.        | R2A        | 1 | 97 CP059987                  |
|             | Arthrobacter sp.           | R2A, SSM   | 2 | 98 – 99 CP019304             |
|             | Kocuria rosea              | R2A        | 1 | 98LR134391                   |
|             | Streptomyces sp.           | R2A, SSM   | 2 | 99 - 100 KC336160, CP050504  |
|             | Streptomyces               | SSM        | 1 | 100 AB184448                 |
| Limestone   | ansochromogenes            |            |   |                              |
|             | Bacillus axarquiensis      | R2A        | 1 | 98 KY608836                  |
|             | Bacillus paralicheniformis | R2A        | 2 | 99 CP033198                  |
|             | Bacillus niacini           | R2A        | 1 | 98 BCVA01000102              |
|             | Microvirga sp.             | R2A        | 1 | 99 CP029481                  |
|             | Massilia sp.               | R2A        | 2 | 97 – 98 CP012640             |
|             |                            |            |   |                              |
|             | Microbacterium sp.         | R2A, SSM   | 3 | 99 - 100 CP043430            |
|             | Arthrobacter sp.           | R2A        | 1 | 98 AY 61 85 81               |
|             | Lechevalieria sp.          | R2A        | 1 | 99 FJ911538                  |
| Quartz-rich | Streptomyces sp.           | SSM        | 3 | 99 – 100 LC429299, KC336160, |
| sandstone   |                            |            |   | CP050504                     |
|             | Streptomyces reticuli      | SSM        | 1 | 100LN997842                  |
|             | Bacillus subtilis          | R2A, SSM   | 4 | 99 – 100 MN704542, MT643824, |
|             |                            |            |   | MT641205, CP018184           |
|             | Bacillus tequilensis       | R2A        | 1 | 99 MT326211                  |
|             | Actinobacteria             | Firmicutes | H | Proteobacteria               |







