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Abstract: Recently, the outbreak of the coronavirus disease 2019 (COVID-19), caused by the SARS-
CoV-2 virus, in China and its subsequent spread across the world has caused numerous infections and
deaths and disrupted normal social activity. Presently, various techniques are used for the diagnosis of
SARS-CoV-2 infection, with various advantages and weaknesses to each. In this paper, we summarize
promising methods, such as reverse transcription-polymerase chain reaction (RT-PCR), serological
testing, point-of-care testing, smartphone surveillance of infectious diseases, nanotechnology-based
approaches, biosensors, amplicon-based metagenomic sequencing, smartphone, and wastewater-
based epidemiology (WBE) that can also be utilized for the detection of SARS-CoV-2. In addition,
we discuss principles, advantages, and disadvantages of these detection methods, and highlight
the potential methods for the development of additional techniques and products for early and fast
detection of SARS-CoV-2.

Keywords: COVID-19; coronavirus; detection; epidemic; nanotechnology

1. Introduction

At present, the rapid worldwide outbreak of SARS-CoV-2 infection and associated
coronavirus disease 2019 (COVID-19) is impacting human and economic health. Because
community spread occurs easily, the number of infected individuals has been constantly
mounting [1]. Responding to this rapid transmission requires rapid identification of
the infected individuals, regardless of symptoms. One challenge is that asymptomatic
individuals can spread the virus. While symptomatic individuals are the most common
source of transmission, undiagnosed asymptomatic cases increase the risk of transmission
and therefore, increase COVID-19 infection [2,3]. Prevention, detection, control, and
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treatment of COVID-19 are linked, and each aspect of COVID-19 management influences
the others.

Accurate and early detection of SARS-CoV-2 is vital to decrease the risk of transmission
by rapidly enabling isolation and contact tracing. Consequently, the most significant public
health impact comes from the rapid detection of infected cases.

Clinical detection of COVID-19 is principally based on clinical symptoms and history
of contact with other possibly infected individuals. Since the clinical manifestations and
signs of infected patients (pneumonia, dyspnea, fever, cough, respiratory symptoms) are
not definitive [4], supporting diagnostic and serological tests are essential for the diagnosis
of COVID-19. The value of diagnostic methods depends on the type of test, the time to
get the results, testing accuracy, and the required resources for testing. In other words,
the quick identification of suspected individuals is the best strategy to enable appropriate
response and limit transmission.

Different diagnostic tests have been developed for SARS-CoV-2 based on serological,
molecular, and nanotechnology techniques. Detection of viral nucleic acid is frequently
performed by high-throughput sequencing, reverse-transcription-polymerase chain reac-
tion (RT-PCR), RT-loop-mediated isothermal amplification (RT-LAMP), and quantitative
real-time PCR (qPCR) [5–7], where qPCR is recommended as the most effective and direct
method by the WHO (World Health Organization). Immune methods such as detection
of SARS-CoV-2-specific IgM/IgG can identify previous or current infection [4,8]. Here,
we discuss current knowledge on the diagnosis of COVID-19 that can be useful in sug-
gesting novel insights for battling the SARS-CoV-2 infection. We have used PubMed,
EMBASE, Scopus, and Google scholar databases for studies. The search terms used were
“coronavirus”, “COVID-19”, “SARS-CoV-2”„ “diagnosis”, “detection”, “nanotechnology”,
“serological testing”, “sensor”, and “Point-of-Care Detection.” The reference lists of the
eligible articles were also reviewed to search for relevant articles. We included preprint,
peer-reviewed, and retrieved full-text articles and examined the citation chain for each
article to be included.

2. Serological Approaches in the Detection of SARS-CoV2

A diagnostic method to identify an antibody-mediated immune response against
infectious agents is termed serological testing [9]. However, this procedure does not identify
the virus but determines whether an individual is or has been infected, by identifying an
antibody immune response against past or current infections. Since it does not detect the
early phase of infection, the European Center for Disease Control and Prevention (ECDC)
has endorsed COVID-19 serological testing for epidemiological and surveillance means
only [10]. Identification of preceding infections even without testing in the active phase
of the disease is possible with these techniques and is the main advantage of serological
approaches. COVID-19 has been detected with several serological tests, some of which
were marketed as point-of-care and rapid methods so far. However, test accuracy results
remain challenging [11]. The serological test of COVID-19 provides information on the
type and concentration levels of various immunoglobulins (IgA, IgM, and IgG) produced
due to infection by SARS-CoV-2. Still, with novel COVID-19s late emergence, recently
published data, studied by Guo et al., informs on antibody’s median appearance time in
plasma after the onset of symptoms. Accordingly, IgM and IgA require 3–6 days and IgG
requires 10–18 days to develop with positivity rates among known COVID-19 patients of
85.4%, 92.7%, and 77.9% for IgM, IgA, and IgG, respectively [12]. Slightly different results
come from another recent study on the kinetics of anti-COVID-19 antibodies conducted by
Padoan et al., with the appearance of IgM and IgG at 6–7 days after symptoms onset [13].
Surprisingly, with anti-SARS-CoV-2 IgG development on 100% of patients 12 days after
symptoms onset, less than 90% of the same group developed IgM.

As stated by the authors, within two weeks after the onset of symptoms, anti-SARS-
CoV-2 antibody positivity was nearly 100% for both IgA and IgM, whereas IgG has been
positive for only 60% of the same patients [14]. Another supporting study conducted by
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Zhang et al. reported anti-SARS-CoV-2 IgM positivity of 50% and IgG 95% [15]. Also,
according to Du et al.’s study, anti-SARS-CoV-2 IgM and IgG antibodies’ rate in convales-
cents is 78% and 100%, respectively [16]. Pen et al. could find anti-SARS-CoV-2 antibodies
positivity 15 days from symptom onset, approximately 74% for IgM and 97% for IgG [17].
SARS-CoV-2’s potential to provoke IgA secretion even in mild or asymptomatic forms of
COVID-19 has been a recent noteworthy point in the context of improving the diagnostics,
following their determination in blood and saliva [18].

Anti-SARS-CoV-2 antibodies’ effectiveness on neutralizing and pathogenesis of the
virus, as measured by their blood presence, has been a challenging issue. Recent publi-
cations show auspicious data on supporting the antibodies to target nucleocapsid and
spike proteins, and consequently neutralizing virus effects [19]. Additionally, according to
Okba et al.’s study, COVID-19 patients’ serum is capable of neutralizing the SARS-CoV-2
infection [20]. The significance of antibodies’ concentration persistence necessitates re-
viewing past experiences. Conclusions from former and related coronavirus disease SARS
informs the persistence of anti-SARS-CoV-1 neutralizing antibodies in the blood. Provided
information claims that antibodies were highly stable for 16 months after infection fol-
lowing an eventual decline to 50–75% after 4 years and ~10% after 6 years [21]. A final
concern with COVID-19 is the anti-SARS-CoV-2 immunoassays’ potential to cross-react
with previous coronaviruses such as SARS-CoV-1, MERS-CoV, HCoV-HKU1, HCoV-OC43,
HCoV-NL63, and HCoV-229E.

A mobile non-automated method for evaluating membrane-based immunoassays and
extracting qualitative data rapidly, approximately 5–20 min, is a rapid serological test. The
advantages include low sample volume (a blood drop is sufficient), brief operator training,
cost-effective testing, and simple instructions. Besides, usage is common in bedside or
near-to-patient situations [22]. Rapid serological testing has two main approaches. First,
identifying SARS-CoV-2 antigens, and second, determining anti-SARS-CoV-2 antibodies.
The ECDC provides a steadily updated and appreciating description of the procedure [23].
Spain and other European countries’ criticism of these tests’ inaccuracy and doubtful
obtained diagnosis and surveillance conveyed skeptical aspects toward the performance
of test kits [24]. Furthermore, evidence concluded from Cassaniti et al.’s study states a
rapid test sensitivity below 20%, consequently resulting in a large-scale COVID-19 under-
diagnosis [25], making this technology unusable if that analysis is correct. Thus, every
device must undergo a validation process before its clinical application. The suggestion in
parallel with ECDC is providing scientific publications to elucidate the performance and
limitation of each rapid diagnostic test before their presentation to diagnostic and clinical
management fields, public health, and epidemiologic surveillance [23,26]. It should be
understood that rapid diagnostic tests primarily contribute to supporting decentralized
testing capacity, rather than a replacement for central laboratory diagnostics [27]. Assay
by standard clinical labs uses venipuncture blood collection instead of capillary blood
collection and it has a crucial dependency on laboratory analyzers’ participation. In contrast
to all these drawbacks, it has advantages such as accuracy and reliability, generating
quantitative data essential for longitudinal titer monitoring, expert laboratory personnel
performance leading to mitigating error risks and subjective interpretations, permanent
test results’ storage in the LIS (laboratory information system), and following strict internal
quality control and presumably, external quality assessment schemes (EQAs) in the future.
The modern generation of laboratory analyzers has outstanding sample flow rates of up to
several hundred tests per hour, with respect, centralized laboratory diagnostic methods are
convenient and efficient for epidemiologic surveillance means. Intriguingly, the University
Hospitals of Padova and Verona (Italy) have been worldwide pioneers in appreciating and
advancing an approved project by the scientific committee of the Veneto Region. They are
engaged in a broad, validated, fully automated immunoassays’ epidemiological screening
of healthcare professionals in the Veneto region (i.e., between 50,000 and 70,000 people).
The project’s phase 2 indicates the possibility of widening the analysis to nearly 5 million
residents of the whole Veneto region [28].
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3. Molecular Approaches for Detection of SARS-CoV-2 Infection

Many companies and research groups have developed diagnostic tools for this single-
stranded, positive-sense RNA virus. The complete genetic sequence of the virus was
uploaded to the Global Initiative on Sharing All Influenza Data (GISAID) platform, which
has provided the information needed for molecular detection of the genome.

3.1. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Amplification of very small amounts of viral genetic material in a mixture of other
nucleic acid sequences is effectively done by RT-PCR and is currently the gold standard
technique of SARS-COV-2 detection in upper respiratory tract samples. Additionally, a few
studies have utilized serum, ocular, and stool specimens for the RT-PCR-based detection
method [29–31]. A recent method has used self-collected salivary samples as a non-invasive
and safe technique for healthcare providers before doing RT-PCR [32,33]. In this method,
the reverse transcriptase first converts the RNA viral genome into DNA with the use of a
small DNA sequence primer and the final generation of the complementary DNA (cDNA).
A fluorescent dye or a fluorescent-labeled sequence-specific DNA probe monitors the
amplification of DNA in real-time. A fluorescent or electrical signal reveals the viral cDNA
after consecutive amplification cycles [34].

Traditional RT-PCR techniques contained one-step or two-step processes. While one-
step methods involve a single primer-contained tube, the two-step procedure uses more
than one tube to run the reactions but provides a more sensitive and flexible pathway. Also,
it can stock cDNA for quantification of various targets with less starting materials [35].
However, the common method in the detection of SARS-CoV-2 is the one-step approach
since it is faster, requires less sample handling, decreases bench time, and reduces pipetting
errors. Several SARS-CoV-2 genomic regions such as ORF1b or ORF8 regions, and the
nucleocapsid (N), RNA-dependent RNA polymerase (RdRP), spike (S) protein, or envelope
(E) genes, have been used in molecular diagnosis of the virus via RT-PCR technology [36,37].
COVID-19 RT-PCR (LabCorp), 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic
Panel, TaqPath COVID-19 Combo kit (ThermoFisher, Applied Biosystems), Allplex 2019-
nCoV Assay (Seegene), and cobas SARS-CoV-2 (Roche) have been the utilized commercial
assays so far [6,35,36]. Also, more automated techniques and detection tools have improved
the utility of RT-PCR tests. For instance, GenMark Diagnostics Inc., which uses “The
True Sample-to-Answer Solution” ePlex apparatus developed to detect SARS-CoV-2 in
nasopharyngeal samples [38]. The viral RNA is extracted by a magnetic solid-phase
procedure and all other reagents required for cDNA amplification are found in each test
cartridge. Also, a combined GenMark’s eSensor technology and electrowetting method
are used to detect the virus. Although this method has extensively been applied in the
detection of COVID-19, some problems such as costly required equipment, incorrect
sampling, expert personnel, and limitation in sample transfer lead to delayed results. Thus,
the improvement of the RT-PCR method by addressing these limitations is an important
issue to be solved [39].

3.2. Isothermal Nucleic Acid Amplification

The requirement for sophisticated thermal cycling equipment is a limitation for RT-
PCR techniques [40]. Using isothermal nucleic acid amplification eliminates this require-
ment and allows amplification at a constant temperature. Different approaches have been
developed based on this strategy. Reverse Transcription Loop-Mediated Isothermal Am-
plification (RT-LAMP) has been introduced as an easy and cost-effective method to detect
SARS-CoV-2 which uses a series of 4 target-specific primers to augment test sensitivity in a
combined LAMP and reverse transcription-based methodology. The measurement of tur-
bidity induced by magnesium pyrophosphate as a byproduct of the amplification process
is performed by photometry. Then, both photometric and/or fluorescent assays can be
utilized in real-time. The need for only heating and visual inspector steps turns RT-LAMP
into a rapid and sensitive tool in virus detection [41]. Currently, Abbott Diagnostics uses
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RT-LAMP in SARS-CoV-2 detection as a point-of-care setting in nasal swabs. However, it is
restricted to one sample/run [37,42]. Also, the colorimetric LAMP can detect viral RNA
in cell lysate samples at levels of about 481 RNA copies lacking interferences, which is a
promising rapid diagnostic approach for SARS-CoV-2 RNA [6].

The other isothermal amplification strategy is transcription-mediated amplification
(TMA), which can amplify specific regions of both RNA and DNA [37]. TMA uses T7
RNA polymerase combined with a retroviral reverse transcriptase enzyme. Accordingly,
Hologic’s Panther Fusion platform can perform both RT-PCR and TMA [43]. High testing
output and simultaneous screening of common respiratory viruses with similar symptoms
of COVID-19 are the main advantages of the Panther fusion platform. Hybridization of the
viral RNA target with a specific capture probe and an extra T7 promotor primer, which are
captured via a magnetic field, commences the reaction. Afterward, the reverse transcription
of T7 promotor primer-bound captured RNA to a complementary cDNA is performed. The
activity of RNase reverse transcriptase consequently results in degradation of the target
RNA strand while producing a T7 primer including single-stranded (ss) cDNA from an
RNA–DNA hybrid. Also, T7 RNA polymerase is used to produce RNA amplicons with
the application of additional primers. These amplicons reenter the TMA process, which
ultimately leads to the generation of billions of RNA amplicons in a short time. The ss
nucleic acid torches which are bound to a fluorophore and a quencher are used in the
detection process. The hybridization of torches to RNA amplicons in real-time results in
the emission of a signal from the fluorophore.

CRISPR has been developed for the detection of SARS-Cov-2. The use of Cas nucleases
(Cas12 and Cas13) enables CRISPR-based detection techniques [44–46]. Cas13 has been
harnessed in RNA/DNA detection in an approach called SHERLOCK as a non-specific
RNase [44]. Amplification of the target RNA by a combination of T7 and RT-RPA tran-
scription processes is the first step in the SHERLOCK method. This, in turn, activates
Cas13, which subsequently cleaves a reporter RNA that releases the fluorescent dye from a
quencher. The CRISPR-nVoV has used the SHERLOCK method in the detection of SARS-
CoV-2 RNA with great sensitivity in 52 patient specimens [47]. Cas12 as an RNA-directed
DNase cleaves ssDNA from a target sequence in a method termed DETECTOR [45]. Sev-
eral groups have used this method in the detection of SARS-CoV-2 recently. Isothermal
amplification of viral RNA after its conversion to DNA is the initial step. Then, the Cas12
is activated by specific target sequences in amplified DNA and subsequently cleaves an
ssDNA reporter to unquench a fluorophore. The CRISPR-based method can yield rapid
read-outs and sensitive results when used in combination with fast isothermal amplifi-
cation processes. Also, they could be coupled to lateral flow readouts which are suitable
candidates for simple point-of-care testing approaches. Low turnaround timeframe, high
sensitivity, and less bias generation are considered as the advantages of this method but
expensive equipment, expert personnel, and sampling limitations should also be taken into
account [39].

3.3. Nucleic Acid Hybridization Using Microarray

Efficient and sensitive detection of SARS-CoV nucleic acids have also been performed
with microarray assays. Generation of cDNA from viral RNA, which are then labeled with
specific probes, commence the microarray assays. Solid-phased oligonucleotides fixed
microarray trays are used to load labeled cDNAs. The presence of viral-specific nucleic acid
will be shown if the hybridization process occurs [48]. The mutations and single nucleotide
polymorphisms related to the SAR-CoV gene have been successfully determined with
microarray assays [49]. This would help the rapid detection of different COVID-19 strains
and mutational variations. Portable microarray chips have provided efficient identification
of the MERS coronavirus in addition to influenza and respiratory syncytial viruses [50].
Microarray techniques that use a scanner to show the hybridization between the probe
and target are quite rapid, sensitive, specific, and accurate means of detection. They can
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also analyze several microbial genes concurrently. Although it can detect multiple samples,
diagnosis of a few viral genes in limited samples is not possible with this method [51].

3.4. Amplicon-Based Metagenomic Sequencing

Combinational use of amplicon and metagenomic sequencing has been applied in
the detection of SARS-CoV-2, termed Amplicon-Based Metagenomic Sequencing. Metage-
nomic sequencing was initially utilized to determine the related microbiome of infected
individuals. The potential contact tracing, viral evolution investigations, and molecular
epidemiologic studies are assessed by amplicon-based sequencing. Additional analysis on
sequence divergences is provided by metagenomics tactics such as sequence-independent
single primer amplification (SISPA). The examination of the mutation rate of SARS-CoV-2
and other related recombinants could be determined with this dual technique. Moore
et al. used MinION sequencing for rapid SARS-CoV-2 sequencing and other upper respira-
tory system swabs [52]. Illumina has provided a next-generation shotgun metagenomics
sequencing platform that not only diagnoses different coronavirus strains but also, can
check other organisms present in a complex sample [37]. The presence of comprehensive
reference databases, available patterns for bioinformatics tests, and detecting rare taxa
Taxonomy of the gene level are the advantages of this method. Biases in vial population
quantification are the main disadvantage of this technique [53].

4. Point-of-Care Detection of COVID-19

The point-of-care biosensors potentially utilized for COVID-19 include sample-to-
answer chip-based biosensors, paper-based biosensors, or other material-based biosensors,
as shown in Figure 1.
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Diagnosis of patients in the absence of centralized lab facilities is called point-of-care
testing. Lateral flow antigen identification for SARS-CoV-2 is developed as a point-of-care
testing methodology toward diagnosing COVID-19 [55]. Regarding chip-based biosensors,
two constituent lines of commercial lateral flow assays are composed of gold nanoparticle
antibody conjugates and capture antibodies, respectively. Deposited blood or urine samples’
proteins on the membrane transit by capillary action. On the primary line, the antigens
attach to the gold nanoparticle–antibody conjugates, and as complexes reach the second
line, they become immobilized by capture antibodies. Eventually, red and blue lines
appear. Red lines are presented as gold nanoparticles exclusively, and blue lines as a
clustered gold solution on account of plasmon band coupling. The lateral flow test’s
accuracy, specificity, and sensitivity have been demonstrated 69%, 57%, and 100% for IgM
and 86%, 181%, and 100% for IgG, respectively. The simultaneous detection of IgM and
IgG produces a clinical sensitivity of 82% [55]. Lateral flow assay tests can expand into
nucleic acid testing. Combination of the RT-LAMP test with lateral flow assay to determine
MERS-CoV was formerly experienced [56]. However, these tests are one-time use and
have deficient analytical sensitivity in contrast to RT-PCR. To compensate, researchers
have developed signal amplifying methods such as thermal imaging and multiple gold
nanoparticle assembling [57]. Also, a microfluidic device as an alternative facility to
utilize the point-of-care testing is composed of a palm-sized chip with micrometer-sized
channels and reaction chambers. Mixing and separation of liquid specimens in chips
occur due to electrokinetic, capillary, vacuum, and other forces. Some advantages of
utilizing microfluidics are miniaturization, small sample volume, rapid detection times,
and portability [58]. Laksanasopin et al.’s endeavor has brought up a microfluidics-based
smartphone add-on that detects antibodies against three sexually transmitted infections by
sequentially moving reagents pre-deposited on a cassette. A performed test of the platform
on 96 patients in Rwanda illustrated sensitivity and specificity for HIV as 100% and 87%,
respectively [59]. The stated technologies have the potential to detect SARS-CoV-2 RNA
or proteins.

Due to their early-stage developing status, such approaches are not trusted for the
early diagnosis of COVID-19. Phase 1 presents technologies in the proof-of-concept stage,
in which synthetic targets are used by researchers for concept validation. Phase 2 refers
to technologies undergone analyzing limited patient samples (i.e., <100 samples). Phase
3 introduces technologies advanced to large patient cohort clinical trials. Phase 4 offers
technologies that are commercialized and utilized in patients. Such edge tools probably
play a role in the diagnosis of upcoming diseases.

In addition to chip-based and paper-based biosensors, other material-based biosensors
such as textile-based, film-based, or carbon-based biosensors have also been presented
for possible implementation for COVID-19 [60,61]. They are developed to enhance the
functionality and detection sensitivity of the current biosensors, with a better perspective
in clinical settings.

Biosensors are reproducible, easy, rapid, and sensitive means of detection which
need a small sample size and could be miniaturized [62]. The awareness of patients and
other consumers before the application of this test is considered as a drawback since the
point-of-care system might not meet the required standards of accreditation as laboratories
do [63].

5. The Role of Smartphone in the Detection and Surveillance of COVID-19

Control of an epidemic demands vast surveillance, exchanging data, and patient
monitoring [64,65]. Healthcare’s proper function in all contexts from a local hospital to
WHO, claim assistance tools in promptness, and communication simplicity to restrain
disease spread. Due to smartphone’s connectivity and computational power potential,
they have been predisposed as hardware to simplify electronic reporting, epidemiological
database, and point-of-care testing (Figure 1) [66,67]. Smartphones as a readily accessible
tool all around the world (including sub-Saharan Africa) accommodates them to organize
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responses during huge epidemics like COVID-19 [66]. Incompetence in communication
and reporting has facilitated the global spread of COVID-19 [68,69]. Iran, as a vivid in-
stance, had 43 confirmed cases by 23 February 2020, a fatality rate of 19%, and 3 exported
cases. According to this report and transmission modeling, the approximate estimation of
infected individuals was thousands [70]. Smartphones’ pairing with prior diagnostic tests
affords real-time geospatial data, which prompts national and global health agencies to
conduct synchronized regulatory stratagems. Former experiences of using smartphones
as a geospatial infectious tracking tool are also accessible in research groups’ endeavors
to tackle HIV, Ebola, and tuberculosis [71–73]. In the Ebola outbreak, smartphones were
utilized as a contact tracing tool, facilitating tracking and identifying people in contact
with the patient [71]. Smartphones’ contact tracing produces broader data with sharing
options. In the absence of regional healthcare agencies’ communication, transmission rates
differ across a country [74]. Indeed, through the 2003 SARS outbreak in Canada, Toronto,
Ontario had 247 cases, with 3 imported ones, and Vancouver, British Columbia had only
5 cases, with 4 imported ones [74,75]. Although Ontario suffered from a lack of provincial
public health agency, British Columbia noticed an upcoming threat of importing emerging
infectious diseases. Therefore, the public health agency of British Columbia developed a
digital network communication over the province [75]. Smartphone connectivity widens
these communication networks. Smartphones provide the possibility to upload and share
epidemiological data with public health databases and also manage outbreak responses.
Suspected COVID-19 cases may confront communication difficulties and anyone indicating
mild respiratory symptoms faces barriers in traveling to overcrowded hospitals, due to
the increased risk of contact with possible COVID-19 patients. Smartphones ease patient
and clinician contact without disease spread risk. Also, throughout the 2009 influenza
pandemic, Switzerland, despite not possessing a reporting system yet, deployed medical
teleconsultations to control suspected cases [76,77]. Teleconsultations generated more
influenza reports in contrast to in-person consultation due to obstacles in reaching out to
people. COVID-19-infected patients, upon testing positive and having mild symptoms, are
sent home for self-quarantine [77]. Self-quarantine innately hinders the patient’s contact
with clinicians, leading to monitoring challenges and detrimental mental health effects.
Smartphone apps assist patients to stay in touch with mental health counselors to cater
to their needs during isolation, disease outbreak, and self-quarantine [78,79]. Besides,
patients can self-report symptoms and behaviors contributing to remote monitoring by clin-
icians [80]. Smartphone-linked reports inform epidemiologists on potential transmission
mechanisms. For instance, at the time of the 2013 MERS outbreak, a smartphone application
facilitated monitoring travelers during their Hajj pilgrimage. Application users were aware
of hand hygiene protocols and reported animal contact, and the onset of symptoms, both
during the pilgrimage and after it [81]. Such similar applications are available to provide
constant information for public health agencies and consequently improve their response
toward disease outbreaks. Recently, cooperation between smartphone and diagnostic
technologies has had considerable advances. Furthermore, smartphone components such
as a camera, flashlight, and audio jack have been a substitute for conventional laboratory
equipment in reading out diagnostic assays [82]. Smartphones automate readout and
database aid, and diagnostic procedure. As a practical purpose, a smartphone-based micro-
scope went through a field test in Cameroon and illustrated faster turnaround times with
respect to the standard techniques [83]. Kanazawa et al. endorsed utilizing smartphones
by using forward-looking infrared radar (FLIR) for detecting thermal variations due to
inflammation. Additionally, this method may also aid in detecting fever as a general sign
of many coronavirus infections, including COVID-19 [84]. Mudanyali et al. established a
smartphone-based microscope that conveys diagnostic outcomes to a database for analyz-
ing and spatiotemporal mapping [85]. At the community level, where reporting encounters
challenges, these devices provide addressing the requirement for point-of-care testing.
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6. Wastewater-Based Epidemiology

The majority of the population infected with the SARS-CoV-2 virus remains asymp-
tomatic or illustrates mild symptoms of infection. These symptom-free carriers increase
the risk of disease transmission, especially in the lack of appropriate quarantine policies
and preventive actions during the pandemic of COVID-19. The preventive actions at the
early stage of a pandemic should include the rapid recognition of obscure sources and
widespread screening for fast detection of asymptomatic cases [86]. Due to the high trans-
mission rate of this virus, sieving of the infected cases by medical staff needs huge amounts
of preventive equipment. Moreover, these screening tests are not accessible in most infected
areas due to economic problems. Therefore, the substitutional wastewater-based epidemi-
ology (WBE), which was successfully applied for the detection of illicit drugs or various
pathogens, could be a promising approach for anticipating spread of the virus [87]. This
virus is detected in feces and urine samples of infected patients, therefore the sewer system,
as an indicator and holder of various biomarkers of diseases in the community, could be
used during the pandemic of COVID-19 [88]. Due to different reports about the isolation
of the active form of this virus in urine and feces and based on the remarkable survival
duration of this virus in a suitable situation, detecting the most infected regions could be
possible by analyzing the community wastewater system [86,88]. Therefore, it could be
concluded that analyzing community wastewater could determine the local regions with a
high incidence of SARS-CoV-2. This determination in the early stages is more effective and
leads to rapid and comprehensive actions to reduce the diffusion of the virus in the target
region. Use of the WBE method needs a rapid, effective, and cost-benefit strategy for virus
detection. The polymerase chain reaction (PCR) is the common method for the detection
of virus DNA. However, this method has some limitations such as complex and time-
consuming sample preparation and analyzing method, which needs expensive instruments
and well-trained technicians. Therefore, other suitable and transportable methods should
be considered for evaluating wastewater on-site and detecting COVID-19 by WBE [86].
Paper analytical gadgets are a promising alternative in the rapid detection of pathogens
to overcome the limitations of the PCR method [89]. For example, the application of this
paper for the detection of malaria from whole blood leads to a faster and more effective
diagnosis of this pathogen compared with the conventional PCR method. In this gadget,
all of the DNA detection procedures are gathered in one paper. This contraction leads to
an inexpensive, rapid, efficient, and easy method for virus detection [90]. These papers
are user-friendly and could easily be used by people due to clear contrast with a colored
substrate and facility of transportation to the site of examination [86]. The application of
these papers in pathogen detection in wastewater has been approved previously [87].

SARS-CoV-2 is a non-enveloped enteric virus, which is expelled in feces less than
noroviruses and demobilized faster than other non-enveloped ones in wastewater. More-
over, the specific genomic structure of COVID-19 (large ssRNA) increased the degradability
of this virus under UV radiation. Therefore, the current wastewater treatment system in
developed countries is completely effective in the elimination of this virus. However, the
sewage infrastructure or using the wastewater for irrigation besides non-efficient plumbing
system increased the risk of virus diffusion in some regions [91–93]. Based on investigations
on various species of RNA viruses, most of them are enveloped and most of the future
studies should focus on their nature, inactivation, and diffusion due to the wide diversity
range in this family [91,94–96]. Therefore, further investigations in future studies should
be considered and these trials should use a standard virus species (e.g., bacteriophage
MS2) for standardization of the analyses [90,96,97]. Therefore, better recognition of the
enveloped-virus fate and expelling in feces and urine, as well as other pathogenic microor-
ganisms, leads to employing wastewater-based detections to control the diffusion of the
virus in society in premature point of clinical symptoms’ onset [90,98,99].

Several benefits could be obtained from wastewater surveillance of COVID-19. It can
prohibit biases of other epidemiological markers in a cost-effective way via collecting the
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information of individuals who lack access to healthcare. It can provide near-real-time data
of the infection prevalence before disease diagnosis [97].

7. Nanotechnology-Based Approaches in the Detection of COVID-19

Nanoscience and nanotechnology are studies that deal with very small particles and
are used in many other disciplines, such as chemistry, biology, physics, materials science,
and engineering [3,98]. Many scientists believe that the best way for controlling the spread
of COVID-19 is to diagnose the spread of the virus quickly, cheaply, reliably, and agilely
using novel nano-systems until the vaccine is detected [99].

Scientists have shown that the combination of the use of advanced nanomaterials
and protein detection for each disease can have a positive effect on the rapid diagnosis of
various diseases. Moitra and coworkers [100] have developed a test to diagnose COVID-19
that can detect the virus in 10 min (Figures 2 and 3). The diagnostic method is very simple
and due to the presence of plasmonic gold nanoparticles, the test is positive by changing
the color. This test does not require complex laboratory methods such as DNA analysis.
This method can detect the RNA of the virus on the first day of infection. Upon receipt
of saliva from the patient’s mouth or nasal mucosa, RNA is extracted from the sample
within approximately 10 min. The test is performed using nanoscale gold molecules to
detect specific proteins. When the biosensor is connected to the virus’s gene sequence,
the gold nanoparticles change the color of the liquid reagent from purple to blue. The
accuracy of the COVID-19 test depends on the ability to discover the virus. That is, if
the virus is present, the negative result will not be wrong, and if the virus is not present,
the positive result will not be wrong. Many test methods available in the market are not
able to diagnose the disease for several days after infection. That is why many of the
negative responses that come with these tests are wrong. The authors believe that the cost
of producing and using this test is much cheaper than the laboratory tests because it does
not need a laboratory apparatus or skilled people to perform and examine it. This method
meets the requirements of the FDA. This method can be used in any area, including daycare
centers, nursing homes, college campuses, or work places [100].
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functions. (b) Schematically shows the proposed idea of accumulation of gold nanoparticles when
capped with the ASOs (Adopted from Reference [100] with permission). https://pubs.acs.org/
doi/abs/10.1021/acsnano.0c03822. Further permissions related to the material excerpted should be
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In addition to diagnosing COVID-19, we need to be able to identify patients at high
risk of death (people with cardiovascular disease, severe respiratory illness, or severe
lung damage). This frees up the capacity of medical care centers so that they can react
quickly, saving many lives [101]. Based on a report by Mahmoudi et al., to inhibit severe
lack of healthcare systems, diminish death rates, and advance control of future epidemics
and pandemics of COVID-19, two main areas for the detection based on nanotechnology
can be used: biomolecular corona and magnetic levitation. The idea of both technologies
is adopted from the varying levels of infection and phases of disease which change the
composition of biological fluids in the body of the host and can act as a fingerprint [101].

As we know, nanoparticles can bond to a variety of biomolecules, including proteins,
as soon as they enter the biological environment, i.e., human blood. To perform this test, a
patient’s biological fluid is introduced to a small collection of nanoparticles. The surface of
these nanoparticles is covered with biomolecules—the so-called biomolecular corona—and
will give this nanoscale a unique and completely different biological identity. Then, by
investigating the composition of the crowns at the surface of the nanoparticles combined
with statistical methods, the results may present a ‘fingerprint’ pattern for patients who
might be at risk of death after being infected by COVID-19 [101–103]. This method can
also be used to accurately diagnose the deadly and non-lethal types of Coronavirus [104].
Technology of protein corona sensor array can be useful to define the plasma protein or
biomolecule patterns that imply deadly COVID-19 infection at the very beginning. Al-
though much of the biomolecular corona is covered in protein, there are other biomolecules
(metabolomes, lipids, nucleic acids) that are effective in diagnosing corona [101].

In the case of rapid diagnosis or home testing, the bioavailability of rapidly accessible
biological fluids, such as urine, tears, or saliva, can be considered in the protein corona

https://pubs.acs.org/doi/abs/10.1021/acsnano.0c03822
https://pubs.acs.org/doi/abs/10.1021/acsnano.0c03822
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sensor array method. These fluids contain protein markers associated with the disease.
Compared to human plasma, which requires blood sampling, the purpose of using the
aforementioned biological fluids is different in that a device can be developed where non-
specialists can perform diagnostic procedures. However, the disadvantage of this method
is that the biomolecules in biological fluids are much lower than in plasma. Therefore, the
accuracy of the diagnosis is reduced [105].

Their groups also suggested another method dependent on magnetic levitation (Ma-
gLev) of nanoparticles. In this strategy, the patient plasma samples suspend in a solution
of magnetic nanoparticles. Then, the distinct bands of proteins form over time, separated
by density. Much like the protein crown, these distinctively shaped bands of proteins make
distinct and reliable patterns valuable for fingerprinting disease and phases of infection.
The MagLev method for measuring protein concentrations provides useful information
to better understand the biochemical properties of proteins. Recent research has shown
that levitation patterns belonging to human blood plasma proteins provide valuable in-
formation about the health spectrum of donors. Because different diseases cause different
changes in the plasma proteome, levitation progress and patterns of plasma proteins will
provide valuable information about a person’s health status [101].

The main weak point of both biomolecular corona and the MagLev method is that
there are no biomarkers or nucleic acids for diagnosis. Therefore, in the first stage, we must
collect plasma and non-plasma biological fluids from a significant number of people with
COVID-19 in the normal and severe stages of the disease. Then, the data obtained from the
testing of these liquids should be analyzed by omics and machine learning methods, and
its biomolecular patterns, which are closely related to the high risk of death in this disease,
should be determined. On the other hand, the main advantage of these methods compared
to conventional diagnostic methods is the ability to detect extensive different types of
biomolecular patterns. This feature will be effective in quickly and accurately detecting
deadly COVID-19 infections. The main reason is that many biomolecules are associated
with personalized plasma variation or co-morbidity [104,105]. Nanomaterials can provide
new opportunities such as more effective, convenient, and safer applications. However,
challenges such as costs, toxicities to the environment and humans, and regulatory issues
should be solved before introduction to the market [106].

Table 1 presents methodologies, their principle, needed samples, cost, advantages,
and massive used methods in the detection of SARS-COV-2.
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Table 1. A summary table with all the methodologies, their principle, needed samples, cost, advantages, and massive used methods.

Methodologies Test Principle Sample Advantage Massive
Used Cost

Serological
approaches

Enzyme-linked
immunosorbent assay

(ELISA)

Binding of antibody against COVID-19 with coated
antigen in ELISA plates to forming complex and detect

with labeled secondary antibody which produced
color or fluorescence.

Blood serum or plasma - Rapid X
Not very

expensive

Chemiluminescence
immunoassay (CLIA)

By chemical probes which could produce light
emission via chemical reaction to label the antibody

against COVID-19.
Blood serum or plasma

- Sensitive
- Rapid Expensive

COVID antigen assay Detection of COVID-19 antigen with its specific
antibody based on ELISA or CLIA Blood serum or plasma - Rapid Variable costs

Molecular
approaches

RT-PCR
Conversion of RNA of COVID-19 to cDNA via

transcriptase enzyme followed by real-time PCR for
amplification of cDNA

Upper respiratory
specimens

- Gold standard test
- Sensitive X Expensive

RT-LAMP
Conversion of RNA of COVID-19 to cDNA via

transcriptase enzyme and is performed at a
temperature between 60 and 65 ◦C.

Upper respiratory
specimens

- Does not require
thermal cycler

- Time efficient
- Does not need

access to high-tech
laboratory

Very cost
effective

Nucleic Acid
Hybridization Using

Microarray

Conversion of RNA of COVID-19 to cDNA via
transcriptase enzyme followed by adding it in wells
containing fixed COVID-19-specific oligonucleotides
then washing the hybridized virus cDNA for remains

and emitting signal for positive samples.

Upper respiratory
specimens

- Sensitive Expensive

Amplicon-Based
Metagenomic
Sequencing

Hypervariable regions of conserved genes or
intergenic regions are amplified by PCR, evaluated by

the next-generation sequencing (NGS), and the
resulting sequences are compared against databases.

Upper respiratory
specimens

- Diagnoses of the
different
coronavirus strains

Expensive
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Table 1. Cont.

Methodologies Test Principle Sample Advantage Massive
Used Cost

Point-of-Care
detection of
COVID-19

Lateral flow assays

The antigens bind to the gold nanoparticle–antibody
conjugates. The red and blue lines appear. The red

lines are presented as gold nanoparticles exclusively,
and blue lines as a clustered gold solution on account

of plasmon band coupling.

blood or urine

- High specificity
- Rapid
- Simple and easy

to use
- No need for

a laboratory

Cheap

Biosensors Based on type of sensor, its principle is different.
Upper respiratory

specimens or blood
or urine

- Sensitive
- Rapid
- Easy to use

Expensive

Nanotechnology-
based

approaches

The application of
nanoparticles in several

methods which are
mentioned above

Based on type of method, its principle is different.
Upper respiratory

specimens or blood
or urine

- Sensitive Expensive
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8. Future Perspectives

The aid of technology has offered great innovations in disease diagnostics. However,
to obtain better results, the integration of recent development is crucial. The easy, effective
way of liberation and enrichment of COVID-19 virus RNA requires more research. Also,
the applications of combined technologies, such as highly sensitive detection tolls like
biosensors with effectual isothermal RNA amplification, is required to achieve real-time
and sensitive detection.

While the timeframe for virus-related antibody formation is 1–2 weeks, virus particle
detection is preferred in the early stages of the disease via point-of-care screening methods.
However, body fluids contain low levels of virus particles. Thus, the use of novel detection
techniques as described here is useful. Development of a self-consistent point-of-care
apparatus that accurately detects the virus and can test the infection progression still needs
more improvements. This method could provide more efficient systems in the detection of
the diseases in patients with a higher risk of death.

9. Conclusions

This manuscript aimed at reviewing the detection methods of COVID-19 as a global
health concern. All the above-described techniques can be effectively deployed for the
detection of COVID-19 in different settings. For example, real-time RT-PCR and serolog-
ical methods are still the most extensively used detection techniques in large hospitals,
while the biosensors, point-of-care testing, nanotechnology-based approaches, smartphone
surveillance of infectious diseases, amplicon-based metagenomic sequencing, and smart-
phones are still expected to be further developed as large-scale screening techniques that
can even in some cases, such as biosensors, be used in the home settings.
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