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Abstract: We utilized the trait-based approach in a novel way to examine how specific phytoplankton
traits are related to physical features connected to global change, water quality features connected
to catchment change, and nutrient availability connected to nutrient loading. For the analyses, we
used summertime monitoring data originating from the coastal northern Baltic Sea and generalized
additive mixed modeling (GAMM). Of the physical features connected to global climate change,
temperature was the most important affecting several studied traits. Nitrogen-fixing, buoyant, non-
motile, and autotrophic phytoplankton, as well as harmful cyanobacteria, benefited from a higher
temperature. Salinity and stratification did not have clear effects on the traits. Water transparency,
which in the Baltic Sea is connected to catchment change, had a mostly negative relation to the studied
traits. Harmfulness was negatively correlated with transparency, while the share of non-harmful and
large-sized phytoplankton was positively related to it. We used nutrient loading source type and total
phosphorus (TP) as proxies for nutrient availability connected to anthropogenic eutrophication. The
nutrient loading source type did not relate to any of the traits. Our result showing that N-fixing was
not related to TP is discussed. The regionality analysis demonstrated that traits should be calculated
in both absolute terms (biomass) and proportions (share of total biomass) to get a better view of
community changes and to potentially supplement the environmental status assessments.

Keywords: morpho-functional traits; phytoplankton; eutrophication; climate change; nitrogen-
fixation; mixotrophy; motility; buoyancy; size; harmfulness

1. Introduction

Phytoplankton communities are composed of primary producers, and they form the
base of the pelagic food webs. However, phytoplankton is not a homogenous group; but
instead, there is great diversity among phytoplankton taxa, as well as in the morpho-
functional traits of the taxa. Certain phytoplankton traits are universal for almost all
aquatic environments, even though the systematic group or the species carrying them
may vary between the environments. For example, the ability to fix atmospheric inorganic
nitrogen (N) is carried in marine systems, e.g., by the cyanobacterium Trichodesmium
and symbiotic cyanobacterial species [1], in certain brackish water ecosystems mainly
by Nodularia spumigena, while in certain lower-salinity brackish water and freshwater
ecosystems the same trait is carried by Aphanizomenon or Dolichospermum, and in the
benthos by Anabaena and several other cyanobacterial genera. Since functional trait-based
approaches can transcend habitat-specific or local taxonomy, it has been suggested that
aquatic scientists could use functional trait-based approaches as a common framework to
enhance knowledge sharing between freshwater, marine, benthic, and pelagic ecologists [2].
The trait-based approach differs markedly from the taxonomic approach in that traits are
universal for almost all aquatic environments, while species composition varies between
different ecosystems. However, information on the species identity of a specimen is often
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more than the sum of its’ trait information. Thus, the trait-based approach does not replace
the taxonomic approach; instead, the approaches complement each other [3–5].

Functional traits are usually defined as genotypic (through genes carried by an or-
ganism) and phenotypic (through the observable expression of genes) characteristics that
mediate growth, reproduction, and survival of an organism [6] and determine its fitness
for ambient biotic and abiotic conditions [3]. Many traits are included in the currently
available trait data tables as qualitative traits expressing species’ potential to carry a certain
trait (e.g., a binary trait expressing potential for mixotrophy based on available literature),
but also some quantitative and realized trait data are available (e.g., numerical values for
light-dependent growth rate measured in situ or in the laboratory) [2]. There are already
several open access trait data tables available for phytoplankton [7–9]. Even though re-
gional as well as global functional trait data tables are being supplemented continuously,
they are not comprehensive concerning either taxa or traits. The development of trait data
tables is an ongoing process since there is constant development of measuring techniques
that will make it possible to continuously supplement tables with new traits or with more
detailed information.

Some basic phytoplankton traits include the abovementioned potential to fix atmo-
spheric N, as well as motility, buoyancy, mixotrophy, cell size, and harmfulness. The
potential to fix atmospheric N is present in diazotrophic heterocystouscyanobacterial
species that are a component of the phytoplankton globally in marine, brackish, and fresh-
water ecosystems [10,11]. N-fixation gives a competitive advantage to these species in
situations of N limitation [12,13]. Still, N-fixation in marine systems, including estuaries,
coastal seas, and oceanic waters, is regulated not only by N limitation but also by complex
interactions of chemical, biotic, and physical factors [14]. In addition, it is known that a high
amount of N-fixing cyanobacteria does not always ensure active N-fixation, and N-fixing
cyanobacteria may also dominate in cases when N is not limiting because they prefer
ammonium as their inorganic N source [15]. In addition to diazotrophic cyanobacteria
themselves, N-fixation is assumed to support the concurrent phytoplankton community,
since up to 50% of the fixed N may be released by the cyanobacteria within hours [16,17].
Thus, the ability of certain cyanobacteria to fix N may support the dynamics of the whole
plankton community during N-limitation [18].

Motility and buoyancy allow phytoplankton cells to regulate their vertical position in
the water column in order to select for favorable growth conditions [19–21]. Motility is a
phenotypic cross-systematic characteristic, and it means the ability of flagellated cells to
swim three-dimensionally. It is present in all flagellated species, such as dinoflagellates,
cryptophytes, euglenoids, prymnesiophytes, most chrysophytes, and some chlorophytes.
In our study, buoyancy as a definable trait is a genotypic trait present in some cyanobacteria
that can control their vertical position in the water column with gas vesicles [22] and in the
genus Botryococcus (Chlorophyta, Trebouxiophyceae), species of which may produce large
quantities of hydrocarbons that are excreted and retained extracellularly to maintain the
colonies’ buoyancy [23].

Mixotrophy is the ability of an organism to utilize both phototrophy and phagotro-
phy for their nutrition, i.e., they function both as autotrophs and as heterotrophs [24,25].
Mixotrophy is commonly present in some cryptophytes, prymnesiophytes, dinoflagellates,
and chrysophytes. In a phytoplankton community, the amount of mixotrophs reflects the
importance of acquiring nutrients via bacteria and other plankton instead of dissolved
nutrients. In nutrient-depleted situations, a mixotrophy-based food web may be more
productive than a traditional autotrophy-based food web [26].

Cell size is a key trait connected to the surface-to-volume ratio and affects the growth
rate, nutrient uptake, and storage capacity, as well as sinking rate [27–29]. Small cells
are faster growing and do not sink as easily compared to large cells. Organism size also
affects the risk of being grazed by certain types of grazers. While microzooplankton feed
on smaller-sized phytoplankton, copepods feed on both microzooplankton as well as on ca.
>10 µm phytoplankton [30–32]. However, as is known, many of the trait-based functions
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are generalizations. For example, the direct relationship of cell size and sinking rate may
be more complicated in real communities [22].

Harmfulness can be related to toxin production, as well as to high biomass of non-toxic
phytoplankton causing, e.g., anoxia or mucilage, that negatively affect the environment
and human activities. The majority of toxin-producing species are dinoflagellates, but they
also include cyanobacteria, diatoms, haptophytes, raphidophytes, dictyochophytes, and
pelagophytes [33]. Harmful species can negatively affect other phytoplankton (allelopa-
thy) [34–37], heterotrophic plankton [38,39], fish [40,41], birds [42], or mammals [43]. The
reasons for producing harmful substances may be connected to achieving a competitional
advantage over other phytoplankton species, or avoiding grazing, but it has also been spec-
ulated that cyanobacteria may produce harmful substances only as a by-product of their
metabolism without a specific purpose [44]. The increasing risk of harmful algal blooms
(HABs) has been connected to global climate change and anthropogenic eutrophication [45],
although the universality of this connection has since been questioned [46].

In the Baltic Sea, phytoplankton community composition and its seasonal succession
have mainly been studied using taxonomic approaches [47]. In recent years, the trait-based
approach has been introduced to the Baltic Sea phytoplankton studies by one study in
which the functional phytoplankton community structure and its drivers were studied [8].
The selected monitoring dataset that we used in our study has not previously been used
for trait-based analyses. The aim of our study was to utilize the trait-based approach
and natural phytoplankton community data to gain additional knowledge on potential
connections between phytoplankton composition and environmental variables. There is a
high demand for additional information on these connections, especially for the applied
purposes of coastal marine status assessments. The trait-based approach might be well
suited for these purposes because it is not tied to local species composition in the same
way as the taxonomy-based approach. Unlike the earlier trait-based study using Baltic Sea
phytoplankton data [8], we used trait-specific biomasses and shares of total biomass in the
analyses. The reason for this is that we focused specifically on certain traits, and not on the
overall functional community structure. Furthermore, our approach, i.e., using biomasses
and their shares of total phytoplankton biomass, might be more feasible to be adopted into
marine management. We specifically examined how certain phytoplankton traits may be
linked to different scales of environmental change, specifically changes in physical features
due to global change, in water quality features due to catchment change, and in nutrient
availability due to nutrient loading. The phytoplankton morpho-functional traits included
in our study were the potential for N-fixation, mixotrophy, motility, buoyancy, harmfulness,
as well as size. The environmental factors considered were temperature, salinity, total
phosphorus concentration (TP), water transparency (Secchi depth), stratification of the
water column, and nutrient loading source type. The generalized additive mixed modeling
(GAMM) approach was used to consider the hierarchical data structure of our dataset (sea
area > water body > sampling station). To our knowledge, similar studies utilizing the
trait-based approach have not been published earlier.

We hypothesized that (1) the potential for N-fixation is positively correlated with TP
(since N does not limit the growth of N-fixers [13]), (2) the potential for motility or buoyancy
(i.e., the ability to select for favorable growth conditions) is more important when water
transparency is low and stratification is strong [19–21,48], (3) the potential for mixotrophy
correlates negatively with factors that support autotrophic growth, i.e., the availability
of nutrient resources [26] (TP in our study) and water transparency [49,50], (4) organism
size is positively correlated with the availability of nutrient resources (since small cells are
more efficient in taking up nutrients which is an advantage in nutrient-poor conditions)
and negatively correlated with stratification (since large cells sink faster) [27–29], and (5)
harmfulness is positively correlated with temperature and nutrient resources (i.e., global
climate change and nutrient pollution [45]).
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2. Materials and Methods
2.1. Study Area

Our data originate from the northern part of the Baltic Sea. The Baltic Sea is a
large brackish water basin in northern Europe, divided into sub-basins according to the
bathymetry [51,52]. The study area covers Finnish coastal areas in the sub-basins of the
Bothnian Sea (BS), the shallow Archipelago Sea (AS), and two parts of the Gulf of Finland,
i.e., the deeper, more saline western Gulf of Finland (wGF), and the shallower, less saline
eastern Gulf of Finland (eGF) (Figure 1).

In the northern Baltic Sea, salinity varies between ca. 1–6.5 psu [51] and phytoplankton
communities consist of species of both marine and freshwater origin [53]. In addition
to variability in salinity, there is also variability in other environmental conditions of
the coastal areas, including loads of organic matter and nutrients [54], as well as in the
taxonomic phytoplankton community composition [55]. Thus, monitoring data originating
from this area offer a valuable empirical source to study the variability of morpho-functional
phytoplankton traits along coastal environmental gradients.
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Figure 1. Map showing the location of the coastal sampling stations in the northern Baltic Sea. Black:
Bothnian Sea (BS; 17 stations, 110 samples); green: Archipelago Sea (AS; 24 stations, 201 samples);
blue: western Gulf of Finland (wGF; 31 stations, 460 samples); red: eastern Gulf of Finland (eGF;
8 stations, 141 samples).

Within the four areas, there were 80 monitoring stations situated in 44 water bodies.
Water bodies are clearly distinguishable areas of surface water, and they are an important
entity in the EU Water Framework Directive (WFD) [56] in relating water protection to
natural hydrological units. For each water body, information on the share of different
N and P loading sources is available (river, point, sediment, offshore) [57]. We used this
information to categorize water bodies into five different nutrient loading source types
(L): (1) N and P mainly from offshore; (2) N from rivers and P from a point source; (3) N
from rivers and P from offshore; (4) N and P from rivers; (5) N from rivers and P from
the sediment.

2.2. Phytoplankton and Environmental Data

We utilized monitoring data collected by the Finnish environmental authorities in 2009–
2020 during mid and late summer (1 July–15 September). This is a period following the
warming of the water and the development of a strong seasonal thermocline in the surface
layer, but before the autumnal mixing of the water column breaks up the thermocline. In the



Microorganisms 2021, 9, 2477 5 of 19

study area, this period is the season of the highest phytoplankton biomass after the spring
bloom. Summer is also the period examined for the environmental status assessments
required by the WFD.

Phytoplankton samples and environmental data were collected on the same day.
Originally, the total number of suitable phytoplankton community samples was 2078, but
since there was a significant amount of gaps in the environmental data, the final number of
samples included in the analyses was 912. All data are stored in the Finnish national open
database OIVA (http://www.syke.fi/en-US/Open_information, accessed 11 November
2021, in Finnish) and the database of the European Marine Observation and Data Network
(EMODnet, https://emodnet.ec.europa.eu/en/portals, accessed 11 November 2021).

We selected those phytoplankton samples that were sampled, preserved, stored,
microscopically analyzed, and converted to taxon-specific biomass (µg L−1 wet weight)
results following the guidelines described in the Manual for Marine Monitoring in the
COMBINE program of the Helsinki Commission (HELCOM) [58]. Pooled samples were
taken with a tube sampler from the surface down to a depth decided according to the Secchi
depth (from 0 m to the depth of max twice the Secchi depth). Phytoplankton samples were
preserved with acid Lugol’s solution and analyzed using inverted light microscopy [59].
Biovolumes were converted to biomasses (µg L−1 wet weight) [60], assuming a density of
1 kg m−3.

Heterotrophic taxa, akinetes, heterocytes, cysts, as well as taxa that are mainly benthic
or littoral and only occasionally observed in pelagic samples [53] were excluded from the
dataset. Single-celled picoplankton and Synechococcus were inconsistently enumerated.
Their results were also excluded from the dataset since the used monitoring method (light
microscopy of Lugol’s-preserved samples [58]) is not suitable for reliable identification of
<2 µm-sized single phytoplankton, i.e., it is not possible to separate single-celled picoplank-
ton from single-celled heterotrophic bacteria. Counting results for Anabaena were included,
since this genus name was earlier also used for the pelagic Dolichospermum taxa (nowadays
Anabaena refers to benthic taxa only [61]).

Environmental variables included surface water temperature, salinity, TP, water trans-
parency (Secchi depth), and stratification (E). For temperature, salinity, and TP, we cal-
culated mean values for the surface layer based on data collected from 0–10 m depth
(or if the station was shallower than 10 m, the entire water column). Temperature and
salinity data originate from discrete water samples collected using a tube sampler. TP was
measured spectrophotometrically [62,63], with a detection limit of 0.01 µM. To determine
the stratification index E, densities of the 0–10 m surface layer and near-bottom (deepest
measurement 1 m above the bottom) water were calculated from the temperature and
salinity of the respective water layers in R [64] using the rLakeAnalyzer package [65]. Using
these densities and the depth of the deepest temperature and salinity measurement, E was
calculated as follows [66]:

E = [σ (bottom) − σ (surface)] × 1000/depthdeepest TempSal (1)

where σ = density (kg m−3), Temp = temperature (◦C), and Sal = salinity (psu).

2.3. Morpho-Functional Traits

We assigned the following phytoplankton morpho-functional traits to the monitoring
data records a posteriori: N-fixation, mixotrophy, motility, buoyancy, cell size (small/large,
average Equivalent Spherical Diameter (aveESD)), and harmfulness (harmful cyanobac-
teria, harmful eukaryotic phytoplankton). All traits except for the size traits refer to the
potential of the function, not whether it was actually expressed in the particular community.
Trait values for N-fixation, mixotrophy, motility, and buoyancy were assigned based on
the review of the literature and an existing trait data table for the Baltic Sea phytoplank-
ton [8]. Our trait data table, including trait information for the ca. 700 taxa (ca. 2100
different counting units) that were observed in the selected monitoring data, is available as
Supplementary Material (Table S1).

http://www.syke.fi/en-US/Open_information
https://emodnet.ec.europa.eu/en/portals
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Harmfulness refers to the potential to cause harm, according to the list of toxin-
producing taxa observed in the Baltic Sea [67]. This trait was divided into harmfulness
caused by cyanobacteria and harmfulness caused by eukaryotic phytoplankton. Cyanobac-
teria are the major harmful phytoplankton group in the Baltic Sea. They are a permanent
fixture, especially in summertime phytoplankton communities, and they can be considered
as a unique entity in our analysis due to their systematic closeness. Other harmful phyto-
plankton include a wide variety of toxin-producing species [67], which are more enigmatic
in their presence. However, their abundance may have commonality with the changing
environmental conditions like temperature and nutrients.

In the case that a specimen was identified to a lower taxonomic precision than species-
level (e.g., to genus-level), it was generally considered a potential carrier of the trait if one
or more of the species in the genus carry the trait. The exceptions were Snowella spp., which
was not considered to carry the buoyancy trait, since the clear majority of Snowella species in
the study area do not carry the trait, and Amphidinium spp, which was not considered to be
harmful since the majority of Amphidinium species in the study area are not toxic. Anabaena
spp. and Aphanizomenon spp. were considered harmful since Dolichospermum lemmermannii
(syn. Anabaena lemmermannii) and Aphanizomenon flosaquae are listed as harmful [67], and
they are very common species in the study area. Furthermore, Prymnesiales, Prymnesium
cf. minutum, and Chrysochromulina spp. were considered harmful, since in the order there
are several toxic species [67,68], many of which occur in the Baltic Sea [53] and determining
them to species or even genus level is in most cases not possible in light microscopical
analysis of Lugol’s preserved samples.

Size traits were assigned using two different methods. The first size trait (small/large)
indicates if the maximum morphometric measure of the counting unit (cell, colony, coeno-
bium, chain, or 100 µm piece of filament) is less than or equal to 10 µm or if it is larger than
that. The other size trait (aveESD) was calculated as follows. First, the number of cells
per counting unit was determined. This was done based on information in the dataset,
or if lacking, either based on information in Olenina et al. [60] and its annually updated
appendix, version 2020, as concerns closely related taxa, similar size classes, or morpholog-
ically similar taxa or if not applicable, based on literature. Next, the biovolume per cell was
calculated from that of the original counting unit. Then, by assuming a spherical shape for
each cell, the radius and, consequently, the diameter for each cell was calculated, arriving
at an Equivalent Spherical Diameter (ESD). The total taxon ESD was calculated by using
the cell density (i.e., number of cells L−1) of each taxon and its ESD. Average sample ESD
(aveESD) was calculated by the sum of total taxon ESDs divided by the total cell number in
the sample.

For N-fixation, mixotrophy, motility, buoyancy, small/large cell size, and harmfulness,
we calculated a sample-specific biomass as the sum of the biomasses of the taxa carrying
the trait. The share of each trait-specific biomass of the total sample biomass was calculated
based on these values. The biomass and the share of total biomass were also calculated for
taxa that did not carry the trait (i.e., non-N-fixing, non-motile, non-buoyant, autotrophic
(=non-mixotrophic), and non-harmful taxa). Concerning cell size measured as ESD, aveESD
was used in the analyses.

2.4. Statistical Analyses

Most of the response variables were not normally or even unimodally or symmetrically
distributed and were therefore boxcox-transformed before further analyses [69]. Response
variables were modeled using a generalized additive mixed model (GAMM). A single
GAMM model was fitted for each response variable, resulting in altogether 27 different
models. Temperature, salinity, TP, water transparency (Secchi depth), stratification index
E, loading source type L, and sea area were used as explanatory variables in each model.
Since the stations where the samples were taken from are nested inside water bodies that
are nested inside sea areas, the nested structure was modeled using a random effect in
the model. The potential autocorrelation was considered by modeling the time with a
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continuous autoregressive component in the model. In addition, heteroscedasticity was
modeled using variance weights for areas in the model. The results from the GAMM
analyses are presented on the (boxcox) transformed scales of the response variables.

Pairwise post-hoc comparisons for different sea areas were carried out using estimated
marginal means with Tukey’s adjustment for p-values. This method is conceptually similar
to Tukey’s HSD post-hoc test with matching results in the case of equal sample sizes.

All statistical analyses were performed in R 4.1.0 [64]. GAMM models were fitted
using package mgcv (version 1.8.-35 [70]). Post-hoc tests were carried out with the package
emmeans (version 1.6.3 [71]). Due to the structure and high number of comparisons, only
p-values smaller than 0.001 were considered statistically significant.

3. Results
3.1. Comparison of the Coastal Areas

The ranges of surface water temperature, salinity, water transparency (measured as
Secchi depth), stratification (measured as stratification index E), and TP in the studied
coastal sea areas during mid and late summer in 2009–2020 are shown in Figure 2. The
sheltered AS was characterized by the highest salinity and a somewhat higher temperature
compared to the other areas. The eGF had the lowest salinity of the areas, while water
transparency tended to be higher and stratification slightly stronger than in the other sea
areas. The wGF was set apart from the other areas by displaying a high variability in all
environmental variables and by generally having the highest TP. In accordance with the TP
concentrations, total phytoplankton biomass tended to be the highest in the wGF and the
lowest in the BS and the eGF (Figure 2).
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3.2. Effects of Environmental Variables on the Traits

The GAMM analyses showed a significant positive effect of surface water temper-
ature on the biomasses and shares of N-fixing phytoplankton, buoyant phytoplankton,
and harmful cyanobacteria (Table 1). With the biomass and share of harmful eukaryotic
phytoplankton, temperature showed a significant non-linear (unimodal) relation. The
shares of non-N-fixing, non-buoyant, and non-harmful phytoplankton were negatively
affected by temperature. A negative effect of temperature was also shown on the biomass
and share of motile and mixotrophic phytoplankton. On the other hand, the temperature
had a positive effect on the biomass and share of autotrophic phytoplankton.

For surface water transparency, the GAMM analyses showed significant positive or
negative relations to most of the response variables (Table 1). In most cases, both the
biomass of phytoplankton carrying a given trait as well as the biomass of phytoplankton
not carrying the trait were negatively related to water transparency. Water transparency
showed a negative relation to the biomasses of both N-fixing phytoplankton and non-N-
fixing phytoplankton (Table 1). However, since the share of N-fixers of total phytoplankton
biomass was negatively related to transparency, while the share of non-fixers was positively
related, it can be concluded that higher water transparency is more positively related to
non-N-fixing phytoplankton than to N-fixing phytoplankton. The results concerning the
buoyancy trait were similar, indicating that higher water transparency is more positively
related to phytoplankton not carrying the trait of buoyancy than to buoyant phytoplankton.

The biomasses of both motile and non-motile phytoplankton were negatively associ-
ated with water transparency (Table 1). The share of mixotrophic phytoplankton biomass
of total phytoplankton was positively related to water transparency, while autotrophic phy-
toplankton biomass and its share of total phytoplankton were negatively related to water
transparency (Table 1). Water transparency was negatively related to the biomass of both
small-sized and large-sized phytoplankton (Table 1). The biomass share of non-harmful
phytoplankton of total phytoplankton biomass was positively associated with water trans-
parency, even though the biomass of non-harmful phytoplankton was negatively associated
with water transparency (Table 1). The biomass of harmful cyanobacteria, their share of
total phytoplankton biomass, and the share of harmful eukaryotic phytoplankton were all
negatively related to water transparency.

There was a significant negative relation between TP and the share of N-fixing, buoy-
ant, mixotrophic, and small-sized phytoplankton, as well as with harmful cyanobacteria
and harmful eukaryotic phytoplankton (Table 1). TP was positively correlated with biomass
and share of non-N-fixing, non-buoyant, large-sized, and non-harmful phytoplankton, as
well as with the biomass of autotrophs.

Salinity, stratification, and nutrient loading source type did not show any statistically
significant effects on the phytoplankton traits that were included in our study (Table 1).
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Table 1. Results (p-values) of the generalized additive mixed models (GAMM), with surface tempera-
ture (Temp), surface salinity (Sal), water transparency measured as Secchi depth (Secchi), stratification
index (E), total phosphorus concentration (TP), loading source type (L), and sea area (Area) as fixed
factors and the hierarchical data structure (sea area > water body > sampling station) as a random
factor. Statistically significant effects (p < 0.001) are in bold font, and colors identify significant linear
positive (orange) and negative (blue) effects of the continuous explanatory variables. Significant
non-linear (unimodal) effects are marked in grey color.

Explanatory Variable

Response Variable 1 Temp Sal Secchi E TP L Area

Nfix biom <0.001 0.073 <0.001 0.101 0.007 0.779 0.049
Nfix share <0.001 0.221 <0.001 0.089 <0.001 0.513 0.086

nonNfix biom 0.004 0.845 <0.001 0.008 <0.001 0.632 0.002
nonNfix share <0.001 0.563 <0.001 0.167 <0.001 0.518 0.199

Buo biom <0.001 0.193 <0.001 0.043 0.022 0.769 0.109
Buo share <0.001 0.424 <0.001 0.067 <0.001 0.483 0.103

nonBuo biom 0.003 0.765 <0.001 0.006 <0.001 0.630 0.001
nonBuo share <0.001 0.775 <0.001 0.120 <0.001 0.489 0.188

Mot biom <0.001 0.606 <0.001 0.104 0.050 0.987 <0.001
Mot share <0.001 0.107 <0.001 0.681 0.355 0.388 0.010

nonMot biom <0.001 0.301 <0.001 0.096 0.001 0.820 0.228
nonMot share <0.001 0.241 <0.001 0.997 0.841 0.456 0.011

MX biom <0.001 0.010 0.009 0.509 0.049 0.361 <0.001
MX share <0.001 0.156 <0.001 0.298 <0.001 0.570 <0.001
AU biom <0.001 0.989 <0.001 0.021 <0.001 0.886 0.238
AU share <0.001 0.246 <0.001 0.728 0.349 0.779 <0.001

Small biom 0.454 0.457 <0.001 0.016 0.842 0.842 <0.001
Small share 0.082 0.643 <0.001 0.955 <0.001 0.227 <0.001
Large biom 0.006 0.240 <0.001 0.089 <0.001 0.748 <0.001
Large share 0.049 0.823 <0.001 0.793 <0.001 0.179 <0.001

aveESD 0.001 0.128 <0.001 0.405 0.135 0.027 0.186
HABalg biom <0.001 0.540 <0.001 0.047 0.002 0.470 <0.001
HABalg share <0.001 0.809 0.001 0.003 <0.001 0.208 0.001

HABcyano biom <0.001 0.160 <0.001 0.058 0.010 0.704 0.102
HABcyano share <0.001 0.404 <0.001 0.040 <0.001 0.419 0.137

nonHAB biom 0.007 0.731 <0.001 0.004 <0.001 0.547 0.004
nonHAB share <0.001 0.133 <0.001 0.088 <0.001 0.437 0.835

1 Nfix biom = biomass of N-fixing phytoplankton, Nfix share = share of Nifx biom of total biomass, nonNfix
biom = biomass of non-N-fixing phytoplankton, nonNfix share = share of nonNifx biom, Buo biom = biomass of
buoyant phytoplankton, Buo share = share of Buo biom, nonBuo biom = biomass of non-buoyant phytoplankton,
nonBuo share = share of nonBuo biom, Mot biom = biomass of motile phytoplankton, Mot share = share of Mot
biom, nonMot biom = biomass of non-motile phytoplankton, nonMot share = share of nonMot biom, MX biom =
biomass of mixotrophic phytoplankton, MX share = share of MX biom, AU biom = biomass of phytoplankton not
carrying the trait of mixotrophy, AU share = share of AU biom, Small biom = biomass of small-sized (≤10 µm)
phytoplankton, Small share = share of Small biom, Large biom = biomass of large-sized (>10 µm) phytoplankton,
Large share = share of Large biom, aveESD = average Equivalent Spherical Diameter per sample, HABalg biom
= biomass of harmful eukaryotic phytoplankton, HABalg share = share of HABalg biom, HABcyano biom =
biomass of harmful cyanobacteria, HABcyano share = share of HABcyano biom, nonHAB biom = biomass of
non-harmful phytoplankton, nonHAB share = share of nonHAB biom of total biomass.

3.3. Regional Variability in Trait Occurrences

Based on the GAMM results, the sea area from which the phytoplankton communities
originated had a significant effect on the biomass of motile phytoplankton, the biomass
and share of mixotrophs, the share of autotrophs, the biomass, and share of both small-
and large-sized phytoplankton, and the biomass of harmful eukaryotic phytoplankton, i.e.,
on 9 of the 27 studied phytoplankton variables (Table 1).

We used a post-hoc test for further pairwise comparisons between the sea areas
(Table 2). Even though many traits did not show statistically significant regional differences,
many of them were nearly significant, and thus, all phytoplankton variables were included
in the analysis, and their results are shown in Table 2. The results showed that the biomass
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of motile phytoplankton was significantly lower in the BS than in the wGF and AS (Table 2,
Figure 3a). The biomass of mixotrophs was significantly lower in the BS than in all other
areas and also in the AS compared to the wGF (Table 2, Figure 3b). However, the share
of mixotrophs was significantly lower only in the wGF compared to the BS (Table 2,
Figure 3c). The share of autotrophs was significantly higher in the BS than in the wGF
(Table 2, Figure 3d).

Both the biomass and share of small-sized phytoplankton were significantly higher in
the AS compared to the eGF (Table 2, Figure 3e,f). In accordance with this result, the share
of large-sized phytoplankton was significantly lower in the AS than in the eGF (Table 2,
Figure 3g). The biomass of large-sized phytoplankton was significantly lower in the BS
than in both the eastern and western Gulf of Finland (Table 2, Figure 3h). The biomass of
harmful eukaryotic phytoplankton was significantly lower in the BS than in the AS and the
wGF (Table 2, Figure 3i). All in all, the two areas differing the most from each other were
the BS and the wGF, with a total of six differing phytoplankton trait variables. The other
sea area pairs differed concerning 1–3 trait variables.

Table 2. Results (p-values) of the post-hoc test for pairwise comparisons between the coastal sea areas
(BS = Bothnian Sea, eGF = eastern Gulf of Finland, wGF = western Gulf of Finland, AS = Archipelago
Sea). Statistically significant differences (p < 0.001) are in bold font.

Sea Area Pairs

Response Variable 1 BS–eGF BS–wGF BS–AS eGF–wGF eGF–AS wGF–AS

Nfix biom 0.283 0.160 0.984 0.984 0.227 0.077
Nfix share 0.781 0.809 0.847 0.974 0.201 0.068

nonNfix biom 0.070 0.001 0.002 0.966 0.987 1.000
nonNfix share 0.946 0.950 0.798 0.996 0.411 0.159

Buo biom 0.496 0.320 0.999 0.997 0.352 0.122
Buo share 0.915 0.931 0.713 0.990 0.264 0.080

nonBuo biom 0.066 0.001 0.001 0.973 0.988 1.000
nonBuo share 0.973 0.971 0.732 0.999 0.438 0.148

Mot biom 0.014 <0.001 <0.001 0.068 0.805 0.285
Mot share 0.898 0.329 0.299 0.031 0.122 1.000

nonMot biom 0.264 0.283 0.783 0.870 0.490 0.612
nonMot share 0.858 0.433 0.241 0.037 0.060 0.965

MX biom <0.001 <0.001 <0.001 0.719 0.276 <0.001
MX share 0.005 <0.001 0.002 0.652 0.746 0.005
AU biom 0.657 0.219 0.251 0.980 0.993 1.000
AU share 0.017 <0.001 0.033 0.713 0.565 0.001

Small biom 0.333 0.741 0.110 0.003 <0.001 0.234
Small share 0.002 0.121 0.993 0.033 <0.001 0.003
Large biom <0.001 <0.001 0.027 0.838 0.017 0.003
Large share 0.005 0.107 0.997 0.075 <0.001 0.003

aveESD 0.442 0.126 0.346 0.999 0.989 0.895
HABalg biom 0.083 <0.001 <0.001 0.642 0.776 1.000
HABalg share 0.553 0.019 0.001 0.624 0.289 0.585

HABcyano biom 0.423 0.268 0.994 0.993 0.337 0.131
HABcyano share 0.890 0.926 0.785 0.980 0.279 0.113

nonHAB biom 0.081 0.003 0.006 0.989 1.000 0.986
nonHAB share 0.984 0.888 0.998 0.994 0.993 0.872

1 Descriptions for the response variable abbreviations are given in the footer of Table 1.
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4. Discussion

Trait-based phytoplankton studies offer the possibility to draw conclusions beyond a
single ecosystem since the results are not restricted to local taxonomical features of the com-
munity [2]. In our study, we utilized the trait-based approach with natural phytoplankton
community data to gain knowledge on potential connections between the functional com-
position of phytoplankton and the environment. Our focus was on examining how certain
phytoplankton traits (N-fixing, motility, buoyancy, mixotrophy, cell size, and harmfulness)
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are related to physical features connected to global change (surface layer temperature,
salinity, stratification), to water quality features connected to catchment change (water
transparency), and to nutrient availability connected to nutrient loading (total phosphorus,
nutrient loading source type, i.e., river, point, sediment, and offshore). In addition, we took
regionality into account when analyzing the data.

4.1. Physical Features Connected to Global Change vs. Traits

All the selected traits had a significant connection to at least one of the environmental
variables included (Table 1). Of the environmental parameters connected to the Baltic
Sea-wide and global trends, only surface water temperature showed a significant connec-
tion to the traits. Temperature was a major player in distinguishing the traits benefiting
from its rise from those declining with potentially warmer summers (Table 1). N-fixing,
buoyant, non-motile, and autotrophic phytoplankton all benefited from an increase in
temperature. Harmful cyanobacteria also thrived in a warmer temperature. The positive
connection between harmful cyanobacteria and temperature supports our hypothesis and
is in accordance with earlier studies [72]. The result also supports that there is a con-
nection between the increasing risk of HABs and global climate change [45], as concerns
cyanobacteria. However, harmful phytoplankton other than cyanobacteria did not respond
to temperature in our study. These differences between harmful cyanobacteria and other
harmful phytoplankton agree with the findings of a global study [46], concluding that
HAB trends need to be considered regionally and at the species level since there is no
support for increasing global HAB trends that could be connected to climate change. In
our data, the temperature range was quite wide (8–26 ◦C, Figure 2), even though only
mid and late summer samples were included. The positive connection of autotrophs to
temperature is explained by the nature of seasonal succession in the Baltic Sea. In summer,
photosynthesis is based on remineralized nutrients, the cycling of which is enhanced by
warm temperature.

Salinity did not have apparent effects on any of the traits (Table 1). This is an interest-
ing result since salinity has been shown to markedly affect the taxonomic composition of
coastal phytoplankton communities in the Baltic Sea [55,73]. The Baltic Sea phytoplankton
is a mixture of marine and freshwater species [53], which share the same traits in both
environments. Our results indicate a seamless trait continuum even if the salinity envi-
ronment selects only species adapted to certain salinities. The result demonstrates that
there is potential for developing a trait-based environmental status indicator approach,
which could be applicable across salinity gradients, at least within the studied salinity
range (1–6.6 psu, Figure 2).

Similar to salinity, the strength of stratification also did not have apparent effects on
any of the traits (Table 1). Based on earlier studies, we hypothesized that organism size
would be negatively correlated with a stronger stratification, since large cells tend to sink
faster than small cells [27–29,74]. We also hypothesized that the potential for motility or
buoyancy (i.e., the ability to stay in the phototrophic layer) would be more important
when stratification is strong [48], indicating a stable water column. The reason why our
results did not support these hypotheses and the respective earlier studies may be that
the differences in the strength of the stratification between the four studied sea areas
were not large enough. Thus, it can be concluded that within this range of stratification
strength (Figure 2), stratification does not have a significant effect on the studied traits. A
contributing factor worth considering is that sinking and cell size are not connected in a
straightforward and constant manner [22].

4.2. Water Quality Features Connected to Catchment Change vs. Traits

Water transparency, measured as Secchi depth, was the environmental variable that
had an effect on most of the traits in our study (Table 1). The connections between the
traits and transparency were mainly negative. This may be due to transparency being
strongly affected by watercolor, which also indicates the amount of dissolved organic
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matter. Transparency may also act as a proxy for other water quality parameters, namely
N availability, which makes its direct use as a descriptor of light limitation challenging.
However, since an environmental status target is to increase water transparency (Secchi
depth) in the coastal waters of the Baltic Sea [75], our results support this target by showing
that harmful cyanobacteria and other harmful phytoplankton are negatively correlated
with water transparency. In addition, the shares of both non-harmful and larger-sized
phytoplankton (the share of large-sized species and average ESD) are positively correlated
with water transparency, which is relevant for more efficient grazing food chains compared
to the microbial loop-based energy transfer [76].

We hypothesized that the potential for motility or buoyancy would be negatively
related to water transparency. The hypothesis was based on the assumption that motility
and buoyancy would be more important when water transparency is low since (in a stable
water column) these traits enable cells to actively seek out the phototrophic layer [19–21].
We also hypothesized that the potential for mixotrophy would correlate negatively with
water transparency since mixotrophs might gain a competitive advantage when water
transparency is low and autotrophic growth is limited by light. This hypothesis was based
on earlier findings from especially humic lake studies [49,50]. Our results did not support
these hypotheses and the respective earlier studies (Table 1). One reason for this may be
that the range in water transparency (0.2–8.8 m, Figure 2), together with the concurrent
stratification conditions, was not great enough to show a significant effect on the traits.
Another reason could be that other environmental factors affected the presence of motile
and buoyant phytoplankton more than water transparency, since the same species carrying
these traits also carry several other traits, which may be more important for their dynamics
in the study area.

4.3. Nutrient Availability Connected to Nutrient Loading vs. Traits

In the mitigation of Baltic Sea eutrophication, an important target is to decrease P
availability [77]. The source of the nutrient load is indicative of the quality of the incoming
nutrients: the N:P ratio of the internal nutrient load from the sediments tends to be P-
weighted and more important in late summer, while the N:P ratio of the river load is
N-weighted and is emphasized in winter and spring. Nutrient loading from point sources
is often directly utilizable for phytoplankton, and the load is constant throughout the year
(municipalities) or focused on the summer (aquaculture). The loading from offshore, on the
other hand, is significant only in the months before the phytoplankton spring bloom uses
up the available nutrients in the surface layer, after which there are less dissolved nutrients
coming from offshore areas to the coastal areas in summer. However, according to our
results, the origin of the P load was not relevant for the selected phytoplankton traits since
the nutrient loading source type was not significantly related to any trait (Table 1). Thus, it
can be concluded that the amount of nutrient loading is more important than its origin.

The amount of TP (range 1.5–135 µg/L, Figure 2) was positively linked to the total
autotrophic biomass (Table 1). It could be expected that the availability of nutrient resources
enhances autotrophic growth, even though there are also studies that have shown an
increase in marine phytoplankton biomass coinciding with a decreasing nutrient level [78].
TP was also significantly positively correlated to large, non-buoyant, and non-harmful
phytoplankton. The observed decline of mixotrophy is a logical consequence of enhanced
nutrient availability since mixotrophy is also used to supplement nutrient reserves in
cells [25].

We hypothesized that the potential for N-fixing is positively correlated with TP, since
N does not limit the growth of N-fixers [13]. Unexpectedly, our results did not support this
hypothesis (Table 1). This finding is surprising since N-fixation should give a competitive
advantage to N-fixing species, especially in situations of N limitation [12,13]. On the other
hand, N-fixation in marine systems is known to be regulated not only by N limitation but
also by complex interactions of abiotic and biotic factors [14]. In addition, it is known
that N-fixation and N-fixing cyanobacteria may dominate in cases when N is not limiting
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because cyanobacteria also prefer ammonium as their inorganic N source [15]. However,
our result is in accordance with an earlier study from the coastal northern Baltic Sea, thus
concluding that N-fixing cyanobacteria were not directly gaining a competitive advantage
as a simple function of N limitation [55]. In that study, it was concluded that the biomass of
N-fixing cyanobacteria seemed to be primarily regulated by other factors than the current
nutrient situation, i.e., by longer-term nutrient dynamics. This might also be an explanation
for our results. Other explanations could be that the N-fixing cyanobacteria population did
not actually develop at the sampling site, but had drifted there, or that the N-fixers do not
solely benefit from N-fixation since other competing phytoplankton are able to take up the
nutrients (P as well as the N fixed by the N-fixers) more efficiently. The latter explanation
may be supported by studies showing that up to half of the fixed N can be quickly released
by the cyanobacteria for the use of other microorganisms [16,17]. In addition, clear negative
effects caused by N-fixing cyanobacteria on the ambient plankton taxa have not been found
in studies utilizing monitoring data from the Baltic Sea [79,80].

The challenge in using the available monitoring data is that it does not cover the com-
plete size range of phytoplankton. Single-celled <2-µm picoplankton are not included since
the inverted light microscopy method is not suitable for enumerating them reliably [58].
Specifically, this fact affects all measures using phytoplankton biomass. The exclusion of
picoplankton has an effect on our results since picocyanobacteria are an important part of
the northern Baltic Sea phytoplankton [81,82]. This directly affects the traits concerning
cell size. It has also been suggested that some of the Baltic Sea picocyanobacteria are able
to fix N [83]. However, this has been challenged by a study indicating that the Baltic Sea
picocyanobacteria would not fix N, but instead use ammonium released from filamentous
N-fixing cyanobacteria [16]. New knowledge on N-fixation emerges, e.g., the role of symbi-
otic unicellular cyanobacteria in the UCYN-A/haptophyte complex may change our view
of N-fixation in many environments [84,85].

In any case, our result is interesting, since the increased N-fixing cyanobacterial blooms
are considered a symptom of anthropogenic eutrophication in the Baltic Sea [86–88]. Thus,
the duration, volume, and severity of N-fixing cyanobacterial blooms have been suggested
to be used as a eutrophication status indicator [89,90] in the Baltic Sea area. Our result is
not necessarily contradictory to this since our study was spatially and temporally much
more restricted compared to the Baltic Sea-wide multi-decadal examinations.

Our hypothesis that harmfulness would be positively correlated with nutrient re-
sources was not supported either (Table 1). Thus, our result did not support the studies
connecting an increasing risk of harmful algal blooms (HABs) to anthropogenic eutrophi-
cation [45]. Instead, this result further supports the global study concluding that it is not
possible to give an all-encompassing statement regarding increasing global HAB trends
connected to either climate change or nutrient pollution [46].

4.4. Regionality

Our four coastal study areas differed from each other by their environmental charac-
teristics (Figure 2) and trait properties (Table 2, Figure 3). Sea areas close to each other are
naturally more alike than more remote areas. For example, the two parts of the Gulf of
Finland (wGF and eGF) shared similar trait properties, and the AS was most similar to the
wGF. However, the two areas differing the most from each other were the BS and the wGF,
which are not geographical neighbors, but they are not the two areas farthest apart either
(Figure 1).

Earlier studies have shown that the taxonomic phytoplankton community composition
(species-level biomass composition) is different in different coastal Baltic Sea areas [55,91].
Thus, utilizing specific taxa for environmental status indicators may be difficult. Our
study shows that the trait-based approach could be used to overcome this problem. Many
phytoplankton traits included in our study show clear differences between the sea areas,
indicating that their development can be used for monitoring if coastal waters become
more similar or dissimilar, and what are the most important drivers, if changes occur.
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Monitoring this development is important in order to anticipate potential changes which
may lie ahead, for example, in assessing changes in the properties of pelagic food webs.

Our regionality analysis (Table 2) showed that (1) traits should be examined in both
absolute terms (e.g., biomass) and in proportions (e.g., share of total biomass), and that
(2) many traits do not currently show statistically significant regional differences, however,
the differences are nearly significant, and thus they should be monitored. In addition,
a weighted approach to monitor the development of sea areas should be considered,
considering at least those traits which showed nearly significant differences between the
sea areas. For example, although the biomass of non-buoyant phytoplankton did not differ
significantly between the sea areas in our study (minimum p = 0.001, Table 2), it may be
useful to include it in the analysis of how phytoplankton communities will develop in the
future. A trait-based similarity analysis for the sea areas could be an informative next step,
but it may require more intensive datasets.

4.5. Future Research Directions

Even though we do not suggest and test a new indicator concept here, one motivation
behind our study was to find new perspectives to supplement and particularize the present
ecological status indicators, which currently mainly rely on summarized information such
as total nutrients or chlorophyll-a. To our knowledge, similar studies utilizing the trait-
based approach have not been published. Our next aim is to develop a widely applicable
trait-based phytoplankton indicator to supplement ecological status assessments. This
kind of indicator development would benefit from a long-term study of phytoplankton
traits to define reference conditions and suitable target values for the potential indicator.
Trait-based analyses also have the potential for giving an indication of the consequences of
predicted trends in environmental conditions for phytoplankton communities.

5. Conclusions

We used the trait-based approach in a novel way to examine how specific phytoplank-
ton traits are related to physical features connected to global change, water quality features
connected to catchment change, and nutrient availability connected to nutrient loading.
The regional aspect was also considered. There is a high demand for additional information
on these connections, especially for the purposes of coastal marine status assessment and
revealing trends in phytoplankton communities hidden underneath simple chlorophyll-a
values.

Our results showed that (1) of the physical features connected to global climate change,
temperature was the most important affecting the presence of traits. N-fixing, buoyant,
non-motile, autotrophic phytoplankton, and harmful cyanobacteria benefited from a higher
temperature. Salinity and stratification did not have clear effects on any of the traits.
(2) Water transparency, which is a water quality feature connected to catchment change,
had a mostly negative relation to the traits. Harmfulness was negatively correlated with
water transparency, while the share of non-harmful and large-sized phytoplankton were
positively correlated with it. (3) The nutrient loading source type did not significantly
relate to any of the traits. The potential for N-fixing was not related to TP, potentially
because N-fixers do not necessarily develop at the sampling site (they may be transported
from elsewhere), other phytoplankton are still able to take up nutrients more efficiently, or
N-fixers are primarily regulated by other factors than the current nutrient situation, i.e.,
longer-term nutrient dynamics. (4) The regionality analysis showed that traits should be
calculated in both absolute terms and proportions, and that even though many traits do
not currently show statistically significant regional differences, several differences were
nearly significant, and thus they should be monitored.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9122477/s1, Table S1: Trait data table.

https://www.mdpi.com/article/10.3390/microorganisms9122477/s1
https://www.mdpi.com/article/10.3390/microorganisms9122477/s1


Microorganisms 2021, 9, 2477 16 of 19

Author Contributions: Conceptualization, S.L., S.S., H.H. and H.K.; methodology, S.L., S.S. and J.T.;
formal analysis, J.T., S.S. and S.L.; writing—original draft preparation, S.L., S.S., H.H., J.T. and H.K.;
writing—review and editing, S.L., S.S., H.H., J.T. and H.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was conducted at the Finnish Environment Institute (SYKE), paying the
salaries of S.L., S.S., H.H. and H.K.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available in the Finnish national open database OIVA
(http://www.syke.fi/en-US/Open_information, in Finnish, accessed on 22 October 2021) and in
the database of the European Marine Observation and Data Network (EMODnet, https://emodnet.
ec.europa.eu/en/portals accessed on 22 October 2021). The trait data table is available as Supple-
mentary Material (Table S1).

Acknowledgments: The study utilized SYKE marine research infrastructure as a part of the national
FINMARI RI consortium.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pajares, S.; Ramos, R. Processes and microorganisms involved in the marine nitrogen cycle: Knowledge and gaps. Front. Mar. Sci.

2019, 6, 739. [CrossRef]
2. Martini, S.; Larras, F.; Boyé, A.; Faure, E.; Aberle, N.; Archambault, P.; Bacouillard, L.; Beisner, B.E.; Bittner, L.; Castella, E.; et al.

Functional trait-based approaches as a common framework for aquatic ecologists. Limnol. Oceanogr. 2021, 66, 965–994. [CrossRef]
3. Litchman, E.; Klausmeier, C.A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 615–639.

[CrossRef]
4. Leruste, A.; Villéger, S.; Malet, N.; De Wit, R.; Bec, B. Complementarity of the multidimensional functional and the taxonomic

approaches to study phytoplankton communities in three Mediterranean coastal lagoons of different trophic status. Hydrobiologia
2018, 815, 207–227. [CrossRef]

5. Graco-Roza, C.; Soininen, J.; Corrêa, G.; Pacheco, F.S.; Miranda, M.; Domingos, P.; Marinho, M.M. Functional rather than
taxonomic diversity reveals changes in the phytoplankton community of a large dammed river. Ecol. Indic. 2021, 121, 107048.
[CrossRef]

6. Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos
2007, 116, 882–892. [CrossRef]

7. Edwards, K.F.; Thomas, M.K.; Klausmeier, C.A.; Litchman, E. Light and growth in marine phytoplankton: Allometric, taxonomic,
and environmental variation. Limnol. Oceanogr. 2015, 60, 540–552. [CrossRef]

8. Klais, R.; Norros, V.; Lehtinen, S.; Tamminen, T.; Olli, K. Community assembly and drivers of phytoplankton functional structure.
Funct. Ecol. 2017, 31, 760–767. [CrossRef]

9. Laplace-Treyture, C.; Derot, J.; Prévost, E.; Le Mat, A.; Jamoneau, A. Phytoplankton morpho-functional trait dataset from French
waterbodies. Sci. Data 2021, 8, 40. [CrossRef] [PubMed]

10. Deutsch, C.; Sarmiento, J.L.; Sigman, D.M.; Gruber, N.; Dunne, J.P. Spatial coupling of nitrogen inputs and losses in the ocean.
Nature 2007, 445, 163–167. [CrossRef] [PubMed]

11. Wang, W.L.; Moore, J.K.; Martiny, A.C.; Primeau, F.W. Convergent estimates of marine nitrogen fixation. Nature 2019, 566, 205–211.
[CrossRef] [PubMed]

12. Schindler, D.W. Evolution of phosphorus limitation in lakes. Science 1977, 195, 260–262. [CrossRef] [PubMed]
13. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531.

[CrossRef]
14. Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views

over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [CrossRef]
15. Scott, J.T.; McCarthy, M.J. Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication

management. Limnol. Oceanogr. 2010, 55, 1265–1270. [CrossRef]
16. Karlson, A.M.L.; Duberg, J.; Motwani, N.H.; Hogfors, H.; Klawonn, I.; Ploug, H.; Barthel, J.; Garbaras, S.A.; Sundelin, B.; Hajdu, S.;

et al. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs. Ambio 2015, 44 (Suppl. 3), 413–426. [CrossRef]
17. Adam, B.; Klaworn, I.; Svedén, J.B.; Bergkvist, J.; Nahar, N.; Walve, J.; Littmann, S.; Whitehouse, M.J.; Lavik, G.; Kuypers, M.M.;

et al. N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME
J. 2016, 10, 450–459. [CrossRef] [PubMed]

18. Zehr, J.P.; Capone, D.G. Changing perspectives in marine nitrogen fixation. Science 2020, 368, 6492. [CrossRef] [PubMed]

http://www.syke.fi/en-US/Open_information
https://emodnet.ec.europa.eu/en/portals
https://emodnet.ec.europa.eu/en/portals
http://doi.org/10.3389/fmars.2019.00739
http://doi.org/10.1002/lno.11655
http://doi.org/10.1146/annurev.ecolsys.39.110707.173549
http://doi.org/10.1007/s10750-018-3565-4
http://doi.org/10.1016/j.ecolind.2020.107048
http://doi.org/10.1111/j.0030-1299.2007.15559.x
http://doi.org/10.1002/lno.10033
http://doi.org/10.1111/1365-2435.12784
http://doi.org/10.1038/s41597-021-00814-0
http://www.ncbi.nlm.nih.gov/pubmed/33531503
http://doi.org/10.1038/nature05392
http://www.ncbi.nlm.nih.gov/pubmed/17215838
http://doi.org/10.1038/s41586-019-0911-2
http://www.ncbi.nlm.nih.gov/pubmed/30760914
http://doi.org/10.1126/science.195.4275.260
http://www.ncbi.nlm.nih.gov/pubmed/17787798
http://doi.org/10.1038/22941
http://doi.org/10.4319/lo.2006.51.1_part_2.0364
http://doi.org/10.4319/lo.2010.55.3.1265
http://doi.org/10.1007/s13280-015-0660-x
http://doi.org/10.1038/ismej.2015.126
http://www.ncbi.nlm.nih.gov/pubmed/26262817
http://doi.org/10.1126/science.aay9514
http://www.ncbi.nlm.nih.gov/pubmed/32409447


Microorganisms 2021, 9, 2477 17 of 19

19. Walsby, A.E.; Hayes, P.K.; Boje, R. The gas vesicles, buoyancy and vertical distribution of cyanobacteria in the Baltic Sea. Eur. J.
Phycol. 1995, 30, 87–94. [CrossRef]

20. Walsby, A.E.; Hayes, P.K.; Boje, R.; Stal, L.J. The selective advantage of buoyancy provided by gas vesicles for planktonic
cyanobacteria in the Baltic Sea. New Phytol. 1997, 136, 407–417. [CrossRef] [PubMed]

21. Smayda, T.J. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol.
Oceanogr. 1997, 42, 1137–1153. [CrossRef]

22. Gemmell, B.J.; Oh, G.; Buskey, E.J.; Villareal, T.A. Dynamic sinking behaviour in marine phytoplankton: Rapid changes in
buoyancy may aid in nutrient uptake. Proc. Biol. Sci. 2016, 283, 20161126. [CrossRef] [PubMed]

23. Lee-Chang, K.J.; Albinsson, E.; Clementson, L.; Revill, A.T.; Jameson, I.; Blackburn, S.I. Australian strains of Botryococcus braunii
examined for potential hydrocarbon and carotenoid pigment production and the effect of brackish water. Energies 2020, 13, 6644.
[CrossRef]

24. Stoecker, D.K. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J.
Protistol. 1998, 34, 81–290. [CrossRef]

25. Ward, B.A. Mixotroph ecology: More than the sum of its parts. PNAS 2019, 116, 5846–5848. [CrossRef]
26. Mitra, A.; Flynn, K.J.; Burkholder, J.M.; Berge, T.; Calbet, A.; Raven, J.A.; Granéli, E.; Glibert, P.M.; Hansen, P.J.; Stoecker, D.K.;

et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 2014, 11, 995–1005. [CrossRef]
27. Kriest, I.; Oschlies, A. Modelling the effect of cell-size-dependent nutrient uptake and exudation on phytoplankton size spectra.

Deep Sea Res. Part I 2007, 54, 1593–1618. [CrossRef]
28. Finkel, Z.V.; Beardall, J.; Flynn, K.J.; Quihh, A.; Alwyn, T.; Rees, W.V.; Raven, J.A. Phytoplankton in a changing world: Cell size

and elemental stoichiometry. J. Plankton Res. 2010, 32, 119–137. [CrossRef]
29. Acevedo-Trejos, E.; Brandt, G.; Bruggeman, J.; Merico, A. Mechanisms shaping size structure and functional diversity of

phytoplankton communities in the ocean. Sci. Rep. 2015, 5, 8918. [CrossRef] [PubMed]
30. Stoecker, D.K.; Capuzzo, D.A. Predation on protozoa: Its importance to zooplankton. J. Plankton Res. 1990, 12, 891–908. [CrossRef]
31. Sommer, U.; Hansen, T.; Blum, O.; Holzner, N.; Vadstein, O.; Stibor, H. Copepod and microzooplankton grazing in mesocosms

fertilised with different Si:N ratios: No overlap between food spectra and Si:N influence on zooplankton trophic level. Oecologia
2005, 142, 274–283. [CrossRef]

32. Sommer, U.; Sommer, F. Cladocerans versus copepods: The cause of contrasting top-down controls on fresh water and marine
phytoplankton. Oecologia 2006, 147, 183–194. [CrossRef] [PubMed]

33. Moestrup, Ø.; Akselmann-Cardella, R.; Fraga, S.; Hoppenrath, M.; Iwataki, M.; Komárek, J.; Larsen, J.; Lundholm, N.; Zingone, A.
(Eds.) IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae. 2009. Available online: http://www.marinespecies.org/
hab (accessed on 11 November 2019).

34. Granéli, E.; Turner, J.T. (Eds.) Ecology of Harmful Algae; Ecological Studies 189; Springer: Berlin/Heidelberg, Germany, 2008; p.
416.

35. Suikkanen, S.; Fistarol, G.O.; Granéli, E. Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol.
Prog. Ser. 2005, 287, 1–9. [CrossRef]

36. Suikkanen, S.; Hakanen, P.; Spilling, K.; Kremp, A. Allelopathic effects of Baltic Sea spring bloom dinoflagellates on co-occurring
phytoplankton. Mar. Ecol. Prog. Ser. 2011, 439, 45–55. Available online: https://www.jstor.org/stable/24875557 (accessed on 27
October 2019). [CrossRef]

37. Hakanen, P.; Suikkanen, S.; Kremp, A. Allelopathic activity of the toxic dinoflagellate Alexandrium ostenfeldii: Intra-population
variability and response of co-occurring dinoflagellates. Harmful Algae 2014, 39, 287–294. [CrossRef]

38. Kozlowsky-Suzuki, B.; Karjalainen, M.; Lehtiniemi, M.; Engström-Öst, J.; Koski, M.; Carlsson, P. Feeding, reproduction and toxin
accumulation by the copepods Acartia bifilosa and Eurytemora affinis in the presence of the toxic cyanobacterium Nodularia
spumigena. Mar. Ecol. Prog. Ser. 2003, 249, 237–249. [CrossRef]

39. Sopanen, S.; Koski, M.; Uronen, P.; Kuuppo, P.; Lehtinen, S.; Legrand, C.; Tamminen, T. Prymnesium parvum exotoxins affect the
grazing and viability of the calanoid copepod Eurytemora affinis. Mar. Ecol. Prog. Ser. 2008, 361, 191–202. [CrossRef]

40. Henrikson, J.C.; Gharfeh, M.S.; Easton, A.C.; Easton, J.D.; Glenn, K.L.; Shadfan, M.; Mooberry, S.L.; Hambright, K.D.; Cichewicz,
R.H. Reassessing the ichthyotoxin profile of cultured Prymnesium parvum (golden algae) and comparing it to samples collected
from recent freshwater bloom and fish kill events in North America. Toxicon 2010, 55, 1396–1404. [CrossRef] [PubMed]

41. Andersen, N.G.; Hansen, P.J.; Engell-Sørensen, K.; Nørremark, L.H.; Andersen, P.; Lorenzen, E.; Lorenzen, N. Ichthyotoxicity of
the microalga Pseudochattonella farcimen under laboratory and field conditions in Danish waters. Dis. Aquat. Org. 2015, 16,
165–172. [CrossRef] [PubMed]

42. Shumway, S.E.; Allen, S.M.; Boersma, P.D. Marine birds and harmful algal blooms: Sporadic victims or under-reported events?
Harmful Algae 2003, 2, 1–17. [CrossRef]

43. Broadwater, M.H.; Van Dolah, F.M.; Fire, S.E. Vulnerabilities of marine mammals to harmful algal blooms. In Harmful Algal
Blooms: A Compendium Desk Reference; Shumway, S.E., Burkholder, J.M., Morton, S.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ,
USA, 2018; ISBN 9781118994672. [CrossRef]

44. Baselga-Cervera, B.; Balboa, C.G.; Costas, E.; Lopez-Rodas, V. Why Cyanobacteria produce toxins? evolutionary game theory
suggests the key. Int. J. Biol. Arch. 2015, 7, 1. [CrossRef]

http://doi.org/10.1080/09670269500650851
http://doi.org/10.1046/j.1469-8137.1997.00754.x
http://www.ncbi.nlm.nih.gov/pubmed/33863010
http://doi.org/10.4319/lo.1997.42.5_part_2.1137
http://doi.org/10.1098/rspb.2016.1126
http://www.ncbi.nlm.nih.gov/pubmed/27708154
http://doi.org/10.3390/en13246644
http://doi.org/10.1016/S0932-4739(98)80055-2
http://doi.org/10.1073/pnas.1902106116
http://doi.org/10.5194/bg-11-995-2014
http://doi.org/10.1016/j.dsr.2007.04.017
http://doi.org/10.1093/plankt/fbp098
http://doi.org/10.1038/srep08918
http://www.ncbi.nlm.nih.gov/pubmed/25747280
http://doi.org/10.1093/plankt/12.5.891
http://doi.org/10.1007/s00442-004-1708-y
http://doi.org/10.1007/s00442-005-0320-0
http://www.ncbi.nlm.nih.gov/pubmed/16341887
http://www.marinespecies.org/hab
http://www.marinespecies.org/hab
http://doi.org/10.3354/meps287001
https://www.jstor.org/stable/24875557
http://doi.org/10.3354/meps09356
http://doi.org/10.1016/j.hal.2014.08.005
http://doi.org/10.3354/meps249237
http://doi.org/10.3354/meps07374
http://doi.org/10.1016/j.toxicon.2010.02.017
http://www.ncbi.nlm.nih.gov/pubmed/20184911
http://doi.org/10.3354/dao02916
http://www.ncbi.nlm.nih.gov/pubmed/26503770
http://doi.org/10.1016/S1568-9883(03)00002-7
http://doi.org/10.1002/9781118994672.ch5
http://doi.org/10.5539/ijb.v7n1p64


Microorganisms 2021, 9, 2477 18 of 19

45. Glibert, P.M.; Burford, M.A. Globally changing nutrient loads and harmful algal blooms: Recent advances, new paradigms, and
continuing challenges. Oceanography 2017, 30, 58–69. [CrossRef]

46. Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Dechraoui Bottein, M.-Y.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.;
Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging
bloom impacts. Commun. Earth Environ. 2021, 2, 117. [CrossRef]

47. Andersson, A.; Tamminen, T.; Lehtinen, S.; Jürgens, K.; Labrenz, M.; Viitasalo, M. Chapter: The pelagic food web. In Biological
Oceanography of the Baltic Sea; Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T., Eds.; Springer Nature: Dordrecht, The
Netherlands, 2017; pp. 281–332.

48. Ross, O.N.; Sharples, J. Swimming for survival: A role of phytoplankton motility in a stratified turbulent environment. J. Mar.
Syst. 2008, 70, 248–262. [CrossRef]

49. Jansson, M.; Blomqvist, P.; Jonsson, A.; Bergström, A.-K. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic
phytoplankton, and heterotrophic nanoflagellates inLake Örträsket. Limnol. Oceanogr. 1996, 41, 1552–1559. [CrossRef]

50. Peltomaa, E.; Ojala, A. Size-related photosynthesis of algae in a strongly stratified humic lake. J. Plankton Res. 2010, 32, 341–355.
[CrossRef]

51. Wulff, F.V.; Rahm, L.; Larsson, P. (Eds.) A Systems Analysis of the Baltic Sea; Springer: Berlin/Heidelberg, Germany, 2001; p. 457.
52. Snoeijs-Leijonmalm, P.; Andrén, E. Chapter: Why is the Baltic Sea so special to live in. In Biological Oceanography of the Baltic Sea;

Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T., Eds.; Springer Nature: Dordrecht, The Netherlands, 2017; pp. 23–84.
53. Hällfors, G. Checklist of Baltic Sea phytoplankton species (including some heterotrophic protists). Balt. Sea Environ. Proc. 2004,

95, 208.
54. Räike, A.; Taskinen, A.; Knuuttila, S. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water

protection measures. Ambio 2020, 49, 460–474. [CrossRef] [PubMed]
55. Lehtinen, S.; Tamminen, T.; Ptacnik, R.; Andersen, T. Phytoplankton species richness, evenness, and production in relation to

nutrient availability and imbalance. Limnol. Oceanogr. 2017, 62, 1393–1408. [CrossRef]
56. European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a

framework for Community action in the field of water policy. Off. J. 2000, 327, 1–73.
57. Fleming, V.; Kuosa, H.; Hoikkala, L.; Räike, A.; Huttunen, M.; Miettunen, E.; Virtanen, E.; Tuomi, L.; Nygård, H.; Kauppila, P.

Rannikkovesiemme Vedenlaadun ja Rehevöitymistilan Tulevaisuus ja sen Arvioiminen [The Future of the Water Quality and
Eutrophication Status of Finnish Coastal Waters, and Assessing It]. Publications of the Government’s Analysis, Assessment and
Research Activities. 2021, Volume 14, p. 123. (In Finnish). Available online: https://julkaisut.valtioneuvosto.fi/handle/10024/16
2906 (accessed on 11 November 2021).

58. HELCOM. Guidelines for Monitoring of Phytoplankton Species Composition, Abundance and Biomass. Version 13.9.2021.
2021; 22p. Available online: https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Guidelines-for-monitoring-of-
phytoplankton-species-composition-abundance-and-biomass.pdf (accessed on 11 November 2021).

59. Utermöhl, H. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. 1958, 9, 1–38.
60. Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al.

Biovolumes and size-classes of phytoplankton in the Baltic Sea. Balt. Sea Environ. Proc. 2006, 106, 142.
61. Wacklin, P.; Hoffmann, L.; Komárek, J. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum

(Ralfs ex Bornet et Flahault) comb. nova. Fottea 2009, 9, 59–64. [CrossRef]
62. Koroleff, F. Meriveden yleisimmät kemialliset analyysimenetelmät [The most common analysis methods for sea water]. Institute

of Marine Research, Finland. Meri 1979, 7, 60. (In Finnish)
63. Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis; Wiley-VCH Verlag: Weinheim, Germany, 1999.
64. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021; Available online: https://www.R-project.org/ (accessed on 11 November 2021).
65. Winslow, L.; Read, J.; Woolway, R.; Brentrup, J.; Leach, T.; Zwart, J.; Albers, S.; Collinge, D. rLakeAnalyzer: Lake Physics

Tools. R Package Version 1.11.4.1. 2019. Available online: https://CRAN.R-project.org/package=rLakeAnalyzer (accessed on
11 November 2021).

66. Kuosa, H.; Fleming-Lehtinen, V.; Lehtinen, S.; Lehtiniemi, M.; Nygård, H.; Raateoja, M.; Raitaniemi, J.; Tuimala, J.; Uusitalo, L.;
Suikkanen, S. A retrospective view of the development of the Gulf of Bothnia ecosystem. Mar. Syst. 2017, 167, 78–92. [CrossRef]

67. Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, K.; Kobos, J.; Lehtinen, S.; et al.
Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [CrossRef]

68. Moestrup, Ø.; Thomsen, H.A. Taxonomy of toxic haptophytes (prymnesiophytes). In Manual on Harmful Marine Microalgae;
Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Eds.; Monographs on Oceanographic Methology; UNESCO Publishing: Paris,
France, 2004; pp. 433–463.

69. Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–252. [CrossRef]
70. Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: London, UK, 2017.
71. Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.6.3. 2021. Available online:

https://CRAN.R-project.org/package=emmeans (accessed on 11 November 2021).
72. Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010.

[CrossRef] [PubMed]

http://doi.org/10.5670/oceanog.2017.110
http://doi.org/10.1038/s43247-021-00178-8
http://doi.org/10.1016/j.jmarsys.2006.07.008
http://doi.org/10.4319/lo.1996.41.7.1552
http://doi.org/10.1093/plankt/fbp123
http://doi.org/10.1007/s13280-019-01217-7
http://www.ncbi.nlm.nih.gov/pubmed/31278623
http://doi.org/10.1002/lno.10506
https://julkaisut.valtioneuvosto.fi/handle/10024/162906
https://julkaisut.valtioneuvosto.fi/handle/10024/162906
https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Guidelines-for-monitoring-of-phytoplankton-species-composition-abundance-and-biomass.pdf
https://helcom.fi/wp-content/uploads/2020/01/HELCOM-Guidelines-for-monitoring-of-phytoplankton-species-composition-abundance-and-biomass.pdf
http://doi.org/10.5507/fot.2009.005
https://www.R-project.org/
https://CRAN.R-project.org/package=rLakeAnalyzer
http://doi.org/10.1016/j.jmarsys.2016.11.020
http://doi.org/10.1016/j.hal.2021.101989
http://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://CRAN.R-project.org/package=emmeans
http://doi.org/10.1007/s00248-012-0159-y
http://www.ncbi.nlm.nih.gov/pubmed/23314096


Microorganisms 2021, 9, 2477 19 of 19
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