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Abstract: Over the last decade, Salmonella enterica serovar Schwarzengrund has become more preva-
lent in Asia, Europe, and the US with the simultaneous emergence of multidrug-resistant isolates.
As these pathogens are responsible for many sporadic illnesses and chronic complications, as well
as outbreaks over many countries, improved surveillance is urgently needed. For 20 years, pulsed-
field gel electrophoresis (PFGE) has been the gold standard for determining bacterial relatedness
by targeting genome-wide restriction enzyme polymorphisms. Despite its utility, recent studies
have reported that PFGE results correlate poorly with that of closely related outbreak strains and
clonally dominant endemic strains. Due to these concerns, alternative amplification-based molecular
methods for bacterial strain typing have been developed, including clustered regular interspaced
short palindromic repeats (CRISPR) and multilocus sequence typing (MLST). Furthermore, as the
cost of sequencing continues to decrease, whole genome sequencing (WGS) is poised to replace other
molecular strain typing methods. In this study, we assessed the discriminatory power of PFGE,
CRISPR, MLST, and WGS methods to differentiate between 23 epidemiologically unrelated S. enterica
serovar Schwarzengrund isolates collected over an 18-year period from distinct locations in Taiwan.
The discriminatory index (DI) of each method for different isolates was calculated, resulting in values
between 0 (not discriminatory) and 1 (highly discriminatory). Our results showed that WGS has
the greatest resolution (DI = 0.982) compared to PFGE (DI = 0.938), CRISPR (DI = 0.906), and MLST
(DI = 0.463) methods. In conclusion, the WGS typing approach was shown to be the most sensitive
for S. enterica serovar Schwarzengrund fingerprinting.

Keywords: Salmonella; subtyping; PFGE; MLST; CRISPR; WGS

1. Introduction

Salmonellosis is a public health concern in both industrialized and developing coun-
tries. Nontyphoidal Salmonella serovars cause high morbidity and mortality, as well as
considerable global economic loss each year [1]. In humans, salmonellosis is character-
ized by self-limiting gastroenteritis, and usually results from consuming contaminated
animal products, such as poultry, meat, eggs, or dairy [2]. As Salmonella can infect human
hosts by different sources, accurately identifying and discriminating between isolates is
important for global public health authorities to detect outbreaks and track the originating
sources [3]. For over 50 years, surveillance data from the Centers for Disease Control
and Prevention (CDC) for Salmonella serotype designation have been collected through
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laboratory-based surveillance systems [4]. However, conventional serotyping based on
antisera agglutination has several limitations as it is not discriminative enough to infer
phylogenetic relationships [5]. Since there has been a tremendous improvement in bacterial
subtyping techniques over the last decade [6], the need for a better Salmonella surveillance
system is required.

Alternative methods such as pulsed-field gel electrophoresis (PFGE), multilocus se-
quence typing (MLST), clustered regularly interspaced short palindromic repeats (CRISPR),
and whole genome sequencing (WGS), have been proposed to replace conventional
Salmonella serotyping methods [6]. PFGE involves the macrorestriction of genomic DNA
by specific enzymes, the separation of fragments by a pulsed electric field, and an analysis
of the resulting DNA fingerprint [7]. Conversely, MLST directly measures the genetic
variations in seven housekeeping genes and defines strains based on their unique allelic
profiles [8]. CRISPR compares spacers of CRISPR loci and cluster strains based on their
spacer content similarity [9]. Lastly, WGS differentiates virtually all strains by detecting
variation across the complete bacterial genome [10]. Although each method has advantages
and disadvantages regarding speed, cost, strength, and sensitivity [11], these techniques
can identify geographically dispersed outbreaks at an earlier stage [12].

Among genotype approaches, PFGE is the most commonly used molecular typing
method and remains a gold standard method for the identification of foodborne pathogens
tracked by PulseNet, a global laboratory network comprising 86 countries [13]. While
PFGE is robust and reliable, in some cases it does not generate sufficient discrimination,
particularly for closely related isolates [14]. To enhance resolution, MLST was introduced
and has been useful in distinguishing isolates sharing apparently identical PFGE pro-
files [15]. Additionally, CRISPR was proposed and found to be more discriminatory than
PFGE analysis for the same group of prevalent MDR DT104 isolates (Discriminatory index
(DI) = 0.64 vs. DI = 0.38) [9]. Moreover, as WGS could provide the entire genetic blueprint
of a pathogen, it has become an increasingly popular method for use in public health labo-
ratories [16,17]. Depending on the research question, WGS not only discriminates between
isolates at the Single Nucleotide Polymorphism (SNP) level, a transmission pathway of
pathogens, but also offers the possibility to detect the presence of virulence and antibiotic-
resistance genes [18]. However, although WGS has the capacity to replace other existing
conventional typing methods, validation studies are needed to ensure the robustness and
technical performance of this approach. Therefore, after this study is performed, the results
should verify the performance of WGS as superior to other existing molecular subtyping
methods for Salmonella surveillance, and further strengthen the implementation of WGS to
track foodborne pathogens on a global scale.

Among many Salmonella enterica serovars, serovar Schwarzengrund is responsible for
human and poultry infections in Asia and some Western nations [19,20]. The reported
sources of these outbreaks have been ground turkey, chicken meat, dry dog food, and cat
food [21,22]. Not only have S. enterica serovar Schwarzengrund strains spread from food
to humans, these strains also display multi-antibiotic resistance and produce extended-
spectrum β-lactamases, including carbapenemase [19,20]. However, although S. enterica
serovar Schwarzengrund strains have been isolated consistently, few genotyping studies
have been carried out. A suitable Salmonella typing technique could increase the under-
standing of disease pathogenesis, transmission, and prevention. Therefore, the aim of the
present study was to compare four different molecular Salmonella subtyping methods to
discriminate S. enterica serovar Schwarzengrund.

2. Materials and Methods
2.1. Bacterial Isolates

A total of 23 epidemiologically unrelated, and one related, S. enterica serovar Schwarzen-
grund strains collected between 2000 and 2018 were analyzed in this study (Table 1). Serotyping
was performed using the White–Kauffmann–Le Minor scheme as previously described [23].
These isolates were obtained from multiple sources, including duck (n = 2), pig (n = 7), dog (n = 1),
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broiler (n = 8), pet food (n = 1), crested goshawk (n = 1), moorhen (n = 1), and turkey (n = 3).
Among these strains, SS07 came from the same source as SS08 and was included to serve as an
internal control for comparison. All bacteria were grown on trypticase soy agar or in trypticase
soy broth, and incubated aerobically at 37 ◦C for 12 h before molecular characterization.

Table 1. S. enterica serovar Schwarzengrund strains used in this study.

Sample ID Source Isolation Year

SS01 Duck 2000
SS02 Pig 2000
SS03 Dog 2003
SS04 Pig 2003
SS05 Broiler 2005
SS06 Pig 2006
SS07 Broiler (Farm A; internal control) 2008
SS08 Broiler (Farm A) 2008
SS09 Broiler (Farm K) 2008
SS10 Pet food 2008
SS11 Broiler 2009
SS12 Broiler 2010
SS13 Crested Goshawk 2011
SS14 Moorhen 2011
SS15 Turkey 2012
SS16 Duck 2012
SS17 Pig (Farm B) 2012
SS18 Pig (Farm C) 2012
SS19 Turkey (Farm D) 2012
SS20 Turkey (Farm E) 2012
SS21 Pig 2013
SS22 Broiler 2014
SS23 Pig 2015
SS24 Broiler 2018

2.2. PFGE

PFGE was performed according to PulseNet protocol developed by the CDC [24].
S. enterica serovar Braenderup (ATCC BAA 664) was used as the control strain. Briefly,
agarose plugs containing genomic DNA treated with Proteinase K Buffer were incubated
with 20 units of XbaI enzyme at 37 ◦C for 2 h (New England BioLabs, Ipswich, MA, USA).
DNA separation was performed with 1% SeaKem Gold agarose gels in 0.5 M Tris borate–
EDTA buffer at 14 ◦C for 18 h with pulse times between 2.16 and 63.8 s using a CHEF DR
III apparatus (Bio-Rad, Hercules, CA, USA). Gels were stained with ethidium bromide,
visualized under UV light, and photographed. DNA fingerprints were analyzed using
Bionumerics 7.1 software (Applied Maths, Austin, TX, USA). A phylogenetic tree was
constructed using the Unweighted Pair Group Method, with Arithmetic Mean method
with Dice coefficient at an optimization setting of 1% and a position tolerance setting of
1.5%, as recommended previously [25].

2.3. MLST

Bacterial DNA was isolated with a DNeasy® Blood and Tissue kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions, and quantified using a Biodrop Duo
(Biochrom, Cambridge, United Kingdom). MLST was performed on seven gene fragments
(aroC, dnaN, hemD, hisD, purE, sucA, and thrA; Table S1), as previously described [26]. In brief,
0.25 µM DNA template and 1 µM of each primer were added to 25 µL Taq DNA polymerase
2X Master Mix Red (Ampliqon, Bie and Berntsen, Herlev, Denmark) before amplification by
a T-100 thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). PCR cycling parameters
included denaturation at 94 ◦C for 10 min, followed by 25 cycles of 94 ◦C for 50 s, 57 ◦C for 50 s,
72 ◦C for 50 s, and elongation at 72 ◦C for 5 min. All PCR products were sequenced (Genomics
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Ltd., Taipei, Taiwan), purified, trimmed as indicated, and assigned to sequence types (ST)
according to the MLST website (http://enterobase.warwick.ac.uk/species/senterica/allele_
st_search, accessed on 15 June 2021).

2.4. CRISPR

Amplification of the CRISPR1 and CRISPR2 loci (Table S1) from S. enterica serovar
Schwarzengrund was carried out according to the previous study [27]. In essence, PCR
was performed in a reaction volume of 25 µL containing Taq DNA polymerase 2X Master
Mix Red, 1 µM of each primer, and 0.25 µM DNA template. The cycling conditions were
performed with initial denaturation of 95 ◦C for 10 min, followed by 45 cycles of 95 ◦C
for 1 min, 55 ◦C for 90 s, 72 ◦C for 90 s, and final extension at 72 ◦C for 10 min. All PCR
products were sequenced (PURIGO Biotechnology Ltd., Taipei, Taiwan) before CRISPR1
and CRISPR2 arrays were analyzed using CRISPR-finder (http://crispr.u-psud.fr/Server/,
accessed on 15 June 2021). CRISPR types (CTs) were assigned based on the allelic profile
(the combination of CRISPR 1 and CRISPR 2), as previously described [28].

2.5. WGS

Genomic DNA was extracted using DNeasy blood and tissue kit (Qiagen, CA, USA)
according to the manufacturer’s instructions. For library construction, 3–5 µg total DNA
was sonicated by a Misonix 3000 sonicator and checked by a DNA 1000 chip bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) to generate DNA fragments between 180–200
base pairs (bp). One-point-five micrograms of sonicated DNA was end-repaired, A-tailed,
and adaptor-ligated using the TruSeq DNA preparation kit (Illumina, San Diego, CA,
USA) following the manufacturer’s guidelines. The prepared libraries were sequenced
on the NextSeq500 platform (Illumina, Inc., San Diego, CA, USA) with 150PE protocol.
The average sequencing depth of the libraries was 944.4 MegaBase (190× coverage). Il-
lumina WGS data used in this study can be found under the NCBI BioProject accession
PRJNA635494. The raw reads were trimmed and filtered using Trimmomatic software
(version 0.36) developed by Bolger et al. [29]. Reads with average quality value ≥20 and
read length ≥30 using default parameters were used for subsequent analysis.

The trimmed reads of each sample were de novo assembled into contigs using the
SPAdes genome assembler (version 3.14.1) developed by Prjibelski et al. [30]. The assem-
bled contigs of each sample were ordered, orientated and joined into single scaffold using
MeDuSa developed by Bosi et al. [31], based on the reference genome sequence (S. enterica
subsp. enterica serovar Schwarzengrund strain CVM19633 of the EnsemblBacteria database
(http://bacteria.ensembl.org/index.html, accessed on 15 June 2021)). Pairwise compar-
isons of all assemblies against the reference with a default minimum mapping quality of
20 were performed using MUMmer3 software according to a previous study [32]. In brief,
each pair of genome sequences were detected twice (reference vs. query, and the reciprocal
order) and the list of maximal unique matches (MUMs) was generated using MUMmer3
software version 3.23 developed by Kurtz et al. with the following parameters: -mum, -b,
-c, and -l 19 [33]. MUMmer3 results were parsed for non-overlapping MUMs, and then an
average MUMi value was calculated for each pair of genomes using the following formula:
MUMi = 1- Lmum/Lav, where Lmum is the sum of the length of all non-overlapping
MUMs and Lav is the average length of the two genomes to be compared. These MUMi
values were then outputted as a distance matrix file for constructing a phylogenetic tree
using a neighbor-joining method and visualized using Molecular Evolutionary Genetics
Analysis program software (version 7) developed by Kumar et al. [34].

2.6. Data Analysis

DI was used to assess the ability of a typing method to distinguish between strains.
The discriminatory ability of each molecular typing system was evaluated by calculating
the Simpson’s index of diversity as follows:

http://enterobase.warwick.ac.uk/species/senterica/allele_st_search
http://enterobase.warwick.ac.uk/species/senterica/allele_st_search
http://crispr.u-psud.fr/Server/
http://bacteria.ensembl.org/index.html
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DI = 1 − 1
N(N − 1) ∑s

j=1 xj(xj − 1) (1)

where N is the number of unrelated strains tested, s is the number of different types, and
xj is the number of strains belonging to the jth type. The 95% confidence interval was
calculated using the formulae described previously [35]. An ideal DI value would be at
least 0.95 [36].

3. Results

By using the restriction enzyme XbaI, PFGE profiling generated from the 24 S. enterica
serovar Schwarzengrund isolates identified 14 unique patterns (A through N) (Figure 1), and
yielded a DI value of 0.938 (Table 2). Among the PFGE patterns, B and G were the most
prevalent profiles, each consisting of four isolates, followed by pattern D, which included
three isolates, and finally patterns A and C, which each had two isolates. The remaining nine
strains isolated from different sources were clearly discriminated and sorted into different
clades. Among the 24 isolates examined by MLST, 16 isolates were assigned to ST96, while
eight isolates were clustered together into ST322, resulting in a DI value of 0.463 (Table 2).
The thrA gene was found to be polymorphic among isolates (16 strains have allele type 3 and
8 strains have allele type 114). All isolates shared identical alleles at six of the MLST loci (aroC
allele type 43, dnaN allele type 47, hemD allele type 49, hisD allele type 49, purE allele type 41,
and sucA allele type 15). The observed CRISPR1 and CRISPR2 spacer contents of the 24 S.
enterica serovar Schwarzengrund isolates are depicted in Figure 2. A maximum of 12 spacers
were identified in the CRISPR1 locus, while a maximum of 15 spacers were identified in the
CRISPR2 locus. All identified spacers in both CRISPR loci were 32 bp in length, and many
spacers were shared among strains (Table S2). When combined, the CRISPR1 and CRISPR2
alleles constituted 11 different CTs among the 24 strains tested, which produced a DI value of
0.906. In the phylogenetic tree, generated based on DNA maximal unique matches (MUM),
all 24 isolates formed a monophyletic group (Figure 3).

Figure 1. PFGE profiles of 24 S. enterica serovar S. Schwarzengrund isolates (14 profiles; DI = 0.938).
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Figure 2. CRISPR spacer content of 24 S. enterica serovar Schwarzengrund isolates (11 types; DI = 0.906). Each unique spacer
composition defines an allele, and a combination of CRISPR1 and CRISPR2 alleles was manually assigned an arbitrary
CRISPR Type. Identical spacers shared between isolates under the same columns are shown as solid rectangles. Empty
areas indicate that the corresponding spacer is not present in other similar patterns.

Figure 3. Comparative analysis of 24 S. enterica serovar Schwarzengrund isolates built using MUMi and neighbor-joining
method (20 genotypes; DI = 0.982). The MUMi distance varies from 0, for very similar genomes, and 1, for very dis-
tant genomes.
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Table 2. Comparison of different subtyping methods for S. enterica serovar Schwarzengrund isolates.

Method No. of Types Discriminatory Power 95% Confidence Interval

PFGE 14 0.938 (0.937, 0.939)
MLST 2 0.463 (0.455, 0.471)

CRISPR 11 0.906 (0.905, 0.907)
WGS 20 0.982 (0.982, 0.982)

Pairwise whole genome sequences between the strains, calculated as the MUM index
(MUMi), ranged from very similar genomes (0.000) to slightly divergent (0.030). A clear
separation of different strains was observed, except for SS07, SS08, SS10, SS15, SS16, SS17,
and SS18 strains, which were clustered close together into three different genetic groups.
Twenty genotypes were then identified with a DI value of 0.982. The discriminatory
index along with the corresponding confidence intervals for different subtyping methods
among 24 S. enterica serovar Schwarzengrund isolates are shown in Table 2. WGS was the
most discriminatory, differentiating the 24 S. enterica serovar Schwarzengrund strains into
20 types, followed by PFGE, CRISPR, and finally MLST methods.

4. Discussion

Molecular methods have been used to classify Salmonella isolates into serovars and
subtypes for surveillance and epidemiological investigations. Although S. enterica serovar
Schwarzengrund strains have been consistently isolated from food products [20], this is
the first study to differentiate S. enterica serovar Schwarzengrund strains using different
molecular techniques. We used different molecular methods (i.e., PFGE, MLST, CRISPR,
and WGS), all of which have been commonly used for Salmonella source tracking [6,37], to
differentiate S. enterica serovar Schwarzendrund intraserovar strains. The discriminatory
power of these different typing methods was determined using 23 epidemiologically
unrelated, and one related, S. enterica serovar Schwarzengrund strains from different
veterinary sources, and measured by calculating Simpson’s index.

Fourteen PFGE types, two MLST types, eleven CRISPR types, and twenty WGS types
were identified among 24 S. enterica serovar Schwarzengrund isolates used in this study. As
SS07 and SS08 were from the same source, they were indistinguishable using all the tested
methods. Moreover, SS07, SS08, SS10, SS15, SS16, SS17, and SS18 strains were clustered
closely together into three different genetic groups among typing methods, suggesting the
congruence between these methods. The highest Simpson’s index was obtained using WGS,
followed by PFGE, CRISPR, and MLST. Our WGS, PFGE, and MLST results were consistent
with those described previously [38–40]. In one study, PFGE differentiated 52 S. enterica
serovar Enteritidis isolates into eight subtypes, while WGS differentiated the same isolates
into 34 types, resulting in discriminatory values of 0.81 and 0.97, respectively [38]. Another
study compared differentiation potential of PFGE and WGS across 55 S. enterica serovar
Enteritidis isolates. PFGE differentiated 10 subtypes, whereas WGS further differentiated
the isolates into 45 unique subtypes [40], highlighting the greater discriminatory power
of WGS over PFGE. Conversely, ST96 and ST332 were recently reported as the dominant
ST of S. enterica serovar Schwarzengrund isolates in Taiwan and were the only two MLST
types observed in this study. Therefore, MLST typing showed no discriminatory power for
S. enterica serovar Schwarzengrund. Similarly, a study of 30 S. enterica serovar Enteritidis
isolates collected in Japan between 1973 and 2004 assigned all isolates to MLST 11, with
no nucleotide differences in seven housekeeping genes. As genetic mutations accumulate
slowly in housekeeping genes [41], they prevent MLST typing from thoroughly detecting
or resolving relationships in closely related species.

A high degree of CRISPR polymorphism was observed in this study, suggesting that
CRISPR loci might provide useful information for typing [42]. Like the majority of Salmonella
serovars, S. enterica serovar Schwarzengrund has two CRISPR arrays, CRISPR1 and CRISPR2.
These CRISPR arrays differ in spacer composition between closely related strains due to their
strain-specific exposure histories to phages and plasmids [42]. CRISPR1 alleles were less
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polymorphic than CRISPR2, indicating stronger selective pressure for maintaining nucleotide
integrity at this locus, which is consistent with previous studies [43,44]. In this study, the
CRIPSR typing approach was feasible for subtyping S. enterica serovar Schwarzengrund
isolates, although its discriminatory power is lower than that of PFGE. The isolate cluster-
ing based on PFGE was more similar to clustering by WGS than to clustering by CRISPR.
Previous studies have suggested that CRISPR spacers are potentially involved in control-
ling plasmid- and phage-mediated horizontal gene transfer [45], and the frequent gain and
loss of these spacers is due to homologous recombination [46]. Therefore, rapid diversifica-
tion of spacers may lead to problems with CRISPR-based classification of S. enterica serovar
Schwarzengrund strains.

WGS was found to be the most discriminatory method used in this study. PFGE has
been considered the gold standard for bacterial typing, and has been successfully used to
type Salmonella species from human, foods, and food-production animals, for over two
decades [47]. Nevertheless, a transition from PFGE to WGS has occurred due to the rapid
growth and decreasing cost of full genome sequencing over the past decade. Since WGS
can examine complete or nearly complete bacterial genomes at a single-nucleotide level, it
is not surprising that WGS provides the greatest level of discrimination between strains.

SNP and gene-by-gene approaches are the two most common methodologies for
WGS typing of isolates (genomic MLST) [48]. Studies have shown that SNP and genomic
MLST results are congruent and both approaches can analyze the outbreaks of foodborne
illnesses [49]. However, a recent study that investigated two outbreaks using different
WGS subtyping methods revealed that SNP-based analyses have the ability to confirm the
occurrence of the outbreak while both cgMLST and wgMLST could neither differentiate
outbreak-related Salmonella Typhimurium isolates from outbreak-unrelated isolates nor
confirm the source of infection [50]. Consequently, WGS based on SNP was selected for
further investigation.

Currently, genetic variant calling is based on the alignment of raw sequence reads
against a reference genome to yield insights for SNP discovery [51]. However, bacteria are
subject to constant evolutionary pressures that favor competition, resulting in events such
as horizontal gene transfer and loss of genes and genome segments [52]. Moreover, a lack
of complete and well assembled S. enterica serovar Schwarzengrund reference genome may
cause biases due to mapping errors. Hence, the de novo assembly-based approach was
used in this study.

After de novo assembly, the average nucleotide identity (ANI) and MUMi are the
most used algorithms for taxonomic studies. While ANI calculates the proportion of
DNA shared by two genomes [53], MUMi assesses the number of maximal unique and
exact matches of a given minimal length shared by the two genomes [54]. However,
previous studies using ANI have shown discrepancy with DNA–DNA hybridization
analysis when intraspecies differences were assessed [55]. Moreover, when comparing
subspecies, MUMi was more robust on intraspecies differentiation [32,56]. Therefore,
MUMi was chosen over ANI for WGS analysis in this study. However, it is important to
note that using different WGS analysis approaches or reference genomes results in different
SNP profiles, which makes it difficult to compare results between studies. Moreover,
a perceived limitation in this study is the de novo assembly from high coverage short
(Illumina) reads. It has been shown that despite the use of sophisticated bioinformatic
algorithms, short reads could miss some aspects in the identification of structural variants,
the sequencing of repetitive regions, the phasing of alleles, and for distinguishing highly
homologous genomic regions [57]. Long-read sequencing technologies, however, should
offer improvements in the characterization of genetic variation and regions [57]. In the
future, there is a need for an international standardization of WGS analysis to allow for
accurate comparisons of results across laboratories.
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5. Conclusions

This study compares the utility of four subtyping methods to differentiate S. enterica
serovar Schwarzengrund isolates from different veterinary sources. Among genotyping
approaches, WGS was shown to be the most discriminatory method to subtype S. enterica
serovar Schwarzengrund. However, this study only uses a small number of S. enterica
serovar Schwarzengrund isolates from sporadic cases, and, therefore, is not comprehen-
sive enough for surveillance and outbreak investigations. Moreover, de novo assembly
from short reads could miss some aspects in the identification of structural variants, the
sequencing of repetitive regions, the phasing of alleles, and for distinguishing highly ho-
mologous genomic regions. Further validation is required by using long-read sequencing
technologies and a larger number of S. enterica serovar Schwarzengrund isolates that have
been epidemiologically linked to the same source in order to establish the epidemiological
concordance of the data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9102046/s1. Table S1. Primers used in this study. Table S2. List and nucleotide
sequence of CRISPR spacers.
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