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Abstract: The scientific knowledge already attained regarding the way severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infects human cells and the clinical manifestations and conse-
quences for Coronavirus Disease 2019 (COVID-19) patients, especially the most severe cases, brought
gut microbiota into the discussion. It has been suggested that intestinal microflora composition
plays a role in this disease because of the following: (i) its relevance to an efficient immune system
response; (ii) the fact that 5–10% of the patients present gastrointestinal symptoms; and (iii) because
it is modulated by intestinal angiotensin-converting enzyme 2 (ACE2) (which is the virus receptor).
In addition, it is known that the most severely affected patients (those who stay longer in hospital,
who require intensive care, and who eventually die) are older people with pre-existing cardiovascular,
metabolic, renal, and pulmonary diseases, the same people in which the prevalence of gut microflora
dysbiosis is higher. The COVID-19 patients presenting poor outcomes are also those in which the
immune system’s hyperresponsiveness and a severe inflammatory condition (collectively referred
as “cytokine storm”) are particularly evident, and have been associated with impaired microbiota
phenotype. In this article, we present the evidence existing thus far that may suggest an association
between intestinal microbiota composition and the susceptibility of some patients to progress to
severe stages of the disease.
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1. The “Gut Microbiota Hypothesis” in Poor Outcomes of COVID-19 Patients

Gut microbiota is a complex and dynamic ecosystem that comprises trillions of mi-
croorganisms, including bacteria and virus, with which the host maintains a beneficial
symbiotic relationship [1–3]. This microbe community is extremely important in maintain-
ing the host’s homeostasis, influencing several of its physiological functions, such as energy
production, maintenance of the intestinal integrity, protection against pathogenic organ-
isms, and regulation of host’s immunity [2–6]. However, these homeostasis mechanisms
can become compromised as a consequence of alterations in the normal gut microbiota
composition or functions, a condition known as dysbiosis [7]. Gut microbiota is influenced
by different factors, both environmental and intrinsic to the host [3], including geographic
localization, diet and nutrition, aging, antibiotics’ intake, stress, as well as by disease states,
among other factors [3,6,8–10]. Changes in intestinal microbiota composition towards
dysbiosis will affect and compromise the host’s functions in which it is involved, including
immune system response against infections. On the other hand, there is evidence that infec-
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tions, including bacterial or viral, can cause alterations in the intestinal flora, predisposing
the host to secondary infections and aggravating its clinical status [2,11–13].

The year 2020 will be remembered in history for the emergence of millions of infections
caused by a new virus from the Coronavirus family, named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). This infection, designated by the World Health
Organization (WHO) as Coronavirus Disease 2019 (COVID-19), has been disseminating all
over the world, reaching pandemic proportions. In about a year, the infection has already
affected more than 60 million people from almost all countries and caused more than
1.5 million deaths, as of December 2020.

SARS-CoV-2 infection starts by the binding of virus spike surface glycoprotein (S) to
angiotensin-converting enzyme 2 (ACE2) receptors present in many human cells, which is
then cleaved by host proteases (e.g., cathepsin, TMPRRS2, or furin), thus allowing virus
internalization in the host cells [14]. The most typical symptoms, which usually appear in a
few days after viral exposure, are fever, cough, fatigue, muscle or body aches, and shortness
of breath, further evolving to pneumonia. In more severe cases, patients present respiratory,
hepatic, gastrointestinal, and neurological complications, which require hospitalization
and eventually progress to multi-organ dysfunction and death [15]. COVID-19 severity
and mortality rate are considerably higher in elderly patients, particularly those with
pre-existing comorbidities, including hypertension, diabetes, renal disease, or pulmonary
conditions, among other chronic diseases [16–18].

Additionally, different studies have demonstrated that 5–10% of COVID-19 patients
present digestive symptoms, such as abdominal pain, vomits, and diarrhea, as well as
intestinal inflammation [19–22]. These data suggest that the gastrointestinal tract might
be a location of viral activity and replication, which agrees with the high expression of
ACE2 in the intestinal epithelium [23–26]. ACE2 is recognized as an important regulator
of the renin-angiotensin system (RAS) by counteracting the negative actions mediated by
Angiotensin II signaling via its type 1 receptor [27]. Thus, cleavage of ACE2 after SARS-
CoV-2 infection might contribute to explaining the poor outcomes observed in COVID-19
patients with pre-existing comorbidities usually associated with RAS overactivity, such as
respiratory, cardiac, and renal disorders, as well as diabetes [27].

ACE2 also exerts non-RAS-related roles linked with the transport of neutral amino
acids across the gut epithelial cells, with a putative impact on gut homeostasis and mi-
crobiota composition [28]. In fact, ACE2 acts as a chaperone for membrane trafficking
of the amino acid transporter B0AT1, which mediates the uptake of neutral amino acids,
namely tryptophan (Trp), into intestinal cells. A link between ACE2-mediated amino acid
transport and gut flora composition has been suggested, in such a way that impaired
ACE2 expression or function are potentially promoters of gut microbiota dysbiosis [28,29].
These pieces of evidence are in line with the gastrointestinal symptoms that have been
reported in a non-negligible percentage of people with SARS-CoV-2, suggesting an impact
on the gastrointestinal-enteric system [30]. In fact, several reports point to alterations in
gut microflora composition in COVID-19 patients, with their microbiota being character-
ized by a decreased bacterial diversity, enrichment in opportunistic pathogens, and loss
of beneficial symbionts [31–35]. Thus, it has been suggested that ACE2 shedding pro-
moted by SARS-CoV-2 infection might contribute to intestinal microflora dysbiosis, thus
eventually helping to explain the poor outcomes in COVID-19 patients with pre-existing
comorbidities [36]. The infected patients with a higher frequency of intensive care unit
(ICU) admission (disease severity) and increased mortality rate are typically elderly people
with pre-existing cardiovascular, metabolic, and renal disorders, including hypertension,
heart failure, myocardial infarction, stroke, coronary artery disease, diabetes, and chronic
kidney disease, among others—conditions that have been associated with gut microbiota
alterations [8,37,38].

In line with the previous major coronavirus outbreaks in humans (namely SARS-CoV
and Middle East Respiratory Syndrome Coronavirus (MERS-CoV)) [39], the more severe
cases of SARS-CoV-2 infection have been associated with a hyperresponse of the immune



Microorganisms 2021, 9, 53 3 of 12

system, featured by an exacerbated systemic inflammatory response and the massive
release of cytokines, collectively described as a “cytokine storm” [40]. The resulting multi-
organ failure fueled by a self-sustaining loop of ongoing age-related immunosenescence
and inflammaging can additionally contribute to the poor outcomes in elderly patients
with chronic comorbidities [15,41,42].

Among other relevant metabolic and structural protective functions, gut microbiota
plays a major role in the host immune system education and ability to respond to insults,
including to infections [1]. Disruption of gut microbiota influences the host’s immune
response, worsening SARS-CoV-2-induced injury, owing to an excessive reactivity of the
immune system and a strong inflammatory state [43–45]. In addition, different lines of
evidence show that respiratory viral infections may originate alterations in the intestinal
microbiome composition, which predispose patients to secondary infections and aggravate
their clinical status [11,12,43–45]. We and others have recently proposed that the triad
of gut microbiota dysbiosis, immune hyperresponse, and inflammation could eventually
explain why some COVID-19 patients are more resilient, while others are more fragile
when infected with SARS-CoV-2, recovering faster or progressing to more severe clinical
condition, respectively [25,46–49]. As the ongoing studies reveal new evidence, this hy-
pothesis has been gaining more and more consistency, in such a way that gut microbiota
composition might eventually be viewed as a putative predictor of COVID-19 susceptibility
and severity. In the next paragraphs, we report the data already known that may contribute
to validating this possibility.

2. What Is the Evidence So Far that Links Gut Microbiota Composition to
COVID-19 Severity?

Gut microbiota is crucial to the process of development and function of the immune
system [1,50–52], as it modulates immune cells towards anti- or pro-inflammatory re-
sponses. Different studies have described significant changes regarding the innate and
adaptive immune systems in COVID-19 patients [53–56]. The cytokine storm, in particular,
clearly reflects an uncontrolled dysregulation of the host’s immune function. Several pieces
of evidence point to the occurrence of lymphocytopenia in individuals with SARS-CoV-
2 [57–61]. In a study involving 452 severe COVID-19 patients in Wuhan, a significant
decrease in the number of T lymphocytes, including helper and suppressor T cells, was
observed [62]. Particularly, among helper T cells, the researchers reported a decrease in
regulatory and memory T cells counts. However, naïve T cells percentage was increased
in COVID-19 patients relative to healthy individuals, which might contribute to hyper-
inflammation events, as there is an imbalance between the activity of naïve T cells and
that of regulatory and memory T cells [62]. Furthermore, a reduced number of memory
T cells might be implicated in COVID-19 relapses, which are particularly evident when
recurrences in recovered patients arise [62].

Kalfaoglu et al., by analyzing CD4+ T lymphocytes’ transcriptomes from bronchoalve-
olar lavage fluid (BALF) belonging to moderate and severe COVID-19 patients, observed
that SARS-CoV-2 is capable of inducing activation and differentiation processes in these
cells, accelerating both their activation and death [55]. These authors proposed a hypothesis
stating that the abnormally activated CD4+ T cells might be able to promote the viral entry
through Furin production in critically ill patients. When compared with moderate patients,
CD4+ T cells from severe patients present an increased expression of the genes fos, fosb, and
jun; of the activation marker MKI67; of Th2-related genes maf and il4r; and of chemokines
CCL2, CCL3, CCL4, CCL7, CCL8, and CXCL8. These results suggest that CD4+ T cells in
severe COVID-19 patients’ lungs are highly activated and recruit other immune cells. In
contrast, these patients display decreased expression of interferon-induced genes, such as
ifit1, ifit2, ifit3, and ifim1, as well as genes associated with interferon downstream pathways,
suggesting that interferons might be suppressed in severe COVID-19 cases [55]. In addition,
Huang et al. discovered that the plasmatic concentrations of interleukin (IL)-1β, IL-1ra,
IL-7, IL-8, IL-9, IL-10, basic FGF, GM-CSF, G-CSF, VEGF, IP-10, MCP-1, IFN-γ, IFN-α,
MIP-1α, and MIP-1β were higher in COVID-19 patients present in ICU, as well as non-ICU



Microorganisms 2021, 9, 53 4 of 12

patients, when compared with healthy individuals [63]. A possible explanation for the
potential contradictory evidence of a decrease in the expression of interferon-induced
genes’ and interferon downstream pathways and increased plasmatic IFNs levels might be
associated with the fact that plasma levels are defined by the IFNs’ input from several tis-
sues, including the gut [64]. This study raises the premise that the cytokine storm observed
in COVID-19 cases might be correlated with disease severity, as IL-2, IL-7, IL-10, G-CSF,
MCP-1, IP-10, TNF-α, and MIP-1α levels were higher in ICU patients compared with
non-ICU ones [63]. Moreover, a study evaluating a cohort of 44 hospitalized COVID-19
patients reported the existence of higher median fecal levels of IL-8 and lower levels of
fecal IL-10 in COVID-19 patients compared with control individuals [65]. Furthermore,
IL-23 fecal levels were increased in severe patients, suggesting the involvement of the GI
tract in the SARS-CoV-2 infection in an immunological manner [65]. More severe cases
were also associated with higher serum levels of IL-6, IL-8, tumor necrosis factor α (TNF-α),
C-reactive protein (CRP), lactate dehydrogenase (LDH), D-dimer, ferritin, and procalci-
tonin [65]. Furthermore, a study performed by Li et al. allowed to observe that the lower
the counts on admission of total T cell, CD4+ T cell, and CD8+ T cell, the more serious the
disease and the worse the prognosis of the patients [66]. A recent study also showed that
lymphopenia and an increase in cytokine levels were significantly correlated with disease
severity, with the IL-2R/lymphocyte ration being a potential biomarker for COVID-19
disease severity and progression identification [67].

Several studies have already demonstrated that, when compared with healthy in-
dividuals, COVID-19 patients present a significantly reduced bacterial diversity [31,68];
higher abundancy of opportunistic bacteria such as Streptococcus, Rothia, Veilonella, and
Actinomyces [31,34,35]; and decreased levels of benefic symbionts, including Agathobacter,
Fusicatenibacter, Roseburia, and Ruminococcaceae UCG-013 [31,35]. A study performed
by Zuo et al. reported that most patients’ gut microbiota composition alterations per-
sisted even after viral clearance, suggesting that the infection or/and hospitalization might
be associated with a long-lasting adverse effect regarding the composition of intestinal
microflora community [35], which might be potentially associated with recovery delays.
Remarkably, the existence of a correlation between the COVID-19 severity grade and the
basal fecal microbiome has been established [35,68]. In the study performed by Zuo et al.,
twenty-three bacterial taxa showed a significant positive correlation with disease severity;
with the main bacteria presenting a positive association with COVID-19 severity belong
to the filo Firmicutes and the genus Coprobacillus, as well as the Clostridium ramosum
and Clostridium hathewayi species [35]. Interestingly, the fact that Firmicutes presented
this positive association with disease severity is in accordance with evidence showing
that these bacteria possess a specific role in regulating ACE2 expression in the murine
gut [69]. On the other hand, two beneficial bacterial species—Alistipes ondedonkii (im-
portant for the maintenance of intestinal homeostais) and Faecalibacterium prausnitzii
(anti-inflammatory properties detainer)—showed a negative correlation with COVID-19
severity [35].

It is now acknowledged that gut microbiota is responsible for regulating several
hosts’ physiological functions [70–72]. Particularly, numerous studies have reported that
intestinal microflora affects lung health through a bidirectional pathway designated as
the “gut–lung axis” [73–75]. One of the main complications associated with COVID-19
is acute respiratory distress syndrome (ARDS) [76,77], in which microbiota composition
and function might play an important part. An enrichment of lung microbiota with
intestinal Bacteroides species is observed in many COVID-19 cases [78], an event linked to
increased plasmatic inflammatory markers levels [78]. Another study reported an increase
in Enterobacteiaceae and Lachnospiraceae levels in severely ill patients with ARDS, when
compared with patients that did not present this condition [32,79]. These results suggest
that the microbiota could be seen as potential marker to predict ARDS and other possible
scenarios associated with COVID-19 pathology.
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Therefore, gut microbiota might provide information about the individual suscepti-
bility to COVID-19. Gou et al. recently reported that changes in the normal composition
and function of intestinal microbiota might predispose healthy individuals to an atypical
inflammatory response, such as the one observed in COVID-19 cases [80]. Additionally, a
study performed in Wuhan, China confirmed the existence of this relationship between
gut microflora composition and the predisposition of healthy individuals to SARS-CoV-2
infection [78]. The researchers observed that individuals that display increased numbers
of Lactobacillus present higher levels of IL-10, an anti-inflammatory cytokine, and gener-
ally a more favorable prognosis. In contrast, individuals displaying higher numbers of
pro-inflammatory bacterial species, such as Klebsiella, Streptococcus, and Ruminococcus
gnavus, showed increased levels of pro-inflammatory cytokines as well as more pro-
nounced disease severity [78]. Furthermore, through the evaluation of the metabolomic
and proteomic profile of COVID-19 patients’ serum, a study performed by Shen et al.
revealed specific alterations in severely ill patients [33]. In fact, increased serum concentra-
tions of inflammatory markers, such as IL-1β, IL-6, TNF-α, and CRP, were associated with
a higher prognostic risk score (PRS) in patients over 58 years old [33]. By investigating the
potential role of gut microbiota on the susceptibility of healthy individuals to COVID-19,
the investigators demonstrated that the observed alterations regarding blood proteomic
markers would be preceded by intestinal microflora changes, suggesting a potential causal
relationship in the case of older patients [33] Specifically, the genus Bacteroides and Strepto-
coccus, as well as the order Clostridiales, showed a negative correlation with the majority of
the tested cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, and IFN-γ),
while the genus Lactobacillus, Ruminococcus, and Blautia displayed positive associations
with the referred cytokines [33]. Another study has reported that abundant bacteria in
COVID-19 patients, including Rothia, Streptococcus, Veilonella, and Actinomyces, are
positively correlated with high levels of CRP and D-dimer, once more evidencing the
influence of gut microbiota composition in the host’s inflammatory profile [31]. However,
no significant alterations were observed in gut microbiota composition between patients
with different disease severity stages [65]. These results suggest that, in this complex
scenario of interactions between different systems (namely intestinal microbiota–immune
system–inflammatory response), there may be additional factors playing a relevant role
for disease severity. On the other hand, it also suggests that other elements able to shape
microbiota should be carefully considered, including age; comorbidities; and especially the
impact of drugs, particularly antibiotics, as highlighted in the study of Britton et al. [65].

Collectively, there is evidence suggesting that microbiota characteristics and related
metabolites should be more profoundly investigated as potential prediction markers of
individual susceptibility of COVID-19 patients to develop a more severe phenotype. Table 1
summarizes the major findings regarding gut microbiota, inflammation, and immune
system changes in COVID-19 patients, and the suggested associations with disease severity.
However, only the publication of more results from the different clinical trials related to
gut microbiota with patients affected with distinct levels of severity could open up the
possibility to clarify the existence of causality in this association.

Table 1. Major findings regarding changes on gut microbiota, inflammation, and immune system markers in Coronavirus
Disease 2019 (COVID-19) patients, and the suggested associations with disease severity.

Study Sample Major Findings Regarding Gut Microbiota, Inflammation and
Immune System Changes Ref.

30 COVID-19 patients, 24 H1N1 patients, and 30
matched controls.

(i) Compared with healthy controls, COVID-19 patients displayed
a depletion of Agathobacter, Fusicatenibacter, Roseburia, and
Ruminocaccaceae UCG-013, whose abundancy was negatively
correlated, mainly, with the levels of CRP, PCT, and D-dimer; (ii)
CRP and D-dimer levels were positively correlated with bacteria
abundance in COVID-19 cases, including Streptococcus, Rothia,
Veilonella, and Actinomyces.

[31]
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Table 1. Cont.

Study Sample Major Findings Regarding Gut Microbiota, Inflammation and
Immune System Changes Ref.

15 hospitalized COVID-19 patients, of which 7 had
stool positivity for SARS-CoV-2.

(i) Faecal samples with high SARS-CoV-2 infectivity had higher
abundances of Collinsella aerofaciens, Collinsella tanakaei,
Streptococcus infantis, and Morganella morganii, and higher
functional capacity for nucleotide de novo biosynthesis, amino
acid biosynthesis, and glycolysis; (ii) faecal samples with
signature of low-to-none SARS-CoV-2 infectivity had higher
abundances of SCFAs-producing bacteria, Parabacteroides merdae,
Bacteroides stercoris, Alistipes onderdonkii, and Lachnospiraceae
bacterium 1_1_57FAA.

[34]

15 COVID-19 patients, 6 patients with pneumonia,
and 15 healthy controls.

(i) In a sample of seven antibiotic-naïve patients, 23 bacterial taxa
were discovered to correlate with disease severity; (ii) the main
bacteria positively correlated with disease severity belonged to
the phylum Firmicutes, Coprobacillus genus, and Clostrididum
ramosum and Clostridium hathewayi species; (iii) the main bacteria
negatively correlated with disease severity were Alistipes
ondedonkii and Faecalibacterium prausnitzii.

[35]

COVID-19 patients (moderate vs. severe).

(i) Versus moderate patients, CD4+ T-cells from severe COVID-19
patients expressed higher levels of the AP-1 genes fos, fosb, and
jun; the activation marker MKI67 (Ki67); Th2-related genes il4r
and maf ; and chemokines including CCL2, CCL3, CCL4, CCL7,
CCL8, and CXCL8; (ii) CD4+ T-cells in severe patients expressed
higher levels of immunoregulatory genes including immune
checkpoints (ctla4, havcr2 [tim-3], and lgals3 [galectin-3]) as well as
the Tregs and T-cell activation marker IL2RA (CD25); (iii) CD4+
T-cells from severe patients showed decreased expression of
interferon-induced genes (ifit1, ifit2, ifit3, and ifitm1) and genes
related to downstream pathways.

[55]

12 COVID-19 death cases (moderate vs. severe).

(i) Among all parameters studied, blood lymphocyte percentage
(LYM%) showed the most significant and consistent trend,
suggesting it as an indicator of disease progression; (ii) LYM% of
severe patients decreased initially and then increased to >10%
until being discharged; (iii) LYM% of moderate patients
fluctuated very little after disease onset and was >20%
when discharged.

[59]

522 COVID-19 patients, 43 of which were admitted
in the ICU; vs. 40 healthy controls.

(i) In the severe and critical disease patients, as well as the
perished ones, total T cells, CD4+, and CD8+ T cells were
significantly lower than in the mild/moderate patients; (ii) total T
cells, CD8+ T, or CD4+ T cells lower than 800, 300, and 400/µL,
respectively, were negatively correlated with patient survival; (iii)
T cell numbers were negatively correlated with serum IL-6, IL-10,
and TNF-α levels, which were significantly higher in ICU patients
than in non-ICU ones; (iv) increasing PD-1 and Tim-3 expression
on T cells in patients progressed to symptomatic stages.

[61]

39 COVID-19 patients.
(i) The more serious the disease and the worse the prognosis,
the lower the T cell, CD4+ T cell, and CD8+ T cell counts
on admission.

[66]

452 COVID-19 patients: 166 non-severe; 286 severe.

(i) With increased severity of illness, leukocytes, neutrophils,
infection biomarkers (CRP, PCT, and ferritin) and cytokines
(IL-2R, IL-6, IL-8, IL-10, and TNF-α) were significantly increased,
while lymphocytes were significantly decreased; (ii) the ratio of
IL-2R to lymphocytes was found to be remarkably increased in
severe and critical patients. IL-2R/lymphocytes ratio was
superior vs. other markers for the identification of critical illness
COVID-19; (iii) cytokine profile and IL-2R/lymphocytes were
significantly decreased in recovered patients.

[67]



Microorganisms 2021, 9, 53 7 of 12

Table 1. Cont.

Study Sample Major Findings Regarding Gut Microbiota, Inflammation and
Immune System Changes Ref.

91 critically ill patients, within 24 h of their
ICU admission.

(i) ARDS patients display an increased number of Lachnospiraceae
and Enterobacteriaceae, which predicted fewer ventilator-free days;
(ii) enrichment of the lungs with gut-associated bacteria was
positively correlated with high levels of inflammatory markers,
particularly TNF-α; (iii) increased Lachnospiraceae was a strong
predictor of reduced survival in ARDS patients.

[79]

31 COVID-19 patients (18 non-severe cases and 13
severe cases) and 990 non-COVID-19 individuals.

(i) Each 10% increment in PRS was associated with a 57% higher
risk of progressing to severe phases, as indicated by proteomic
biomarkers SAA1, SAA2, SAA4, SERPINA3, C6, and CFB; (ii)
higher PRS significantly correlated with increased serum levels of
all the studied inflammatory markers among older healthy
individuals (>58 years); (iii) in the same individuals, Bacteroides
genus, Streptococcus genus, and Clostridiales order were negatively
correlated with cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10,
IL-12p70, IL-13, TNF-α, and IFN-γ), whereas Ruminococcus genus,
Blautia genus, and Lactobacillus genus showed
positive associations.

[80]

COVID-19, Coronavirus Disease 2019; H1N1, Influenza A vírus; CRP, C-reactive protein; PCT, procalcitonin; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2; AP-1, activator protein 1; IL4R, interleukin 4 receptor; CCL, CC chemokine ligands; CXCL, chemokine
(C-X-C motif) ligand; CTLA4, cytotoxic T-tymphocyte associated protein 4; HAVCR2, hepatitis A virus cellular receptor 2; TIM-3, T-cell
immunoglobulin and mucin-domain containing-3; Tregs, regulatory T cells; IL2R, interleukin 2 (IL2) receptor; IL2RA, interleukin 2 (IL2)
receptor alpha; CD25, α chain of the high-affinity IL-2 receptor; IFTI, interferon induced protein with tetratricopeptide repeats; IFITM1,
interferon induced transmembrane protein 1; IL, interleukin; TNF-α, tumor necrosis factor α; ICU, intensive care unit; PD-1, programmed
death-1; PRS, prognostic risk score; SAA, serum amyloid A; SERPINA3, α-1-antichymotrypsin; C6, complement component 6; CFB,
complement factor B; IFN-γ, interferon gamma; ARDS, acute respiratory distress syndrome.

3. Concluding Remarks and Future Directions

COVID-19 patients display immune response deregulation and increased levels of
specific inflammatory cytokines and chemokines, with these alterations being particularly
intense in severe patients, in a condition often referred as cytokine storm [32,33,53,55].
Other studies also report that the blood lymphocyte percentage might reflect disease pro-
gression and severity [59], as well as the number of leukocytes and B and natural killer
(NK) cells [81,82]. Gut microbiota plays major functions in the host, including immune
system education and strengthening [1,51,52]. Several studies have reported major impair-
ment of innate and adaptive immune systems in COVID-19 patients [53–56], accompanied
by changes in gut microbiota composition [31–35]. It has been suggested that intestinal
microflora composition could be correlated with the predisposition of healthy individuals
to COVID-19 and with disease severity [31,33–35,78]. In particular, some data suggest that
certain microbiota characteristics allow the prediction of the occurrence of ARDS and other
disease-associated scenarios [32,78]. Moreover, COVID-19 patients’ microbial composition
correlates with altered levels of inflammatory markers when compared with healthy indi-
viduals [31,33,78], reinforcing the potential relevance for the disease. These data have been
leading researchers to refer to gut microbiota composition, inflammatory markers’ levels,
and immune cells’ number and activity as potential predictors of susceptibility of healthy
individuals to COVID-19, as well as of disease severity (Figure 1), as these parameters
differ significantly between healthy and infected individuals, as well as between moderate
and severe COVID-19 patients [31–33,35,59,78,80]. However, with the current knowledge,
it is impossible to ensure a causal relationship, which remains an open hypothesis that
deserves to be better dissected.
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Figure 1. Putative correlation between Coronavirus Disease 2019 (COVID-19) clinical outcomes and gut microbiota
(GM) composition. Green and red squares display some examples of bacteria encompassing better or poor COVID-19
outcomes, respectively.

The evidence collected thus far suggests that modifications in the characteristics of
the intestinal microbial community and the relationship it establishes with the immune
system, which leads to changes in inflammatory markers’ levels and in the number and
function of several immune cells, should be more profoundly investigated as potential
predictors of individual susceptibility to a more severe COVID-19 phenotype. Additionally,
these parameters might be used to support the implementation of therapeutic measures to
prevent disease evolution in populations with higher susceptibility. Critically ill patients
on mechanical ventilation who were given probiotics, specifically Lactobacillus rhamnosus
GG, live Bacillus subtilis, and Enterococcus faecalis, presented improvement of pneumonia
when compared with placebo, in two randomized controlled trials [83,84]. However, the
efficacy of probiotics use in COVID-19 patients remains to be proved and the issue is under
debate [85,86], deserving more attention by the scientific-medical community.
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