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Abstract: Enterocytozoon hepatopenaei (EHP) is an obligate, intracellular, spore-forming parasite,
which mainly infects the gastrointestinal tract of shrimp. It significantly hinders the growth of shrimp,
which causes substantial economic losses in farming. In this study, we established and optimized a
SYBR Green I fluorescent quantitative PCR (qPCR) assay based on the polar tube protein 2 (PTP2) gene
for the quantitative analysis of EHP-infected shrimp. The result showed that the optimum annealing
temperature was 60 ◦C for the corresponding relation between the amplification quantitative (Cq)
and the logarithmic of the initial template quantity (x), conformed to Cq = −3.2751x + 31.269 with a
correlation coefficient R2 = 0.993. The amplification efficiency was 102%. This qPCR method also
showed high sensitivity, specificity, and repeatability. Moreover, a microscopy method was developed
to observe and count EHP spores in hepatopancreas tissue of EHP-infected shrimp using Fluorescent
Brightener 28 staining. By comparing the PTP2-qPCR and microscopy method, the microscopic
examination was easier to operate whereas PTP2-qPCR was more sensitive for analysis. And we
found that there was a correspondence between the results of these two methods. In summary,
the PTP2-qPCR method integrated microscopy could serve for EHP detection during the whole
period of shrimp farming and satisfy different requirements for detecting EHP in shrimp farming.

Keywords: Enterocytozoon hepatopenaei; gastrointestinal pathogen; fluorescence quantitative PCR;
polar tube protein 2; fluorescent brightener

1. Introduction

Microsporidia are obligate, intracellular, spore-forming parasites, and diverse species infect
almost all invertebrates and vertebrates, as well as some protists, with different species exhibiting
various degrees of host specificity [1,2]. It is currently considered as a kind of fungi, and approximately
200 genera and 1400 species have been identified [3–5]. Enterocytozoon hepatopenaei (EHP), first discovered
in Thailand Penaeus monodon [6,7], mainly infects the gastrointestinal tract of shrimp [8]. Although EHP
is not a fatal pathogen for shrimp, in fact, it can spread horizontally in shrimp ponds by cannibalism
and cohabitation, seriously affecting the development of shrimp, which may bring substantial economic
losses for shrimp farmers [9]. Nowadays, EHP has been also reported in some other countries such as
China, Vietnam, Brunei, Malaysia, Indonesia, India, and Venezuela [10–13].
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EHP is closely related to Ent. bieneusi, which is known to infect immune-suppressed and
immunodeficient humans, such as patients with AIDS [14]. Most microsporidian infections in humans
are zoonotic and/or water-borne [4]. Although there is no evidence showing that EHP infects other
animals except shrimp, for humans’ health, it is extremely important to detect EHP in shrimp. Due to the
absence of obvious clinical symptoms in a short time frame, healthy shrimp may be infected with EHP
by cohabiting with diseased shrimp [15,16]. Therefore, it is necessary to develop an efficient method
to detect EHP-infected shrimp, especially for the early stage of infection. Currently, EHP detection
methods have been reported via microscopy and molecular diagnosis. EHP spores could be stained and
visualized by Phloxin B and calcofluor white (CFW) [17,18]. However, the microscopic examination
mainly depends on the professional skill and subjective judgment of technicians. The sensitivity
and specificity of microscopy are too limited and may misjudge the result. Furthermore, the higher
sensitivity and specificity of molecular diagnoses have been widely reported for EHP-infected shrimp
detection, such as PCR, qPCR, nested PCR, loop-mediated isothermal amplification (LAMP), and so
on [19–21]. The small subunit ribosomal RNA (SSU rRNA) gene, a housekeeping gene, is a universal
diagnostic target in EHP molecular detection methods. But it is well known that the SSU rRNA gene
is highly conserved among microsporidia, which may give false-positive test results [22]. Hence,
instead of SSU rRNA, a more specific diagnosis target needs to be chosen.

The polar tube, a highly specialized invasion organ, is one of the important taxonomic indexes of
microsporidia [23]. Up to now, there are five polar tube proteins (PTP1–PTP5) located on the polar tube
identified [4,24–26]. PTP2 gene encoding a 35-kDa protein was first identified from microsporidium
Encephalitozoon cuniculi [24]. This gene was also found in some other microsporidian genomes, involving
Enc. intestinalis, Enc. hellem, Paranosema grylli, Nosema ceranae, N. bombycis, and so on [27–29]. The PTP2
gene was also reported to be a single copy in the EHP genome [30]. Due to these unique properties,
the PTP2 gene was selected as the EHP detection target for recombinase polymerase amplification
(RPA) and CRISPR-Cas 12a fluorescence assay [30]. However, this newly developed method cannot
quantify the spore numbers of EHP in shrimp. In order to provide a more sensitive and specific EHP
quantitative method, we established a SYBR Green I fluorescence quantitative PCR method based
on the PTP2 gene sequence in this study. Moreover, to provide real-time monitoring of EHP in the
field, we attempted to quantify the EHP spores using microscopy. The integrated method of qPCR and
microscopy to quantify EHP spores is first reported in our study and will provide a reference for the
detection of EHP in shrimp farming.

2. Materials and Methods

2.1. Samples Treatment and Dna Extraction

We collected shrimp from Chongqing Province, China. Thirty mg of hepatopancreas tissue was
used for genomic DNA extraction as follows: add 500 µL CTAB (CATB 4 g, NaCl 16.34 g, 1 M Tris-HCl
(pH 8.0) 20 mL, 0.5 M EDTA 8 mL, sterilized water up to 200 mL) and 20 µL Proteinase K (20 mg/mL)
before incubation at 56 ◦C for an hour. Total DNA was purified using a standard phenol-chloroform
method [22].

2.2. Synthesis of Primers and Conventional PCR Amplification

The EHP-PTP2 gene (GenBank No. MT249228), SSU rRNA gene (GenBank No. FJ496359.1) and
β-Tubulin gene (GenBank No. KY593130) of EHP were amplified via PCR to confirm the EHP-infected
shrimp sample. All PCR primers were designed using Primer Premier 5.0 and are listed in Table 1.
The amplification system was 25 µL PrimeSTAR premix DNA polymerase (2×, TaKaRa, Dalian, China),
0.4 µM primers, 1 µL genomic DNA extraction, and water up to 50 µL. The amplification reaction was
performed according to the following procedure: 98 ◦C for 5 min, 35 cycles (98 ◦C for 30 s, 56 ◦C for
30 s, 72 ◦C for 10 s), 72 ◦C for 10 min.



Microorganisms 2020, 8, 1366 3 of 11

Table 1. The primer sequence in this study.

Primer Sequence (5′-3′) PCR Length

EHP-PTP2-F (qPCR) GCAGCACTCAAGGAATGGC 238 bp
EHP-PTP2-R (qPCR) TTTCGTTAGGCTTACCCTGTGA

EHP-PTP2-F ATGAGTCTTTATAATGCACTG 855 bp
EHP-PTP2-R TTATTCGTTGGATGTTAATG
EHP-SSU-F GATGGCTCCCACGTCCAAGG 913 bp
EHP-SSU-R GAACAGGGACACATTCACAA

EHP-Tubulin-F ATGAGAGAAATTATTCATGTACAGG 1317 bp
EHP-Tubulin-R TTAATAACCTCCTTCTTCAATAAC

2.3. Construction of the Standard Sample

The amplified DNA fragment of the partial EHP-PTP2 sequence (238 bp) was inserted into
the pMD19-T vector and transformed into Escherichia coli DH5α. Positive colonies were selected to
extract the plasmid and verified via sequencing (Sangon, Shanghai, China). The recombinant plasmid
was extracted by the Mini Plasmid Extraction Kit (Omega, Norcross, GA, USA) and determined
with a spectrophotometer (DeNovix, Wilmington, NC, USA) to be 54.6 ng/µL, which was equal to
1.7 × 1010 copies/µL. The recombinant plasmid was used as the quantitative standard and stored at
−80 ◦C.

2.4. Optimization of the Reaction System

The reaction mixture of PTP2-qPCR was formulated on ice according to the description of
Hieff® qPCR SYBR Green Master Mix kit (Yeasen, Shanghai, China). The final concentration of
EHP-PTP2-F and EHP-PTP2-R primers was 0.2 µM in the optimized reaction system (Table 2).
The other components including 2 × Hieff® qPCR SYBR Green Master Mix 5 µL, standard plasmid
DNA template (1.0 × 103 copies/µL) 1 µL, and nuclease-free water were added to make a total volume
of 10 µL. The amplification reaction was performed in the LightCycler® 96 (Roche, Indianapolis, IN,
USA) and the optimized reaction procedure was 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 10 s
and 60 ◦C for 30 s. The data analysis was performed using the LightCycler® 96 Software 1.1 (Roche).

Table 2. The reaction system of PTP2-qPCR (10 µL).

Reaction System

2×Hieff® qPCR SYBR Green Master Mix 5.0 µL
EHP-PTP2-F 0.2 µM
EHP-PTP2-R 0.2 µM

Template DNA 1.0 µL
ddH2O Add to 10 µL

2.5. Generation of the Standard Curve

The standard plasmid was diluted to 1.0 × 107 copies/µL and made a 10-fold series of 7 gradients
(1.0 × 107–1.0 × 101 copies/µL). Three parallels of each dilution were used as the template of the qPCR
assays. A standard curve corresponding to the Cq value of the standard plasmid copy number was
constructed. The correlation coefficient and amplification efficiency were also analyzed.

2.6. Specificity Analysis

To analyze the specificity of PTP2-qPCR, the total DNA of L. vannamei infected with different
shrimp pathogens such as white spot syndrome virus (WSSV), shrimp hemocyte iridescent virus
(SHIV), as well as Vibrio parahaemolyticus (VPAHPND) causing acute hepatopancreatic necrosis disease
were used as templates to conduct qPCR amplification. The total DNA of healthy L. vannamei was
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used as the template of the negative control, the total DNA of EHP-infected L. vannamei was used as
the template of the positive control, and the blank control used water as the template, respectively.

2.7. Sensitivity Analysis

In order to determine the sensitivity of PTP2-qPCR, serially diluted positive plasmids DNA
(1.0 × 105–1.0 × 101 copies/µL) were used as qPCR templates, and water was used as the negative
control. The highest dilution which could be detected while still showing an S-shaped amplification of
the curves was considered the lowest template copy concentration of the qPCR. The same test was
performed by conventional PCR, and the highest dilution that could provide a visible band on the
agarose gel was equivalent to the lowest template copy concentration of the PCR.

2.8. Repeatability Analysis

To analyze the repeatability of the PTP2-qPCR, three different experimental personnel performed
qPCR detection. Five EHP-infected L. vannamei were used as qPCR samples, and the standard deviation
and coefficient of variation of the operator were calculated.

2.9. Microscopy Analysis

Regarding the microsporidian chitin-staining method [31], 0.8 mg of hepatopancreas tissue was
ground and added on a 0.01% poly-lysine coated slide. Then, samples were covered with 50 µL
solution of 4% paraformaldehyde and 50% Triton (49:1; v/v) at room temperature for 25 min, followed
by washing with PBS (pH 7.0) three times. Fifty µL of Fluorescent Brightener 28 (1:1000 dilution; Sigma,
St. Louis, MO, USA) was added and incubated for 5 min, then washed with PBS (pH 7.0) three times.
EHP spores were observed by the fluorescent microscope (Olympus BX53F, Tokyo, Japan), and the
spore number in twenty random fields was recorded.

3. Results

3.1. qPCR Standard Curve

The optimized reaction system was used to establish the standard curve corresponding to the Cq
value of the standard template copy number. The corresponding relation between the amplification
quantitative (Cq) and the logarithmic of the initial template quantity (x) showed a good linear correlation
when x was within the range of 1.0 × 101 to 1.0 × 107 copies/µL: Cq = −3.2751x + 31.269, correlation
coefficient R2 = 0.993, and the amplification efficiency was 102%. From the amplification curve shown
in Figure 1, there was a good gradient and a unique melting peak at 81 ◦C for the whole amplification
process, indicating that the amplification products were uniform.
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Figure 1. Amplification of the standard sample. (a) Standard curve of PTP2-qPCR. (b) Melting peaks
of PTP2-qPCR. (c) Amplification curves of PTP2-qPCR. 1–7: 1.0 × 101 to 1.0 × 107 copies/µL standard
plasmids. 8: water.

3.2. Specificity Analysis

The specificity of the PTP2-qPCR method was analyzed using EHP and other shrimp pathogens
including WSSV, SHIV, VPAHPND. Only the EHP positive template showed a significant amplification
curve, while no fluorescent signal existed in other templates, indicating that this quantitative method
had good specificity (Figure 2).
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Figure 2. The specificity amplification curve of PTP2-qPCR. The templates for the qPCR were the DNA
extracted from shrimp infected with 1. EHP; 2. WSSV; 3. SHIV; 4. VPAHPND; and 5. healthy shrimp;
6: water.

3.3. Sensitivity Analysis

With a typical S-shaped curve in the valid Cq range, the lowest template copy concentration
detected by PTP2-qPCR was up to 1.0 × 101 copies/µL (Figure 3a). With conventional PCR, it was
difficult to distinguish the amplification fragment with the naked eye when the template was lower
than 1.0 × 103 copies/µL (Figure 3b). It was indicated that the sensitivity of PTP2-qPCR was at least
two orders of magnitude higher than the conventional PCR.
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(b) Agarose electrophoresis of conventional PCR. 1: Negative control, 2–5: 1.0× 101 to 1.0× 105 copies/µL
plasmid template.

3.4. Repeatability Analysis

From three different experimental personnel, the standard deviation (SD) and coefficient of
variation (CV) were calculated by Cq values. The result showed that the Cq values of these three
different experimental personnel were basically consistent; meanwhile, CV < 1%, suggesting that the
repeatability of PTP2-qPCR was reliable (Table 3).

Table 3. The coefficient of variation (CV) analysis of PTP2-qPCR.

Sample No. People Mean Cq Value ± S Cq SD CV/%

1 3 29.64 ± 0.30 0.2154 0.7266
2 3 21.59 ± 0.05 0.0370 0.1713
3 3 22.41 ± 0.08 0.0580 0.2589
4 3 15.37 ± 0.05 0.0412 0.2681
5 3 7.97 ± 0.07 0.0500 0.6274

3.5. Integrated PTP2-qPCR and Microscopy Analysis EHP in Field-Shrimp

Stained by Fluorescent Brightener 28, many oval-shaped spores ranging in size from 1 to 2 µm
were observed from EHP-infected shrimp, while there was no fluorescent signal in normal-shrimp
samples (Figure 4). During analysis of the same EHP-infected sample via the integrated staining
and PTP2-qPCR method, there was a simple correspondence between the spore number and the
copy concentration of the PTP2 gene (Table 4). It was difficult to observe EHP spores when the EHP
concentration was lower than 103 copies/mg. However, with the order of magnitude increase of the EHP
concentration, the number of spores in one field also increased regularly. So, the EHP concentration
would be quickly predicted according to the number of spores via microscopic examination when the
shrimp were seriously infected.

Table 4. Integrated analysis of microscopy and PTP2-qPCR for EHP quantification.

Samples EHP #

Copies/mg
Spore Number *
/(field ×mg)

1 1.20 × 106 45.23
2 1.08 × 106 39.66
3 6.27 × 105 16.14
4 4.51 × 105 14.78
5 2.36 × 105 13.88
6 1.14 × 105 7.16
7 2.63 × 104 5.91
8 2.22 × 104 3.19
9 1.29 × 104 2.28

10 9.95 × 103 1.56
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Table 4. Cont.

Samples EHP #

Copies/mg
Spore Number *
/(field ×mg)

11 4.34 × 103 0.69
12 8.15 × 102 0.00
13 7.41 × 102 0.00
14 6.84 × 101 0.23
15 2.58 × 101 0.00

# Conversion formula: copies/mg = (copies/µL) × (50 µL) × (30 mg)−1, * The spore number was an average calculated
from 20 random fields.
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hepatopancreas of EHP-infected shrimp samples staining with Fluorescent Brightener 28 on the UV
light phase, differential interference contrast (DIC) phase, and a merged image. (d–f) The hepatopancreas
of normal shrimp samples staining with Fluorescent Brightener 28 on the UV light phase, differential
interference contrast (DIC) phase, and a merged image. Bar, 10 µm.

4. Discussion

Microsporidia have been studied for more than 150 years. Various species can infect a wide
variety of animals ranging from invertebrate to vertebrate [1–5,32]. EHP mainly parasitizes the
hepatopancreas and gut of shrimp, causing the slowing growth of the host [6,7]. Since EHP does
not cause rapid pathological changes in shrimp, it is difficult for farmers to quickly distinguish this
pathogen [8]. For EHP detection, some microscopic examination methods were simply operated and
broadly used [17,18]. However, microscopic examination with low sensitivity and accuracy was hard
to detect EHP-infected shrimp, especially in the early infection. Therefore, high sensitivity molecular
diagnoses such as PCR [33], qPCR [34], and loop-mediated isothermal amplification (LAMP) [35] have
been developed to replace microscopy methods. SSU rRNA gene, a common target for EHP molecular
diagnosis with a highly conserved sequence, was likely to produce false-positive results [19,34,36].
Hence, a specific target was selected in our study to establish a SYBR Green I fluorescence quantitative
PCR method for EHP detection.

All microsporidia possess a unique, highly specialized structure: the polar tube. The polar
tube is an important organ of the unique infection mechanism of microsporidia which can transport
cytoplasm to host cells upon appropriate environmental stimulation [23]. Many kinds of polar tube
proteins (PTPs) form the special structure, and these polar tube proteins play an important role in
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microsporidian invasion and proliferation [5]. EHP-PTP2 protein (GenBank No. OQS55341.1) had
the highest identity (52%) with the homologous protein of other microsporidia by BlastP, implying
the DNA sequence identity of their genes would be even lower. However, the EHP-SSU rRNA gene
(GenBank No. KF362130.1) shared 93% identity with the SSU rRNA gene of Enterospora nucleophile
(GenBank No. KF135641.1), and the identity shared with the other five microsporidia was higher than
85%. According to the latest report, the PTP2 gene exhibited a good detection target in recombinase
polymerase amplification (RPA) and CRISPR-Cas 12a fluorescence assay [30]. Actually, the EHP
concentration is a key parameter in shrimp farming, and this latest approach cannot meet the
requirements of quantitative detection. In this study, targeting of the PTP2 gene of fluorescence SYBR
Green I using real-time quantitative PCR was established to detect EHP, and the minimum copy
concentration was up to 10 copies/µL EHP, which suggested this diagnosis had a high sensitivity.
Additionally, there was no interference reaction with other shrimp pathogens verified in our study
(Figure 2), implying this PTP2-qPCR approach had a good specificity.

One of our aims is to provide a more convenient EHP detection method for shrimp culture.
Microscopy can be more accessible to detect pathogens in the field, as it does not require professional
technicians and instruments. A field-portable and cost-effective smartphone-based platform was
presented for the detection and quantification of chitin-positive Nosema spores in field measurements [37].
In this study, we used Fluorescent Brightener 28 to stain EHP spores in hepatopancreas tissue of
EHP-infected shrimp and counted the EHP spores using microscopy. Combining the microscopy
and PTP2-qPCR results, there were 40 to 50 spores in one field when 106 copies/mg EHP could be
detected by PTP2-qPCR, 7 to 20 spores vs. 105 copies/mg, 2 to 6 spores vs. 104 copies/mg, and 1 to 2
spores vs. 103 copies/mg. When examining the number of spores via microscope, in this case, the EHP
concentration would be easily predicted.

Above all, the use of the PTP2-qPCR method was recommended as early detection for
EHP-infection, and staining microscopy was more suitable for real-time monitoring of EHP in
the field. This integrated methodology could serve for EHP detection during the whole period of
shrimp farming and provide a reference for the epidemiological study of EHP.

5. Conclusions

To our knowledge, this study is the first integrated qPCR and staining microscopy method for
EHP detection. In shrimp culture, when EHP infection is serious, it can be directly detected by a
microscope, and when EHP infection is mild, it can be detected by qPCR. The combination of these
two methods not only makes the test results more accurate, but also prevents and controls EHP timely
and effectively. We recommend that the integrated method be used to study EHP transmission routes
in the shrimp–human food chain to monitor food chain safety.
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