

Article

Organic carbon and nitrogen isoscapes of reef corals and algal symbionts: Relative influences of environmental gradients and heterotrophy

Supplementary materials

Figure S1. Differences in C/N atomic ratios (Δ C/N_{a-h}; **a**, **d**, **g**), bulk δ ¹⁵N values ($\Delta\delta$ ¹⁵N_{a-h}; **b**, **e**, **h**), and bulk δ ¹³C values ($\Delta\delta$ ¹³C_{a-h}; **c**, **f**, **i**) between the algal symbiont and host coral fractions compared among seasons (**a–c**), species (**d–f**), and sampling sites (**g–i**). Differences among seasons, species, and sites were evaluated using the Tukey-Kramer multiple comparison test ($\alpha = 0.05$); different characters at the top of the error bars indicate statistically significant differences. Lack of characters means no significant differences detected.

Site ID	Location		Water depth (m)			Numb	er of coral sam	ples*	
	Latitude	Longitude	at low tide		Aug 2009	Jan 2010	May 2010	Aug 2010	Total
	(°N)	(°E)							
1	24.5950	124.3108	1.0	Shallow reef flat	3 (0)	0 (0)	0 (0)	0 (0)	3 (0)
2	24.5712	124.2982	1.0	Shallow reef flat	6 (0)	0 (0)	7 (0)	0 (0)	13 (0)
3	24.4231	124.2558	2.0	Near a big channel across	0 (0)	0 (0)	8 (0)	0 (0)	8 (0)
				the reef crest					
4	24.3842	124.2553	2.0	Close to the Todoroki River	5 (0)	0 (0)	4 (0)	0 (0)	9 (0)
				mouth					
5	24.3706	124.2551	2.0	Shallow reef flat	0 (0)	0 (0)	0 (0)	4 (0)	4 (0)
6	24.3652	124.2575	0.5	Close to the reef crest	10 (5)	0 (0)	0 (0)	0 (0)	10 (5)
7	24.3646	124.2552	1.0	Shallow reef flat	10 (5)	10 (3)	0 (0)	0 (0)	20 (8)
8	24.3652	124.2537	1.0	Shallow reef flat	0 (0)	8 (4)	14 (6)	0 (0)	22 (10)
9	24.3649	124.2510	0.5	Groundwater-affected area	8 (5)	0 (0)	0 (0)	0 (0)	8 (5)
10	24.3394	124.1989	1.0	Close to a sewage outfall	0 (0)	7 (0)	6 (0)	4 (0)	17 (0)
11	24.3410	124.0961	2.0	Inside Sekisei Lagoon	0 (0)	0 (0)	0 (0)	6 (0)	6 (0)
12	24.3484	123.9521	5.0	Inside Sekisei Lagoon	0 (0)	0 (0)	0 (0)	6 (0)	6 (0)

Table S1. Description of sampling sites and numbers of coral samples analyzed.

* Number in parenthesis indicates the sample number of *Heliopora coerulea*.

Table S2. Seasonal differences in C/N ratios, δ^{13} C values and δ^{15} N values of algal symbionts and host corals evaluated via ANOVA with Bonferroni–Dunn post-hoc analysis.

Coral	Site ID	Seasons compared		Algal symbionts			Host corals	
species			C/N	$\delta^{15}N$	$\delta^{13}C$	C/N	$\delta^{15}N$	$\delta^{13}C$
Acropora	10	Jan 2010 vs. May	ns	ns	ns	_ *	ns	ns
digitifera		2010 vs. Aug 2010						
Acropora	2	Aug 2009 vs. May	ns	ns	ns	Aug < May *	May < Aug **	May < Aug *
pulchra		2010						
Heliopora	7	Aug 2009 vs. Jan	ns	Jan < Aug ***	Jan < Aug ***	ns	ns	Jan < Aug **
coerulea		2010						
Heliopora	8	Jan 2010 vs. May	ns	ns	ns	ns	ns	ns
coerulea		2010						
Porites	8	Jan 2010 vs. May	ns	ns	ns	ns	Jan < May *	ns
cylindrica		2010						
Porites lutea	4	Aug 2009 vs. May	Aug < May *	ns	ns	ns	May < Aug **	Aug < May *
		2010						
Porites lutea	10	Jan 2010 vs. May	ns	ns	Jan < May **	ns	ns	ns
		2010						

+ Difference of means is shown only when it is statistically significant by ANOVA (*: p < 0.05; **: p < 0.01; ***: p < 0.001. ns: no significant difference was detected between seasons by ANOVA. –: no significant difference was detected by Bonferroni–Dunn post-hoc analysis.

3	of

4

Table S3. Species-specific differences in C/N ratios, δ^{13} C values, and δ^{15} N values of algal symbionts and host corals evaluated via ANOVA with Bonferroni–Dunn post-hoc analysis.

Station	Season	Species	А	lgal symbion	ts	Host corals				
		compared§	C/N	$\delta^{\rm 15}N$	δ ¹³ C	C/N	$\delta^{\rm 15}N$	$\delta^{13}C$		
2	Aug 2009	Ap vs. Av	ns	Ap < Av	ns	Ap < Ac *	ns	Ap < Av *		
				*						
2	May 2010	Ap vs. Pl	ns	ns	Ap < Pl *	ns	ns	Ap < Pl *		
3	May 2010	Pc vs. Pl	ns	ns	ns	Pc < Pl ***	Pc < Pl *	Pc < Pl *		
6	Aug 2009	Ad vs. Ap vs. Hc	ns	ns	Ad, Ap <	Ad, Ap < Hc	Hc < Ad,	Ad, Ap <		
					Hc **	**	Ap **	Hc **		
7	Aug 2009	Hc vs. Pc	Pc < Hc **	Hc < Pc	ns	Pc < Hc ***	Hc < Pc	ns		
				**			***			
7	Jan 2010	Ap vs. Hc vs. Pl	Ap < Hc *	Ap, Hc <	Ap < Hc	Ap, Pl < Hc	ns	Ap < Hc		
				Pl **	*	***		< Pl ***		
8	Jan 2010	Hc vs. Pc	Pc < Hc	Hc < Pc	ns	Pc < Hc ***	ns	ns		
			***	***						
8	May 2010	Fc vs. Hc vs. Pc	ns	ns	ns	Fc, Pc < Hc ***	Hc < Pc <	ns		
							Fc ***			
9	Aug 2009	Hc vs. Pc	Pc < Hc *	Hc < Pc *	ns	Pc < Hc **	Hc < Pc **	ns		
10	Jan 2010	Ad vs. Pl	ns	ns	ns	Ad < Pl *	Ad < Pl *	Ad < Pl **		
10	May 2010	Ad vs. Pl	Ad < Pl *	ns	Ad < Pl	ns	ns	Ad < Pl **		

10	Aug 2010	Ac vs. Ad	ns	ns	ns	ns	ns	ns		
11	Aug 2010	Ac vs. Ad	Ad < Ac	ns	ns	ns	$Ad < Ac^*$	ns		
			**							
12	Aug 2010	Ac vs. Pc	Ac < Pc	Pc < Ac	Pc < Ac	Ac < Pc ***	Pc < Ac	Pc < Ac		
	-		****	***	**		***	***		

Difference of means is shown only when it is statistically significant by ANOVA (*: p < 0.05; **: p < 0.01; ***: p < 0.001. ns: no significant difference was detected between seasons by ANOVA. [§] Ac, *Acropora clathrata*; Ad, *A. digitifera*; Ap, *A. pulchra*; Av, *A. vaughani*; Fc, *Favites chinensis*; Hc, *Heliopora coerulea*; Pc, *Porites cylindrica*; Pl, *P. lutea*.

Coral species	Season	Stations compared	A	lgal symbior	nts		Host corals	
			C/N	$\delta^{15}N$	δ13C	C/N	$\delta^{15}N$	δ13C
Acropora	Aug 2010	10 vs. 11 vs. 12	ns	11, 12 <	ns	ns	11, 12 < 10 ***	ns
clathrata				10 ***				
Acropora	Aug 2010	10 vs. 11	11 < 10*	11 < 10 **	ns	ns	11 < 10 **	ns
digitifera								
Acropora	Aug 2009	1 vs. 2 vs. 6	ns	2, 6 < 1	ns	ns	6 < 1 **	ns
pulchra				***				
Heliopora	Aug 2009	6 vs. 7 vs. 9	ns	6,7<9	ns	ns	7 < 9 *	ns
coerulea				***				
Heliopora	Jan 2010	7 vs. 8	ns	7 < 8 ***	ns	ns	7 < 8 **	7 < 8
coerulea								**
Porites	Aug 2009	7 vs. 9	9<7*	7 < 9 ***	ns	ns	7 < 9 ***	ns
cylindrica								
Porites	May 2010	3 vs. 8	ns	3<8*	ns	ns	3 < 8 ***	3 < 8 *
cylindrica								
Porites lutea	Jan 2010	7 vs. 10	ns	7 < 10 ***	ns	ns	7 < 10 ***	ns
Porites lutea	May 2010	2 vs. 3 vs. 4 vs. 10	ns	-*	2, 4 < 10 *	10 < 2 *	2, 3 < 4 < 10	ns
							4.4.4	

Table S4. Site-specific differences in C/N ratios, δ^{13} C values, and δ^{15} N values of algal symbionts and host corals evaluated via ANOVA with Bonferroni–Dunn post-hoc analysis.

Difference of means is shown only when it is statistically significant by ANOVA (*: p < 0.05; **: p < 0.01; ***: p < 0.001. ns: no significant difference was detected between seasons by ANOVA. -: no significant difference was detected by Bonferroni–Dunn post-hoc analysis.

Table S5. Amino acid compositions (mole-%) of the host coral and symbiotic algal fractions of coral holobionts (n = 10).

	Ala	Gly	Val	Leu	Ile	Asx	Thr	Ser	Met	Glx	Phe	His	Tyr	Arg	Lys
This study															
– Host coral	6.8 ±	$10.7 \pm$	6.7 ±	7.0 ±	4.6 ±	12.3 ±	5.5 ±	7.9 ±	0.0 ±	23.9 ±	3.8 ±	1.4 ±	0.5 ±	4.1 ±	4.2 ±
	0.6	1.7	0.7	0.9	0.6	3.2	1.6	1.8	0.0	5.9	1.3	0.6	0.8	0.7	1.3
 Algal symbiont 	$8.4 \pm$	$12.0 \pm$	7.5 ±	8.5 ±	5.3 ±	12.1 ±	6.1 ±	7.0 ±	0.1 ±	$18.0 \pm$	3.7 ±	1.7 ±	1.2 ±	5.4 ±	3.9 ±
	0.3	1.3	0.4	0.8	0.5	1.3	0.3	0.4	0.2	3.7	0.7	0.4	0.9	0.9	1.0
Fitzgerald and Szmant (1997) [72]															
– Host coral*	7 - 8	8 – 11	7 – 8	7 - 10	5-6	11 – 13	6 – 7	7 - 8	1 – 2	13 – 15	4 - 5	3 - 4	2-5	4 - 6	5 – 7

* Protein samples precipitated by trichloroacetic acid from suspension of host coral tissue.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).