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Abstract: Costa Rica is a candidate to eliminate malaria by 2020. The remaining malaria transmission 

hotspots are located within the Huétar Norte Region (HNR), where 90% of the country’s 147 malaria 

cases have occurred since 2016, following a 33-month period without transmission. Here, we 

examine changes in transmission with the implementation of a supervised seven-day chloroquine 

and primaquine treatment (7DCPT). We also evaluate the impact of a focal mass drug 

administration (MDA) in January 2019 at Boca Arenal, the town in HNR reporting the greatest local 

transmission. We found that the change to a seven-day treatment protocol, from the prior five-day 

program, was associated with a 98% reduction in malaria transmission. The MDA helped to reduce 

transmission, keeping the basic reproduction number, RT, significantly below 1, for at least four 

months. However, following new imported cases from Nicaragua, autochthonous transmission 

resumed. Our results highlight the importance of appropriate treatment delivery to reduce malaria 

transmission, and the challenge that highly mobile populations, if their malaria is not treated, pose 

to regional elimination efforts in Mesoamerica and México. 
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1. Introduction 

Malaria has been a major infectious disease in Costa Rica’s history [1,2]. Costa Rica is now among 

the 21 countries most likely to eliminate malaria by 2020 [3]. To achieve elimination, a robust malaria 

surveillance system has played a key role in order to understand and reduce malaria transmission 

[4]. In 1957, Costa Rica created a malaria surveillance and control program (MSCP) following Pan 

American Health Organization (PAHO) recommendations, and based malaria surveillance on 

passive case detection by the blood slide examination of patients with malaria symptoms in endemic 

areas [5,6]. 

MSCP’s main initial strategy was the systematic use of DDT for indoor residual spraying (IRS) 

[6]. With this, malaria disappeared from endemic areas across the Pacific basin of Costa Rica [5–7]. 



Microorganisms 2020, 8, 984 2 of 12 

 

DDT was replaced by carbamates and pyrethroids in 1986 [6], and IRS use stopped in 1990, except 

for areas with active transmission [6,7]. Since 2009, IRS has been only deployed focally following the 

detection of malaria cases [7]. This protocol is still in place [2] to affect a “transmission blockage”, 

where additional cases are actively searched within 100 m of a diagnosed case, using blood slide 

examination as a diagnostic, larval peri-domiciliary habitats are treated with larvicides, and three 

consecutive daily rounds of insecticide thermal fogging using permethrin [1.03% by volume] are 

applied. In addition, indoor residual spraying with alpha-cypermethrin [0.03 g active ingredient/m2] 

is performed and IRS treatment is repeated every two months over a six-month period [7]. 

In 1991, Costa Rica was affected by a major earthquake that severely damaged its health services 

and infrastructure. In the 1990s [8], annual case number increased at least ten-fold. Also, in 1997, 14-

day malaria treatment for Plasmodium vivax was changed to a five-day radical cure [9], which 

delivered an insufficient primaquine dose [10]. This treatment policy started to change in 2006 [4], 

with limited replacement of the five-day radical cure with a pharmacokinetically-sufficient 

primaquine dose delivered over seven days [1,10]. Previous analyses suggest that this change, 

coupled with focal mass drug administration (MDA), led to a major shift in malaria transmission in 

the Huétar Caribe Region (HCR) of Costa Rica [10]. During this time period, for the whole country, 

these policy changes had a major impact on reducing malaria transmission, despite a two-fold 

increase in malaria cases during the “Hot” El Niño Southern Oscillation phase [1]. Indeed, MDAs 

and treatment change were followed by a 33-month hiatus (2013–2015) in nationwide malaria 

transmission [10]. 

However, starting in 2016, local malaria cases associated with international worker movement, 

from neighboring Nicaragua, into pineapple production areas [1], and, more recently, into Crucitas, 

an illegal open-pit gold mining area [11], have led to a resurgence of malaria transmission in the 

Huétar Norte Region (HNR) of Costa Rica. This situation likely reflects the recent malaria 

transmission increase in Nicaragua. Despite having a similar trajectory towards malaria elimination 

from 2005 to 2008, while Costa Rica has achieved a malaria pre-elimination status [3], malaria cases 

have been exponentially growing in Nicaragua since 2014 (Appendix Figure A1). In response to a rise 

in malaria transmission in the HNR during the final months of 2018, the Ministry of Health performed 

a focal MDA at the end of January 2019. The MDA targeted the population of Boca Arenal, the town 

most frequently visited by mine workers from Crucitas, and where most locally-transmitted cases 

have been detected since 2018. Here, we evaluate changes observed in malaria transmission following 

the implementation of the seven-day treatment in the HNR, which started in 2006, and the MDA in 

Boca Arenal during 2019. 

2. Materials and Methods 

2.1. Surveillance Data 

We used the annual malaria surveillance data by county, from the Costa Rican Ministry of 

Health epidemic surveillance database, since 1976. Each case was confirmed by blood slide 

examination (Figure 1). Malaria case counts were then added by year for the HNR, the HCR, and the 

rest of the country (Figure 1A). We also computed the proportion of malaria cases due to Plasmodium 

vivax (Figure 1B), the proportion of imported malaria cases (Figure 1C), and the number of 

households covered by IRS (Figure 1D). We summarized annual malaria case data from 1976 to 2018 

for Sarapiquí, Guatuso, Upala, Los Chiles, and San Carlos, the five counties comprising the HNR 

(Figure 1E). We also compiled monthly imported and local malaria case records from January 2018 

to September 2019 in San Carlos and Los Chiles, the two counties with over 80% of the local malaria 

cases after May 2018, and where the Boca Arenal MDA was done (Figure 1F). For comparison, we 

compiled the imported and local malaria cases for the rest of the country (Figure 1G). When plotting 

malaria cases from all of Costa Rica (Figure 1A) and the HNR (Figure 1E), we highlighted the time-

points associated with major malaria policy changes and natural catastrophes. 
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Figure 1. Malaria trends in Costa Rica. (A) Annual number of malaria cases reported between 1976 

and 2019, highlighting the burden in the Huétar Norte and Huétar Caribe regions. The inset map 

shows the location of these two regions, whose color codes are presented in the inset legend. The 

numbered dots represent malaria policy changes and natural catastrophes. Specifically, (1) DDT 

stopped being used, (2) the Limón earthquake, (3) the implementation of the five-day radical cure, (4) 

the implementation of the seven-day chloroquine and primaquine treatment, and (5) the 

implementation of reactive indoor residual spraying (IRS). (B) Annual proportion of Plasmodium vivax 

cases in Costa Rica. (C) Annual proportion of imported malaria cases in Costa Rica. (D) Annual 

number of houses covered by insecticide residual spraying (IRS) in Costa Rica. (E) Annual Number 

of malaria cases reported in the Huétar Norte region between 1976 and 2019, highlighting the case 

burden in each one of the five counties comprising the Huétar Norte region. The inset map shows the 

location of each county, whose color codes are presented in the inset legend. The numbered dots 

represent the malaria policy changes and natural catastrophes described for panel A. (F) Monthly 

malaria cases, local and imported, in Los Chiles and San Carlos counties from January 2018 to 

September 2019; the vertical dashed line indicates the application of the mass drug administration 

(MDA) at Boca Arenal. (G) Monthly malaria cases, local and imported, outside Los Chiles and San 

Carlos counties from January 2018 to September 2019. 
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2.2. Mass Drug Administration 

The Boca Arenal MDA was implemented by members from the National Vector Control 

Management Program (NVCMP), coordinated by Costa Rica’s Ministry of Health Epidemic 

Surveillance (Vigilancia de la Salud), the coordinating body of the Costa Rican Epidemic Surveillance 

System (CRESS). Boca Arenal is located in the Cutris district of San Carlos county (Figure 2A). The 

MDA started by making a census of the 229 buildings of Boca Arenal (BA) town on 26 January 2019. 

The census showed that two buildings were not residential, namely, a church only used for 

religious services and the town's small grocery. The remaining buildings were residential, but 25 

were empty when the MDA was implemented. The people from the remaining 202 households were 

surveyed for enrollment into the MDA. Households had a mean (± standard deviation (SD)) of 4.2 ± 

2.3 residents, ranging from 1 to 14 residents per household. Two households (1% of all households) 

had all of the residents excluded from the MDA. The remaining 200 households (99%) had at least 

one member enrolled in the MDA. The households in BA had a total of 866 people; among these, 89 

people (10%) were not enrolled in the MDA, because they were either pregnant women (n = 6), 

children below 5 years (n = 6), breastfeeding mothers (n = 20), breastfeeding children (n = 22), or 

people with other medical conditions. Those with any of these conditions and people who declined 

to participate comprised a total of 35 people. The MDA started on 28 January 2019 and continued for 

seven days, with combined “Talamanca” treatment [10] consisting of a 1500 mg total dose of 

chloroquine administered over three days for adults, with 600 mg delivered on the first day and 450 

on the second and third day. Meanwhile, the total primaquine dose was 210 mg total for adults in a 

30 mg daily dose for seven days. There was no adjustment of dose by weight, and children between 

six and twelve years received half of the dose, with people 13 years or older considered to be adults 

for treatment delivery. The MDA treatment was suspended in case of adverse reactions, which 

included symptoms of hemolytic anemia, diarrhea, and/or vomiting during the seven-day treatment 

delivery. 

 

Figure 2. Boca Arenal Mass Drug Administration malaria surveillance (A) Map of San Carlos county 

highlighting the Pocosol and Cutris Districts, the two districts with the largest share of malaria cases 

in Costa Rica, showing the exact location of Llano Verde, Crucitas, and Boca Arenal. (B) The 28-day 

period malaria cases, local and imported, at Llano Verde, Pocosol District. (C) The 28-day period 

malaria cases, local and imported, at Crucitas and Boca Arenal, Cutris District. 

2.3. Ethical Clearance 

This research was approved and registered by the Consejo Nacional de Investigaciones en Salud 

(CONIS), in agreement no. 4 from session no.52 held on 11 December 2019, in accordance with article 

seven from law 9234 for biomedical research involving human subjects in Costa Rica. This study was 

also declared a sanitary priority by Costa Rica’s Minister of Health on 5 December 2019, in official 

communication no. MS-DM-8906-2019. 
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2.4. Statistical Analysis 

To evaluate the impact of the treatment changes in 2006, we tested for the presence of 

breakpoints associated with changes in the treatment regimen (i.e., changes in the mean pattern of 

temporal variability [12]) in the HNR malaria case time series. We used the F-statistic [13] to estimate 

and test the significance of potential breakpoints, and compared the malaria case number means 

before and after a breakpoint using Welch's t-test [14], which corrects degrees of freedom to account 

for unequal variance among compared groups. 

For the MDA, we estimated coverage (i.e., how many people were enrolled in the MDA), partial 

adherence (i.e., how many people received the complete chloroquine part of the treatment), and full 

adherence (i.e., how many people received the full chloroquine and primaquine doses). We compared 

differences [14], in the number of people living in households with and without malaria cases prior 

to the MDA using Welch’s t-tests. We also used χ2 tests to compare differences in the proportion [14] 

of people with partial and full MDA adherence between households where malaria cases were 

previously reported and the rest of the MDA enrolled households at BA. 

To evaluate the impact of the MDA on transmission, we estimated the changes over 28-day 

periods in the time-varying reproduction number [15], Rt, of malaria at BA and Crucitas (Figure 2A). 

The two locations accounted for 65 of the 135 malaria cases reported from January 2018 to September 

2019 in HNR of Costa Rica. BA and Crucitas are linked, as most miners working in Crucitas travel to 

BA for provisions. To estimate Rt, we first estimated the time from the diagnosis of one case to the 

next, the serial interval, using data from malaria cases recorded at Llano Verde (LlV; Figure 2B), a 

rural community close to Crucitas (Figure 2A) and a common stopover for people reaching mining 

sites. LlV is the location where the first malaria cases were detected in 2018. Unlike the transmission 

observed at BA and Crucitas (Figure 2C), where transmission seems independent of imported malaria 

cases, the transmission at LlV was very episodic, with small outbreaks following imported cases 

(Figure 2B). To estimate the average time between the report of a primary and secondary case, we 

used the date of symptom onset for the initial imported case and calculated the time to onset for the 

nearest local cases reported at LlV. When several cases could have served as the source for a local 

case, we estimated their average as the serial interval. We then used the resulting distribution of serial 

intervals to generate a posterior sample of serial interval distributions estimated assuming an offset 

gamma distributed serial interval [16]. This was done employing a Markov Chain Monte Carlo, with 

a burn-in of 3000 replications, a total of 13,000 replications that were thinned to 1000 final samples. 

We used the resulting distribution to estimate Rt using a Bayesian framework that considered 

incidence data, summarized over 28 days, conditional on the serial interval distribution [15]. To ease 

the interpretation of Rt, we analyzed the cumulative data over 28-day periods, as longer time 

windows reduce noise in signals through time [17,18]. 

3. Results 

Malaria was always present in the HNR from 1976 to 2009, although the number of cases was 

very small compared to what was observed in the HCR, the main transmission hotspot in Costa Rica 

(Figure 1A). From 1976 to 2018, most cases were due to Plasmodium vivax (Figure 1B), and with the 

start of the pre-elimination period in 2013, most of the reported cases were imported. In 2018 and 

2019 the trend reversed, with more local than imported cases (Figure 1C). IRS (Figure 1D) probably 

played a major role in reducing malaria cases until the late 1970s, but afterwards played a reduced 

role, not being significantly associated (Pearson′s r = −0.06, t = −0.41, d.f. = 40, p-value = 0.68) with the 

number of cases. Malaria transmission decreased following changes in treatment and focalized MDA 

in the HCR (Figure 1A). In the HNR, transmission dropped following the change from the five-day 

radical cure to the seven-day treatment (Figure 1E) in 2008 (Figure 3A), where the annual mean 

malaria cases (± SD) significantly (Welch′s t = 4.5, d.f. = 32.381, p-value = 6.8 × 10−5) decreased from 

415 ± 511 during 1976–2008 to 8 ± 22 during 2009–2019. 

The MDA had a coverage of 90%, enrolling 777 of the 866 people living in BA; 48% (n = 368) 

received a full treatment dose, and 236 people (30% of the enrolled in the MDA) received the full 

chloroquine dose and incomplete primaquine doses. The 22% (n = 173) of people that did not receive 
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all of the chloroquine doses included eight that declined to continue the treatment when visited by 

personnel from the PNMV and 53 people whose treatment was suspended after showing adverse 

reactions. None of the adverse reactions included symptoms associated with primaquine-induced 

severe hemolytic anemia. The remaining 112 people were absent more than four times during the 

PNMV visits. This group included 33 people who were migrant laborers who left Boca Arenal during 

the MDA, according to other household members. A flowchart describing the MDA is presented in 

Appendix Figure A2. 

When considering the prior history of malaria in the Boca Arenal households where the MDA 

was implemented, we found that households (n = 13) with a history of malaria cases during 2018 and 

2019 had a similar (Welch's t = 0.63824, d.f. = 14.10, p-value = 0.534) number of residents enrolled in 

the MDA (mean ± S.D. = 4.23 ± 2.01, range = 1–8) as the households (n = 187) without malaria (3.86 ± 

2.21, range = 1–12), the difference not being statistically significant. We also found that the percentage 

adherence to the full chloroquine and primaquine treatment was slightly higher in households with 

a recent history of malaria cases (56 ± 41, range = 0–100%) than in households without cases (45 ± 40, 

range = 0–100%), the difference not being statistically significant (χ2 = 0.165, d.f. = 1, p-value = 0.6844). 

The percentage adherence to the full chloroquine treatment was very high in both groups. In 

households with former malaria cases, it was 86 ± 24 (range = 25–100%), and in households without 

former malaria cases, it was 75 ± 33.02 (range = 0–100%), the difference not being statistically 

significant (χ2 = 0.06, d.f. = 1, p-value = 0.802). 

 

Figure 3. Impact of treatment change policy and the Boca Arenal (BA) Mass Drug Administration 

(MDA) on malaria transmission (A) breakpoint analysis showing the most likely time for a change in 

malaria transmission, indicated by a vertical dashed line, breakpoints are significant above the red 

line (P < 0.05). (B) Posterior sample of malaria serial interval probability distributions generated via 

Markov Chain Monte Carlo, estimated with data from Llano Verde. Each line represents a simulated 

serial interval. (C) Malaria time-dependent reproduction number Rt at Crucitas and Bocal Arenal. The 

figure shows the 95% credible intervals (CI) for Rt and the MDA timing at Boca Arenal. 
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The serial interval distribution, i.e., the time it takes for a case to generate a new case via vector 

transmission [19], for LlV had a mean of 51 days (95% CI: 44–57) with an SD of 35 days (95% CI: 33–

40), which was roughly approximate to a mean (± SD) of 1.81 ± 1.26 for 28-day periods (Figure 3B). 

Prior to the MDA, the Rt in BA–Crucitas already started to decrease (Figure 3C), but it decreased 

further, at least until May 2019, when the mean Rt value started to grow (Figure 3C). After May 2019, 

the Rt was always below one, although with credible intervals not different from one. This result 

suggests that the impacts of the MDA lasted between three and five months, considering the MDA 

was done in late January 2019. Indeed, the mean (± SD) Rt for June 2018 to January 2019 was 1.97 ± 

0.39, while for February–May of 2019 it was 0.243 ± 0.078, significantly below 1; however, starting 

with the re-introduction of imported cases in May 2019, Rt had a mean value of 1.00 ± 0.26. Finally, it 

is worth highlighting that the malaria cases between May and September 2019 occurred in people 

that had neither full nor partial (full chloroquine) adherence to the MDA treatment in BA, and that 

from May 2018 to September 2019, only one case was a P. vivax relapse—a migrant worker not 

enrolled in the MDA, who did not take the full 7DCPT the first time he was attended by the Costa 

Rican universal health care system. 

4. Discussion 

Our analysis suggests that both the treatment change that started in 2006 and the BA–Crucitas 

MDA of 2019 were associated with malaria transmission reduction in the HNR. In both cases, these 

changes accompanied a standard malaria elimination protocol in place since 2009 [2], the 

“transmission blockage” described in the introduction, which is based on reactive human case 

surveillance coupled with supervised treatments and vector control, following the detection of locally 

transmitted malaria cases. Although this blockage can immediately reduce transmission, our results 

suggest that eliminating infection reservoirs with appropriate treatments and focalized MDAs may 

play a critical role for malaria elimination and can fill an important gap in reducing transmission, 

considering that the dominant malaria vector species in Mesoamerica and Mexico, Anopheles 

albimanus, is mainly exophilic and exophagic [20–22]. IRS thus may have limited impacts on its ability 

to reduce malaria transmission. For example, the “transmission blockage” protocol has been used in 

Costa Rica since 2002, where its use in the HCR did not help reduce repeated transmission in the 

same households of Talamanca county, a milestone only achieved after the implementation of MDAs 

and case management based on seven-day treatments [7,10]. In other words, vector control and other 

tools aimed at reducing human–vector contact, although able to reduce transmission, might not be 

enough to eliminate malaria in Costa Rica and similar settings in Mesoamerica and Mexico. 

The BA MDA had a full adherence of nearly 50% of the BA population, helping to keep Rt below 

one in BA and Crucitas. Local transmission was interrupted for at least four months, despite ongoing 

malaria transmission elsewhere in the HNR, and also in Limón (part of the HCR) and Chomes de 

Puntarenas (on the Pacific Coast) [23]. However, focal MDAs in Costa Rica can be made more 

effective. Currently, Costa Rica follows PAHO/WHO recommendations [24] to exclude breastfeeding 

women from malaria treatments, despite clinical evidence that suggests it is safe for this 

subpopulation and their breastfeeding children [25]. Thus, the 90% coverage of the BA MDA that we 

observed could be increased by at least 2% if breastfeeding mothers are included. Adherence can be 

increased if additional resources are included to follow-up the individuals that remained in the area 

but were not present when the supervised treatment was delivered, potentially increasing adherence 

by at least 10% and up to 40%, which was not possible when the 2019 BA MDA was implemented 

because of the current structural macro-economic adjustments in Costa Rica [26]. To increase 

adherence, the introduction of tafenoquine, a single-dose malaria drug, could dramatically increase 

treatment adherence, as only one dose would be necessary to treat key populations [27], like migrant 

workers that left BA during the MDA and would not benefit from follow-ups, to people that missed 

MDA doses by being absent during the PNMV visits to administer the 7DCPT. Migrants are a major 

threat to elimination in Costa Rica, but also regionally in Mesoamerica and Mexico, because the poor 

treatment adherence can become a selective pressure for drug resistance [28], and their high mobility 

accelerates the spread of parasites [29]. However, before implementing tafenoquine use, the CRESS 



Microorganisms 2020, 8, 984 8 of 12 

 

needs to implement reliable field tests for G6PD [30] deficiency, in order to avoid adverse reactions 

in subjects likely to suffer hemolytic anemia. Something else that could be refined is MDA 

deployment timing, frequency, and coverage, where the high-quality data generated by the CRESS 

could be used with mathematical models [31] to optimize these aspects in the field implementation 

of MDAs. 

Evidence from Latin America [32] and other settings [33–35] suggests that MDAs and proper 

curative treatments are critical and effective to eliminate malaria when transmission is very focal [28], 

and might even have a population-wide anti-malaria protective impact [36]. In Costa Rica, the 7DCPT 

includes primaquine, because this drug targets P. vivax hypnozoites, dormant forms responsible for 

malaria relapses [7]. However, primaquine can be used in low doses to kill gametocytes of Plasmodium 

spp. that do not cause relapses [37]. For example, single primaquine doses have been used for their 

gametocidal effects to treat P. falciparum and P. malariae [38]. Moreover, malaria treatments with 

primaquine have been shown to reduce malaria case burden in low-transmission settings [38]. To 

improve the current malaria surveillance, the CRESS needs to improve the diagnosis of inapparent 

infections [39] and gametocytemic loads [40], but also mosquito surveillance in hotspots. To date, we 

suspect that An. albimanus is the main malaria vector in Cutris and Pocosol districts, but we have been 

unable to confirm this, because entomological surveillance is currently restricted to mosquito larvae, 

and the available distribution records for this species and other Anopheles spp. in Costa Rica are not 

current [6,41]. However, expanding entomological surveillance to adult mosquitoes and testing them 

for infections could be used as an early warning to trigger reactive case detection, to deploy timely 

vector control interventions, or even to forecast infection based on weather records and remotely-

sensed information collected by satellites [42,43]. The CRESS also needs to develop capacities to 

routinely genotype circulating malaria parasites in humans and mosquitoes, as such information will 

allow for a better understanding of the propagation of malaria, to recognize whether outbreaks have 

a clonal structure [44], arising drug resistance, and to better understand the geographic source of 

parasites in order to coordinate regional efforts for malaria elimination in Mesoamerica and Mexico. 

This region, as a low-transmission setting, is highly heterogeneous [45], and needs to develop 

innovative interventions and tools for malaria elimination surveillance that consider parasite–vector 

bionomics and transmission in key population groups, including migrant workers, a population often 

comprising malaria index cases in malaria outbreaks in Costa Rica, and, as shown here, with 

problems achieving full adherence to 7DCPT in focal MDAs, because of their increased mobility and 

working conditions. 

5. Conclusions 

We are aware that beyond the specific actions to eliminate malaria described here, a wider 

desirable goal is improving the quality of life in communities currently affected by malaria in Costa 

Rica and elsewhere in Mesoamerica and Mexico. The Pocosol and Cutris Districts, where malaria has 

the largest case burden in Costa Rica, are in the lowest 10th percentile of human development in 

Costa Rica [46]. These districts have some of the worst coverage of public services [46] and are at risk 

of being afflicted by other infectious diseases associated with poverty. The lack of socio-economic 

development alternatives in these poor and disadvantaged districts of Costa Rica has led to the 

emergence of illegal open pit gold mining in Crucitas. Poverty has thus led to a serious environmental 

problem [11] that has now become a major threat to malaria elimination in Costa Rica. 
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Appendix A 

 

Figure A1. Malaria cases in Costa Rica and Nicaragua between 2005 and 2018. Data are from the Pan 

American Health Organization (PAHO) [47]. 

 

Figure A2. Flowchart for MDA individual recruitment in Boca Arenal, Región Huétar Norte, Costa 

Rica between January to February 2019. 
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