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Abstract: Therapies targeted to fungal biofilms, mainly against the matrix, and therapies that do
not induce microbial resistance are relevant. N-acetylcysteine (NAC), a mucolytic agent, has shown
antimicrobial action. This study evaluated the effect of NAC against fluconazole-susceptible (CaS)
and -resistant (CaR) Candida albicans. The susceptibility of planktonic cultures to NAC, the effect
of NAC on biofilms and their matrix, the interaction of NAC with antifungal agents, and confocal
microscopy were evaluated. Data were analyzed descriptively and by the ANOVA/Welch and
Tukey/Gomes–Howell tests. The minimum inhibitory concentration (MIC) of NAC was 25 mg/mL
for both strains. NAC significantly reduced the viability of both fungal strains. Concentrations
higher than the MIC (100 and 50 mg/mL) reduced the viability and the biomass. NAC at 12.5 mg/mL
increased the fungal viability. NAC also reduced the soluble components of the biofilm matrix,
and showed synergism with caspofungin against planktonic cultures of CaS, but not against biofilms.
Confocal images demonstrated that NAC reduced the biofilm thickness and the fluorescence intensity
of most fluorochromes used. High concentrations of NAC had similar fungistatic effects against both
strains, while a low concentration showed the opposite result. The antibiofilm action of NAC was
due to its fungistatic action.

Keywords: acetylcysteine; biofilms; extracellular matrix; Candida albicans; drug resistance;
antifungal agents

1. Introduction

Candida albicans is an opportunistic fungal pathogen found on human mucosae, such as those
of the oral, gastrointestinal, and genitourinary tracts [1]. C. albicans exhibits the ability to adhere to
surfaces and form biofilms, which are complex communities of microorganisms attached to biotic
or abiotic surfaces and surrounded by a self-produced matrix [2]. Under specific host conditions,
especially immunodeficiency, C. albicans causes a local infection known as candidiasis, which may
spread systemically and result in candidemia, a nosocomial infection with high mortality rates [3].
Furthermore, C. albicans possess the ability to undergo morphological transition from commensal
yeast to filamentous forms (pseudohyphae and hyphae), in a process known as polymorphism [4].
In the hyphal form, C. albicans is pathogenic, with the ability to invade host tissue [5]. Therefore,
polymorphism is a significant virulence factor of this opportunistic fungal species [4,6].

C. albicans also grows as biofilms on biomedical devices, such as catheters and dental prostheses [7].
Oral candidiasis associated with denture use, known as denture stomatitis, is an oral infection prevalent
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in up to 70% of denture users, with larger proportions of females affected than males. Despite the
multifactorial etiology of denture stomatitis, biofilm formation by Candida spp. on the denture surface
is considered the main etiological factor [8]. Moreover, candidal biofilms formed in indwelling catheters
act as a source of infection in candidemia, whose treatment requires both antifungal administration
and timely removal of the catheter [9].

The biofilm matrix protects microbial cells growing within the biofilm from external agents, and acts
as a barrier to antimicrobials and the host’s immune cells. Thus, in a biofilm, microbial cells exhibit higher
tolerance to antimicrobials [10]. The matrix is also responsible for the three-dimensional architecture and
mechanical properties of biofilms, such as their adhesive strength, cohesion, and stiffness, which enables
co-aggregation of microorganisms and facilitates formation of microcolonies. The environment of
biofilm modulates gene expression, metabolism, and cell signaling by molecules, influencing microbial
behavior (quorum sensing) [11]. The biofilm matrix of C. albicans is composed of carbohydrates,
such as β-glucans and mannan, as well as proteins, lipids, and extracellular DNA (eDNA) [12],
and hexosamines, uronic acid, and phosphorus [13]. The Candida albicans biofilm matrix, especially
the polysaccharides, contributes to co-aggregation of bacteria and protects bacterial cells against
antibacterial agents [14–17]. Candida albicans biofilms also produce extracellular vesicles, whose cargo
(polysaccharides and proteins) forms the biofilm matrix and confers drug tolerance [18].

Antifungal agents used to treat infections caused by Candida spp. are divided into the following
three main classes: polyenes, azoles (imidazoles and triazoles), and echinocandins [19]. Nystatin is
a topical polyene used to treat palatal mucosa affected by denture stomatitis [20,21]; fluconazole
(triazole) and caspofungin (echinocandin) are used for the treatment of invasive candidiasis [9].
However, C. albicans cells growing within biofilms have been shown to exhibit 4 to 128 times lower
antifungal susceptibility than their planktonic counterparts [22]. In addition to the inherent microbial
tolerance of biofilms, the widespread use and misuse of antifungals have led to the development
of antifungal resistance [6]. Such resistance leads to treatment failure with commercially available
antifungal agents, and persistent infection. As a result, antimicrobial resistance remains a global
threat to public health [23]. Therefore, the development of treatments aimed at overcoming antifungal
resistance and disrupting biofilm matrix on medical devices is critical.

N-acetylcysteine (NAC) is a mucolytic and thiol compound used to reduce the viscosity of
pulmonary mucous in patients with chronic respiratory diseases, such as bronchitis [24] and
cystic fibrosis [25], as well as being used to treat paracetamol (acetominophen) overdose [26].
The sulfhydryl component of the NAC molecule breaks the disulfide bonds in mucous [27], and also
acts as a precursor for glutathione synthesis and as a reactive oxygen species (ROS) scavenger,
conferring an antioxidant effect to NAC [28]. Other studies have demonstrated antimicrobial and
antibiofilm properties of NAC against pathogenic bacteria, such as Mycobacterium tuberculosis [29],
Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa [30,31], methicillin-resistant Staphylococcus
aureus and Staphylococcus epidermidis [32], Prevotella intermedia [33], Actinomyces naeslundii, Lactobacillus
salivarius, Streptococcus mutans, and Enterococcus faecalis [34,35]. Studies have also shown synergism
between NAC and antibiotics [31–33,36,37]. There have also been reports that NAC disrupts mature
bacterial biofilms and reduces the matrix polysaccharides [31,38]. In this context, investigating new
applications of existing drugs (drug repurposing) has the advantage of reducing the time and cost
spent in the development of new medications, such as by negating the need for clinical safety trials [39].

The antifungal and antibiofilm action of NAC alone or in association with antifungal agents
(fluconazole, ketoconazole, and amphotericin B) against C. albicans has also been reported [37,40,41].
However, the antifungal effects of NAC against resistant strains and its effects on the components of
the C. albicans biofilm matrix, to the best of our knowledge, are still unknown. Therefore, the aim of
this study was to evaluate the effect of NAC on biofilms of fluconazole-resistant (CaR) and -susceptible
C. albicans (CaS). Aside from the fungal viability and biomass, we focused on the effects of NAC on the
components of the biofilm matrix: polysaccharides, proteins, lipids, and eDNA. We also evaluated
the interaction of NAC with agents belonging to the following three classes of antifungals: polyenes
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(nystatin), azole (fluconazole), and echinocandin (caspofungin). Additionally, we analyzed biofilms
treated with NAC using confocal scanning laser microscopy.

2. Materials and Methods

2.1. Strains and Culture Conditions

Standard strains of CaS (SC5314) and CaR (ATCC 96901—American Type Culture Collection,
Rockville, MD, USA) were stored at −80 ◦C in yeast nitrogen broth (YNB; Difco, Detroit, MI, USA)
with glycerol 50%; they were thawed and reactivated in Sabouraud dextrose agar with 0.05 mg/mL
of chloramphenicol (SDA; Acumedia Manufacturers Inc., Lansing, MI, USA) at 37 ◦C for 48 h.
Five colonies of each strain were transferred to YNB with 100 mM of glucose (YNBg) and incubated
overnight at 37 ◦C. Each fungal suspension was diluted 1:10 in fresh YNBg and incubated at 37 ◦C
until the optical density at 540 nm (OD540) reached the mid-log phase of growth (mean ± standard
deviation, SD, of OD540: 0.424 ± 0.042 and 0.460 ± 0.030 arbitrary units, au, for CaS and CaR,
respectively), corresponding to 6.64 × 106

± 2.72 × 106 and 6.32 × 106
± 1.49 × 106 colony forming

units per milliliter (CFU/mL) for CaS and CaR, respectively. Then, each fungal suspension was
centrifuged (10,000× g for 10 min at 4 ◦C) and resuspended in Roswell Park Memorial Institute (RPMI)
1640 medium—bicarbonate free (Sigma-Aldrich, St. Louis, MO, USA, product code R6504-10X1L),
buffered with morpholinepropanesulfonic acid (MOPS; Sigma-Aldrich), and supplemented with 2%
D-glucose (Synth, São Paulo, Brazil), pH 7.0 (RPMId). Then, the OD540 for each strain was measured
(0.585 ± 0.167 and 0.498 ± 0.005 au for CaS and CaR, respectively).

2.2. Antifungal Evaluation of NAC

NAC (Sigma-Aldrich) was diluted in RPMId at 100 mg/mL, according to the manufacturer’s
instructions, for use in antifungal evaluation. The minimum inhibitory concentration (MIC) and
minimum fungicidal concentration (MFC) were evaluated by the microdilution method, according
to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) [42] and the
European Committee for Antimicrobial Susceptibility Testing (EUCAST) [43], with some modifications.
Aliquots (100 µL) of twofold serial dilutions of NAC (final concentrations of 50 to 12.5 mg/mL) in
RPMId were incubated with 100 µL of each fungal suspension individually for 24 h at 37 ◦C in 96-well,
U-bottom microtiter plates (TPP, Trasadingen, Switzerland). A temperature of 37 ◦C was chosen,
instead of 35 ◦C as recommended by the CLSI, for consistency with human body temperature and the
temperature used for in vitro biofilm formation [44]. Aliquots (200 µL) of each fungal suspension with
RPMId and of RPMId alone were used as controls (without NAC). For the test samples, each fungal
suspension was diluted in RPMId with NAC to give a final concentration of 0.5–2.5 × 103 CFU/mL.
After incubation, the OD540 was measured in a spectrophotometer (FLUOstar Omega microplate
reader; BMG Labtech GmbH, Offenburg, Germany), to obtain quantitative values and avoid any bias
that might arise from visual inspection. The lowest concentration whose OD540 value was similar to
that observed for RPMId alone was defined as the MIC. In addition, samples were plated on SDA and
incubated at 37 ◦C for 48 h. After incubation, the colonies were counted (CFU/mL) and the lowest
NAC concentration that inhibited colony growth was defined as the MFC.

2.3. Time-Kill Curves

Time-kill curves were performed using the same protocol as for the MIC analysis above. Both strains
were grown until mid-log phase, as described in Section 2.1. Aliquots of 100 µL of NAC were added
to each fungal suspension (100 µL) to achieve final NAC concentrations of 50 to 0.09 mg/mL for CaS,
and of 50 to 12.5 mg/mL for CaR, using a 96-well, U-bottom microtiter plate. RPMId alone (without
NAC) with the fungal inocula were used as negative controls. The final concentration of fungal
suspension was 0.5–2.5 × 103 CFU/mL. The absorbances of the samples in the plates were measured
with a spectrophotometer (at 540 nm) during 24 h of incubation at 37 ◦C, with readings taken every 2 h.
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2.4. Evaluation of NAC Activity on Biofilm Formation

Aliquots (200 µL) of each fungal suspension were transferred to 96-well, flat-bottom microtiter
plates (Kasvi, São José dos Pinhais, Brazil) and incubated at 37 ◦C for 90 min (adhesion phase). Then,
the medium from each well was aspirated, and each well was washed twice with 200 µL of sterile
phosphate-buffered saline (PBS—0.136 M NaCl, 1 mM KH2PO4, 2 mM KCl, 10 mM Na2HPO4, pH 7.4)
to remove non-adherent cells. NAC at 100, 50, 25, and 12.5 mg/mL in RPMId was added to each well
(200 µL) and the plates incubated at 37 ◦C for 48 h to allow biofilm formation [44]. Control samples
received only RPMId without NAC.

After 48 h, the biofilms were washed twice with 200 µL of PBS, and biofilm viability (CFU/mL)
and total biomass (using the crystal violet assay) [45] were assessed. For viability analysis, 200 µL of
PBS was added into each well, biofilms were individually scraped using a pipette tip, and tenfold
serial dilutions in PBS were plated in duplicate on SDA, which was incubated at 37 ◦C for 48 h for
colony counting. For biofilm total biomass analysis, 200 µL of 80% methanol was added to each well.
After 15 min, the methanol was removed; then, 200 µL of 1% crystal violet was added to each well.
After 5 min, samples were washed five times with PBS, and 200 µL of 33% acetic acid was added to
remove the stain. This solution was transferred to another 96-well microtiter plate, and the absorbance
at 570 nm was measured [45].

2.5. Effect of the Incubation Time with NAC on Biofilm Formation

The effect of NAC on biofilm formation was evaluated as described above, but the incubation
period was reduced. The samples were evaluated for biofilm viability and total biomass after 6, 12,
and 24 h of biofilm formation, with and without (control) NAC.

2.6. Evaluation of the Effect of NAC on Pre-Formed Biofilms

Biofilms of each strain were grown as described above, without NAC, for 48 h. After the first
24 h of incubation, 100 µL of each well sample was removed and 100 µL of fresh RPMId was added.
After 48 h, the biofilms were washed twice with PBS, and NAC at 100, 50, 25, and 12.5 mg/mL in
RPMId was added to the wells (200 µL) and incubated at 37 ◦C for 24 h. Controls received only RPMId
without NAC. After incubation, the biofilm viability (CFU/mL) and total biomass were evaluated as
described above.

2.7. Effect of NAC on the Composition of the Biofilm Matrix

In order to evaluate the effect of NAC on the composition of the biofilm matrix, biofilms of each
fungal strain were grown in triplicate in 24-well microtiter plates (Kasvi) using 2.5 mL of individual
fungal suspension in each well. NAC was added after the adhesion phase (50 and 12.5 mg/mL for
biofilm formation experiments) or after 48 h of biofilm growth (100 mg/mL for pre-formed biofilm
experiments, followed by incubation for 24 h), as described above. Biofilms were washed twice with
sterile 0.89% NaCl, and after the addition of 2.5 mL of 0.89% NaCl they were scraped using a pipette
tip for 1 min. The content of triplicate wells (7.5 mL) was transferred to a single Falcon tube (Kasvi):
100 µL was used for tenfold serial dilutions and plating on SDA (CFU/mL), and 100 µL was used for
biofilm dry weight assessment. The remainder volume (7.3 mL) was centrifuged (5500× g; 10 min; 4 ◦C),
and washed three times with 2 mL of sterile milliQ water. The supernatants were pooled (13.3 mL) and
the pellet was resuspended in 2 mL of milliQ water. Aliquots of the supernatant were used to quantify
the proteins (1.1 mL), water-soluble polysaccharides (WSPs, 3 mL), and eDNA (650 µL). The pellet
suspension was used to quantify the insoluble dry weight (500 µL), proteins (550 µL), alkali-soluble
polysaccharides (ASPs, 750 µL), and lipids (200 µL).
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2.7.1. Biofilm Dry Weight

Aliquots (100 µL) of the biofilm scraped were transferred to microtubes that had been previously
weighed. Samples were centrifuged (12,000 rpm; 15 min; 4 ◦C), the supernatant was discarded,
and 300 µL of 99% ethanol was added. Then, samples were vortexed and kept at −80 ◦C for 18 h.
Afterwards, the samples were centrifuged (12,000 rpm; 10 min; 4 ◦C), the supernatants were discarded,
and the pellets were washed three times with 70% ethanol and air dried at room temperature.
The microtubes were weighed again, and the difference between the weights was the biofilm dry
weight [46,47]. To weight the samples, a precision weighing balance, with five decimal places
(AUW 220D, Shimadzu, Tokyo, Japan), was used.

2.7.2. Insoluble Dry Weight

A 500 µL aliquot of the pellet suspension was transferred to a previously weighed piece of
aluminum foil. Each sample was dried at 100 ◦C, and then weighed again. The difference between the
weights was the insoluble dry weight.

2.7.3. Quantification of Soluble Proteins

A standard curve was prepared using bovine serum albumin (BSA; Sigma-Aldrich) at 0.0, 0.5,
1.0, 2.0, 4.0, 6.0, and 8.0 µg/mL in order to correlate protein concentrations with absorbance values
(Figure S1A). Aliquots of 500 µL from the biofilm supernatants and from each standard curve sample
were individually mixed with 500µL of Bradford reagent (Sigma-Aldrich) [48] in duplicate. After 20 min
mixing at 70 rpm, absorbance was measured at 595 nm.

2.7.4. Quantification of Insoluble Proteins

A 550 µL aliquot of the biofilm pellet suspension was heated at 100 ◦C for 90 min with mixing at
1,000 rpm, in order to extract its protein content. Then, 5 µL of the sample was added to 250 µL of
Bradford reagent (Sigma-Aldrich) [48] in duplicate. Standard curves of BSA at 0.0, 0.5, 1.0, 2.0, 4.0, 6.0,
and 8.0 µg/mL and at 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 mg/mL were also prepared. After 20 min
mixing at 70 rpm, the absorbances of the test and standard curve samples were measured at 595 nm.

2.7.5. Quantification of WSPs

A 3 mL aliquot of the biofilm supernatant was mixed with 7.5 mL of 99% ethanol. Samples were
vortexed and kept at −80 ◦C for 18 h to precipitate the polysaccharides. Then, samples were vortexed,
centrifuged (9500× g; 20 min; 4 ◦C), washed three times with 70% ethanol, and air dried at room
temperature. The pellets were individually resuspended in 1 mL of water, and the total carbohydrate
was quantified by the phenol-sulfuric acid method [49]. A standard curve using glucose at 0.00, 3.75,
6.25, 12.50, 25.00, 50.00, 75.00, 100.00, and 125.00 µg/mL was created (Figure S1B). Aliquots of 200 µL of
samples in triplicate and of each standard curve sample in duplicate were individually mixed with
200 µL of 5% phenol. Then, 1 mL of sulfuric acid was added to each sample. After 20 min, absorbance
was measured at 490 nm.

2.7.6. Quantification of ASPs

A 750µL aliquot of the biofilm pellet suspension was transferred to a previously weighed microtube.
Samples were then centrifuged (13,000× g; 10 min; 4 ◦C), the supernatants were discarded, and the
pellets were dried in a sample concentrator (RVC 2-18C D, Martin Christ Gefriertrocknungsanlagen
GmbH, Osterode, Germany) for 4.5 h and weighed. For ASP extraction, 300 µL of 1 N NaOH was
added for each 1 mg of the sample’s dry weight. After 2 h of incubation, samples were centrifuged
(13,000× g; 10 min), and the supernatants were individually collected. Another volume of 300 µL of 1 N
NaOH/(mg of dry weight) was added to the pellets, vortexed, and incubated for 2 h. After centrifugation,
the supernatant was collected and pooled with the previous supernatant. The same steps described
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were repeated with the pellet for a third time, but instead of being incubated for 2 h, samples were
vortexed and centrifuged. The last supernatant was pooled with the previous supernatants and the
pellet was discarded. Thereafter, three volumes of 99% ethanol were added to each sample, which was
incubated at −20 ◦C for 18 h for ASP precipitation. After this time, samples were centrifuged (13,000× g;
20 min; 4 ◦C), the supernatants were discarded, and the pellets were washed three times with 70%
ethanol as described for WSPs. The air-dried pellets were resuspended in the same volume of 1 N
NaOH and used for quantification of total carbohydrate by the phenol-sulfuric acid method [49],
as described for WSPs. A standard curve with 1 N NaOH and glucose at final concentrations of 0.00,
3.75, 6.25, 12.50, 25.00, 50.00, 75.00, 100.00, and 125.00 µg/mL was prepared (Figure S1C).

2.7.7. Quantification of eDNA

To extract eDNA from the samples, 650 µL of phenol:chloroform:isoamilic acid (25:24:1) was
added to an aliquot of 650 µL of each biofilm supernatant [50]. Then, the samples were centrifuged
(10,000 rpm; 5 min; 4 ◦C), and the supernatants were treated with chloroform:isoamilic acid (24:1).
After centrifugation, the supernatants were transferred to another tube, and three volumes of 99%
ethanol and 1/10 volume of 3 M sodium acetate were added. Samples were incubated at −20 ◦C for
18 h for DNA precipitation. The samples were then centrifuged (13,000× g; 20 min; 4 ◦C), and the
pellets were washed three times with 70% ethanol, air-dried, and resuspended in Tris-EDTA (TE) buffer.
The DNA concentration was measured in a nanospectrophotometer at 260 nm [50].

2.7.8. Quantification of Lipids

A 200 µL aliquot of the biofilm pellet suspension was centrifuged (13,000× g; 10 min; 4 ◦C),
the supernatant was removed, and the pellet was resuspended in 100 µL of 99% ethanol. Then, samples
were vortexed, and the lipids were quantified by sulfo-phospho-vanillin reaction [51]. A standard curve
using olive oil diluted in 99% ethanol at 0, 0.375, 0.750, 1.125, 2.250, 4.500, 7.500, and 9.750 mg/mL was
prepared (Figure S1D). Aliquots of 20 µL of each standard curve sample in duplicate were evaporated
by incubation at 70 ◦C for 15 min. Then, 200 µL of sulfuric acid was added to each experimental
sample and to each standard curve sample and vortexed. The test tubes were placed in boiling water
for 10 min, and cooled in cold water for 5 min. Afterwards, 10 mL of the phospho-vanillin reagent was
added to each tube, which was vortexed and incubated in boiling water for 15 min. The samples were
cooled, and after 30 min absorbance was measured at 540 nm.

2.8. Interaction of NAC with Antifungal Agents

The checkerboard microdilution method was used to evaluate the interaction of NAC with the
antifungal agents nystatin (polyene), fluconazole (azole), and caspofungin (echinocandin) against
planktonic cultures. Antifungal agents were purchased from Sigma-Aldrich and diluted (stock solutions)
in dimethylsulfoxide (DMSO; for fluconazole and nystatin) or RPMId (caspofungin). Each drug solution
was diluted 40× in the culture medium (RPMId) (work solution), so the final DMSO concentration
was 2.5%. Twofold serial dilutions of NAC (50 µL) (in RPMId) and antifungal agents (50 µL) were
distributed along the rows and columns, respectively, of a 96-well, U-bottom microtiter plate (Kasvi).
The final concentrations of the drugs for both strains are shown in Table 1. Aliquots of 100 µL of CaS or
CaR were added at the final concentration of 0.5–2.5×103 CFU/mL. The control consisted of fungal
inoculum with no drug (only the vehicle solution). After 24 h of incubation at 37 ◦C, the OD540 was
measured; the control and samples whose OD540 values were lower than the control were diluted
and plated on SDA for colony counting. The fractional inhibitory concentration index (FICI) was
determined by the sum of the FICI of each agent (FICI = FICINAC + FICIantifungal agent). The FICI
of each agent was calculated by dividing the MIC of the agent in combination by the MIC of the
agent alone (FICIA = MICA in the presence of B/ MICA alone). The interpretation of the FICI value was as
follows: FICI < 0.5, synergism; 0.5 ≤ FICI ≤ 4.0, no interaction; and FICI > 4.0, antagonism [52]. Due to
shortcomings of the FICI method [53], Bliss independence analysis [53–55] was performed, which is
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based on the idea that each drug acts independently following the probability of independent events.
This model is described by the equation: EIND = EA + EB − EA × EB for a combination of drug A at
concentration a with drug B at concentration b. EA is the percentage of growth inhibition observed
for drug A alone at concentration a, EB is the percentage of growth inhibition observed for drug B
alone at concentration b, and EIND is the expected percentage of growth inhibition of a non-interactive
association of drug A at a with drug B at b. The difference (∆E = EOBS − EIND) between the observed
percentage of growth inhibition (EOBS) and the expected one (EIND) defined the interaction of drugs
for each concentration as follows: Bliss synergism, when ∆E and its 95% confidence interval (CI)
were > 0; Bliss antagonism, when ∆E and its 95% CI were < 0; and Bliss independence, when 95%
CI of ∆E overlapped 0 [53–55]. The experiments were performed in three independent occasions,
FICI and Bliss independence analyses were performed for each combination of drugs for each occasion
with the OD540 values, and mean values of ∆E were used to produce a three-dimensional, interaction
surface plot, where peaks above the 0 correspond to synergism and valleys below the 0 correspond to
antagonism, while the 0 plane itself indicates no statistically significant interaction.

Table 1. Concentrations of drugs used in the checkerboard assay.

Drug CaS CaR

NAC (mg/mL) 25, 12.5, 6.25, 3.125, 1.562, 0.781, 0 25, 12.5, 6.25, 3.125, 1.562, 0.781, 0
Nystatin (µg/mL) 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.062, 0.031, 0.015, 0.007, 0 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.062, 0.031, 0.015, 0.007, 0

Fluconazole (µg/mL) 2, 1, 0.5, 0.25, 0.125, 0 125, 62.5, 31.25, 15.62, 7.81, 3.9, 1.95, 0.97, 0.48, 0
Caspofungin (µg/mL) 0.5, 0.25, 0.125, 0.062, 0.031, 0.015, 0.0075, 0.0038, 0 0.5, 0.25, 0.125, 0.062, 0.031, 0.015, 0.0075, 0.0038, 0

CaS: Candida albicans susceptible, and CaR: Candida albicans resistant.

Interaction of NAC with Caspofungin against Biofilms

Biofilms from each strain were cultured for 48 h, as described before (Section 2.6), then the
checkerboard assay was performed as described above. Only caspofungin was evaluated, since it was
the only antifungal agent that showed synergism with NAC against planktonic cultures (see Results
section). For both strains, the final concentrations of NAC (100µL) were 50, 25, 12.5, and 0 mg/mL, and of
caspofungin (100 µL) were 2, 1, 0.5, 0.25, 0.13, 0.06, 0.03, 0.02, 0.01, and 0 µg/mL. Controls received only
the drug vehicle solution. After incubation at 37 ◦C for 24 h, samples were washed twice with PBS and
the metabolic activity was evaluated by the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)
carbonyl]-2H-tetrazolium hydroxide (XTT; Sigma-Aldrich) colorimetric assay. The XTT was prepared
using ultrapure water at a concentration of 1 mg/mL and kept at −70 ◦C until needed. A menadione
solution (Sigma-Aldrich) was prepared in acetone at 0.007 g/mL just prior to each experiment. The XTT
solution prepared in all experiments consisted of PBS with 200 mM of glucose, XTT, and the menadione
solution in the following proportions: 158 µL, 40 µL, and 2 µL, respectively. An aliquot of 200 µL of the
XTT solution was added into each well with the biofilms, and incubated at 37 ◦C for 3 h. After this time,
aliquots of 100 µL of the XTT solution degradation product (supernatant) were transferred to the wells
of another 96-well, flat-bottom plate and absorbance was measured at 492 nm. Bliss independence
analysis was performed as described above and illustrated using interaction surface plots.

2.9. Confocal Laser Scanning Microscopy (CLSM)

Biofilm viability and matrix composition were also analyzed with a confocal laser microscope
(LSM 800 with Airyscan; Carl Zeiss, Germany). Biofilms were grown in duplicate in 24-well, flat-bottom
microtiter plates (Kasvi), as described above for pre-formed biofilms, treated with or without (control)
NAC at 100 mg/mL for 24 h, washed twice with PBS, stained according to the manufacturers’ instructions
for each fluorochrome, and then samples were washed once with PBS before being observed by confocal
laser scanning microscopy (CLSM).

For viability analysis, samples were stained with the Live/Dead BacLight Bacterial Viability kit
(Molecular Probes, Invitrogen Corp., Carlsbad, CA, USA). Syto9 and propidium iodide (excitation/emission
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at 488/488–550 nm and 488/656–700 nm, respectively) were diluted 1:1000 and incubated with the biofilm
for 45 min in the dark. For polysaccharides (α-D-mannosyl and α-D-glucosyl) [56], concanavalin
A-Alexa Fluor 594 (Molecular Probes) (561/600–700 nm) at 75 µg/mL was incubated with the biofilms
for 30 min. For β-glucans [57], Calcofluor White (Sigma-Aldrich) (405/450 nm) at 0.5 g/L in 10% KOH
was incubated with the biofilms for 10 min. For proteins [58], biofilms were incubated with FilmTracer
Sypro Ruby (Molecular Probes) (488/576–700 nm) in the dark for 30 min. For lipids [59], Nile Red
(Sigma-Aldrich) at 50 µg/mL prepared with 10 mL of 25% DMSO/H2O was incubated with the biofilm
for 10 min (488/563 nm for neutral lipids and 561/613–700 nm for polar lipids). In order to distinguish
the red fluorescence of Nile Red from the polar lipids, the green color was chosen for neutral lipids as
an alternative to orange color.

For each image, biofilm thickness was determined with z-stack readings at 1 µm. Quantification
of each matrix component was estimated by the fluorescence intensity generated by each fluorochrome.
For each biofilm sample (n = 2), 5 random fields were measured, totaling 10 fields for both duplicates.

2.10. Statistical Analysis

The MIC/MFC and biofilm assays were performed in quadruplicate on three different occasions
(n = 12 for each group). The values of CFU/mL were log10 transformed and outliers were removed.
For the matrix composition of biofilms, the sample size (α = 5%, power = 80%) was calculated using
MedCalc software (version 19.1; MedCalc Software, Mariakerke, Belgium), resulting in n = 6. For each
assay, data obtained were rated according to their original volume (biofilm supernatant or biofilm
pellet suspension). Biofilm dry weight was used to normalize the data from WSPs, soluble proteins,
and eDNA, while insoluble dry weight was used to normalize the data from ASPs, lipids, and insoluble
proteins. Normal distribution and homoscedasticity of data were evaluated by Shapiro–Wilk and
Levene tests, respectively. Data were analyzed by two-way ANOVA (with strain and treatment as
independent variables). For homoscedastic data, a post-hoc Tukey test was used. When data were
heteroscedastic, they were evaluated by a post-hoc Games–Howell test. The level of significance was
5% and SPSS software (version 20.0; SPSS Inc., Chicago, IL, USA) was used. Data from the checkerboard
assays and CLSM were analyzed as previously described.

3. Results

3.1. Antifungal Evaluation of NAC

The MIC of NAC was 25 mg/mL after 24 h and 48 h for both strains. After 24 h, a significant
interaction (p < 0.001) was found between the strain and the treatment (Figure 1A), while after 48 h,
no interaction (p = 0.915) was observed, but a significant effect (p ≤ 0.04) was verified for both the
treatment (Figure 1B) and the strain (mean ± SD of 0.98 ± 0.79 au, for CaS and 0.79 ± 0.74 au for CaR).
No MFC was found, since no concentration of NAC inhibited the colony growth of the strains. However,
significant reduction of fungal viability was observed. After 24 h, there was a significant interaction
(p = 0.008) between the strain and the treatment. NAC at 50 and 25 mg/mL reduced (p < 0.001) the
viability of CaS by 4.06 and 2.25 log10, respectively, and of CaR by 2.98 and 1.81 log10, respectively.
Conversely, NAC at 12.5 mg/mL increased (p ≤ 0.041) the fungal viability by 0.34 and 0.57 log10 for CaS
and CaR, respectively (Figure 1C). After 48 h of incubation with NAC, two-way ANOVA demonstrated
a significant interaction (p = 0.001) between the strain and the treatment. Only the concentration of
50 mg/mL reduced (p < 0.001) the viability of CaS by 2.26 log10 (Figure 1D), while NAC at 50 and
25 mg/mL reduced (p < 0.001) the colony growth of CaR by 3.26 and 0.46 log10, respectively.
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with NAC at concentrations lower than the MIC (subMIC). NAC at 25 and 50 mg/mL inhibited fungal 
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growth. 

 

Figure 1. Mean optical density (OD) values obtained for (A) 24 h minimum inhibitory concentration
(MIC) against Candida albicans susceptible (CaS) and Candida albicans resistant (CaR) and for (B) 48 h
MIC against CaS and CaR; mean log10(CFU/mL) values for (C) 24 h CaS and CaR and (D) for 48 h CaS
and CaR. Error bars: standard deviation (n = 12). Different capital letters (A, B, C) on the top of the
bars denote a significant difference (p < 0.05) among the N-acetylcysteine (NAC) concentrations for the
same strain, and different lowercase (a, b) letters denote a significant difference (p < 0.05) between the
strains for the same NAC concentration. In the same way, similar capital letters on the top of the bars
denote no significant difference (p ≥ 0.05) among the groups for the same strain, and similar lowercase
letters denote no significant difference (p ≥ 0.05) between the strains for the same NAC concentration.

3.2. Time-Kill Curves

For both strains, OD540 values increased after 6 h (Figure 2) for control samples and those treated
with NAC at concentrations lower than the MIC (subMIC). NAC at 25 and 50 mg/mL inhibited
fungal growth during the 24 h incubation, but after 22 h the samples treated with 25 mg/mL NAC
showed a slight increase in the OD540 values. Compared with the controls (no NAC), samples with
NAC at subMIC demonstrated higher OD540 values, suggesting that these concentrations increased
fungal growth.

3.3. Evaluation of the Effect of NAC on Biofilm Formation

The results of viability assessments demonstrated a significant interaction (p < 0.001) between the
strain and the treatment. Compared with the controls, NAC at 100 and 50 mg/mL inhibited (p ≤ 0.005)
biofilm formation by 1.63 and 1.42 log10 for CaS, respectively, and by 2.77 and 1.52 log10 for CaR,
respectively (Figure 3A). However, NAC at 12.5 mg/mL increased the biofilm formation of CaS by
0.73 log10 (p = 0.01).
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When total biomass was evaluated, there was significant interaction (p < 0.001) between the strain
and the treatment. NAC at 100, 50, and 25 mg/mL reduced (p < 0.001) the biofilm formation of CaS
by 65.13, 88.70, 77.33%, respectively, compared with the control. For CaR, only NAC at 100 mg/mL
reduced the total biomass of biofilms, by 63.62% (p = 0.003) (Figure 3B).

3.4. Effect of Incubation Time with NAC on Biofilm Formation

At the late stage (24 h) of biofilm formation in the presence of NAC, two-way ANOVA showed
a significant interaction (p = 0.001) between the strain and the treatment. Only NAC at 100 mg/mL
inhibited (p < 0.001) the CaS viability, by 1.98 log10, during biofilm formation (Figure 3C). For CaR,
NAC at 100 and 50 mg/mL reduced (p < 0.001) the fungal viability by 1.71 and 1.09 log10, respectively
(Figure 3C). For the total biomass, a significant interaction (p = 0.015) was found between the strain
and the treatment. NAC at 100 and 50 mg/mL reduced the CaS total biomass by 85.62 and 58.79%
(p ≤ 0.002), respectively, and for CaR only NAC at 100 mg/mL reduced the total biomass, by 52.63%
(p = 0.041) (Figure 3D).

When biofilm formation was evaluated during the middle stage (12 h), a significant interaction
was observed between the strain and the treatment for viability (p = 0.004) and total biomass (p = 0.014).
NAC at 100 and 50 mg/mL reduced the CaS viability by 0.87 and 0.62 log10 (p ≤ 0.001), respectively,
and the CaR viability by 0.94 and 1.42 log10 (p ≤ 0.008), respectively (Figure 3E). These concentrations
also reduced the total biomass of CaS biofilm by 67.13 and 69.42% (p < 0.001), respectively, and of CaR
biofilm by 60.42 and 62.11% (p ≤ 0.003), respectively (Figure 3F).

At the early stage (6 h) of biofilm formation, there was also a significant interaction between
the strain and the treatment for viability (p = 0.022) and total biomass (p < 0.001). NAC at 100 and
50 mg/mL inhibited the CaS viability by 1.10 and 1.09 log10 (p < 0.001), respectively (Figure 3G), and the
CaR viability by 1.34 and 1.56 log10 (p < 0.001), respectively. Moreover, NAC at 25 mg/mL also reduced
(p < 0.001) the CaR viability by 0.70 log10 compared with the control (Figure 3G). For the total biomass
after 6 h, NAC at 100, 50, and 25 mg/mL inhibited the biofilm formation by 77.37, 81.47, and 39.98%,
respectively, for CaS (p ≤ 0.006), and by 86.28, 87.35, and 79.77%, respectively, for CaR (p < 0.001)
(Figure 3H).
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Figure 3. Mean log10(CFU/mL) and absorbance (total biomass) values for CaS and CaR obtained during
biofilm formation in the presence of NAC at 48 h (A,B), 24 h (C,D), 12 h (E,F), and 6 h (G,H). Error bars:
standard deviation (n = 12). Different capital letters (A, B, C) on the top of the bars denote a significant
difference (p < 0.05) among the NAC concentrations for the same strain, and different lowercase (a, b)
letters denote a significant difference (p < 0.05) between the strains for the same NAC concentration.
In the same way, similar capital letters on the top of the bars denote no significant difference (p ≥ 0.05)
among the groups for the same strain, and similar lowercase letters denote no significant difference
(p ≥ 0.05) between the strains for the same NAC concentration.
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3.5. Evaluation of the Effect of NAC on Pre-Formed Biofilms

When viability was assessed, a significant interaction (p < 0.001) between the strain and the
treatment was verified. Only NAC at 100 mg/mL decreased (p < 0.001) the CaS biofilm, by 1.14 log10,
compared with the control (Figure 4A). For CaR, NAC at 100, 50, and 25 mg/mL reduced (p ≤ 0.025) the
CFU/mL values by 2.30, 1.26, and 0.64 log10, respectively (Figure 4A). Conversely, NAC at 12.5 mg/mL
increased (p < 0.001) the viability of CaS biofilm by 0.26 log10. The findings of the biofilm total biomass
evaluation also demonstrated a significant interaction (p < 0.001) between the strain and the treatment.
Only NAC at 100 mg/mL decreased (p < 0.001) the CaS total biomass, by 73.69%. For CaR, NAC at
100, 50, and 25 mg/mL decreased (p ≤ 0.026) its total biomass by 69.28, 63.54, and 47.53%, respectively
(Figure 4B).
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Figure 4. Mean log10(CFU/mL) (A) and absorbance (total biomass) values (B) for CaS and CaR obtained
for pre-formed biofilm in the presence of NAC. Error bars: standard deviation (n = 12). Different
capital letters (A, B, C) on the top of the bars denote a significant difference (p < 0.05) among the NAC
concentrations for the same strain, and different lowercase (a, b) letters denote a significant difference
(p < 0.05) between the strains for the same NAC concentration. In the same way, similar capital letters
on the top of the bars denote no significant difference (p ≥ 0.05) among the groups for the same strain,
and similar lowercase letters denote no significant difference (p ≥ 0.05) between the strains for the same
NAC concentration.

3.6. Effect of NAC on the Composition of the Biofilm Matrix

When pre-formed biofilms of CaS and CaR were treated with NAC, two-way ANOVA
demonstrated no significant interaction (p = 0.837) between the strain and the treatment for viability,
and a significant effect was observed only for the treatment (p < 0.001). NAC at 100 mg/mL decreased
(p < 0.001) the pre-formed biofilms by 0.60 log10 (Figure 5A). For biofilm formation in the presence
of NAC, a significant interaction between the strain and the treatment was observed (p < 0.001) for
viability. While NAC at 50 mg/mL reduced (p ≤ 0.01) the fungal viability by 0.78 and 1.36 log10 for
CaS and CaR, respectively (Figure 5B), NAC at 12.5 mg/mL increased (p < 0.001) the CaS viability by
0.33 log10.

3.6.1. Biofilm Dry Weight

For pre-formed biofilms, there was no significant interaction (p = 0.803) between the strain and the
treatment, and a significant effect was found only for the treatment (p = 0.004). Biofilms treated with
NAC at 100 mg/mL showed a significant (p = 0.003) reduction of dry weight by 6.38 mg (Figure 5C).
For the biofilm formation analysis, no significant interaction (p = 0.23) was found between the strain
and the treatment, but a significant effect (p < 0.001) was observed for both the strain and treatment.
The biofilm dry weight of CaS (mean ± SD of 25.42 ± 19.42 mg) was higher (p < 0.001) than that of
CaR (19.42 ± 9.79 mg). NAC at 50 mg/mL reduced (p < 0.001) the biofilm dry weight by 12.13 mg,
while NAC at 12.5 mg/mL increased (p < 0.001) the biofilm dry weight by 11.13 mg (Figure 5D).
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3.6.2. Insoluble Dry Weight

No interaction (p = 0.428) between the strain and the treatment was observed for pre-formed
biofilms, and only treatment was a significant factor (p = 0.034). NAC at 100 mg/mL decreased the
insoluble dry weight (p = 0.037) by 3.03 mg (Figure 5E). For the biofilm formation analysis, a significant
interaction (p < 0.001) was verified between the strain and the treatment. NAC at 50 mg/mL decreased
the insoluble dry weight only for CaR (p = 0.004), by 3.33 mg (Figure 5F), while 12.5 mg/mL NAC
increased the insoluble dry weight during biofilm formation of CaS (p = 0.001) by 2.29 mg (Figure 5F).
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Figure 5. Mean log10(CFU/mL) values for pre-formed biofilm (A) and for biofilm formation (B). Mean values
of biofilm dry weight of pre-formed biofilms (C) and for biofilm formation (D). Mean values of insoluble
dry weight of pre-formed biofilm (E) and for biofilm formation (F). Error bars: standard deviation
(n = 6). Different capital letters (A, B, C) on the top of the bars denote a significant difference (p < 0.05)
among the NAC concentrations for the same strain, and different lowercase (a, b) letters denote
a significant difference (p < 0.05) between the strains for the same NAC concentration. In the same way,
similar capital letters on the top of the bars denote no significant difference (p ≥ 0.05) among the groups
for the same strain, and similar lowercase letters denote no significant difference (p ≥ 0.05) between the
strains for the same NAC concentration.
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3.6.3. Quantification of Soluble Proteins

Two-way ANOVA showed a significant interaction (p = 0.045) between the strain and the
treatment for pre-formed biofilms. NAC at 100 mg/mL decreased (p = 0.036) soluble proteins of CaS by
95.62 µg/mL, but not of CaR (p = 0.217) (Figure 6A). For the biofilm formation analysis, a significant
interaction (p = 0.015) was found between the strain and the treatment. However, no significant
difference (p ≥ 0.084) between control and NAC at 50 and 12.5 mg/mL was observed for either strain
(Figure 6B).

3.6.4. Quantification of Insoluble Proteins

In this assay, some samples treated with 100 and 50 mg/mL NAC for pre-formed biofilms and
biofilm formation, respectively, showed OD595 values below the lowest point on the standard curve.
However, the samples’ concentrations were calculated based on the standard curve, which was used to
calculate the original sample volume. However, the data showed a wide variation, and a statistical
inference could not be made (Figure S2).

3.6.5. Quantification of WSPs

For pre-formed biofilm, there was a significant interaction between the strain and the treatment
(p = 0.003). NAC at 100 mg/mL decreased WSPs (p ≤ 0.017) by 2696.19 and 798.15 µg/mL for CaS and
CaR, respectively (Figure 6C). For the biofilm formation analysis, no significant interaction (p = 0.056)
was found between the strain and the treatment, but a significant effect was verified for the strain
(p = 0.001) and for the treatment (p = 0.015). The level of WSPs for CaS biofilms (mean ± SD of
1468.16 ± 1471.80 µg/mL) was higher than that for CaR biofilms (325.25 ± 169.63 µg/mL). No significant
difference (p ≥ 0.097) was observed between biofilms treated with NAC and the control (Figure 6D).

3.6.6. Quantification of ASPs

For pre-formed biofilm, no significant interaction was observed between the strain and the
treatment (p = 0.858), and neither of the main factors showed a significant effect (p ≥ 0.106, mean ± SD
of 1099.57 ± 103.15 and 1677.94 ± 461.99 µg/mL for CaS and CaR, respectively, treated with 100 mg/mL
NAC; and 1401.34 ± 968.14 and 2117.98 ± 1571.12 µg/mL for controls CaS and CaR, respectively).
However, for the biofilm formation analysis, a significant interaction was found between the strain
and the treatment (p = 0.024). NAC at 50 mg/mL reduced (p = 0.035) ASPs by 1538.16 µg/mL only for
CaR (Figure 6E).

3.6.7. Quantification of eDNA

Two-way ANOVA demonstrated no significant interaction between the strain and the treatment
(p = 0.152) for pre-formed biofilm, and only the treatment was a significant factor (p = 0.021). NAC at
100 mg/mL reduced the eDNA (p = 0.028) in 1008.73 ηg/µL (Figure 6F). For the biofilm formation
analysis, there was no significant interaction between the strain and the treatment (p = 0.269), and only
the strain was a significant factor (p = 0.01). CaS showed higher (p = 0.017) values of eDNA (mean ± SD
of 2915.18 ± 1718.37 ηg/µL) than CaR (1354.24 ± 529.91 ηg/µL).

3.6.8. Quantification of Lipids

For pre-formed biofilms, no significant interaction between the strain and the treatment (p = 0.245)
was verified, and neither of the main factors demonstrated a significant effect (p ≥ 0.661, mean ± SD of
33.62 ± 6.23 and 37.24 ± 8.12 mg/mL for CaS and CaR, respectively, treated with 100 mg/mL NAC;
and 36.98 ± 14.51 and 29.92 ± 12.72 mg/mL for controls CaS and CaR, respectively). For biofilm
formation analysis, no significant interaction was observed between the strain and the treatment
(p = 0.051), but both main factors showed a significant effect (p ≤ 0.036). CaR showed higher (p = 0.036)
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values of lipids (mean ± SD of 36.27 ± 29.03 mg/mL) than CaS (23.33 ± 12.33 mg/mL). NAC at 50 mg/mL
showed higher (p < 0.001) values of lipids than 12.5 mg/mL NAC and the control (Figure 6G).Microorganisms 2020, 8, x FOR PEER REVIEW 15 of 28 
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Figure 6. Mean values of soluble protein concentration of pre-formed biofilm (A) and biofilm formation
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alkali-soluble polysaccharides (ASPs) from biofilm formation (E); eDNA of pre-formed biofilm (F) and
lipids from biofilm formation (G). Error bars: standard deviation (n = 6). Different capital letters (A, B)
on the top of the bars denote a significant difference (p < 0.05) among the NAC concentrations for the
same strain, and different lowercase (a) letters denote a significant difference (p < 0.05) between the
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denote no significant difference (p ≥ 0.05) among the groups for the same strain, and similar lowercase
letters denote no significant difference (p ≥ 0.05) between the strains for the same NAC concentration.
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3.7. Interaction of NAC with Antifungal Agents

The MICs of nystatin, fluconazole, and caspofungin for CaS were 2, 0.5, and 0.25µg/mL, respectively,
and for CaR were 2, 125, and 0.5 µg/mL, respectively. The FICI method showed synergism of NAC only
with caspofungin for CaS, with FICI values of 0.245 (3.125 mg/mL NAC with 0.015 µg/mL caspofungin)
and 0.373 (3.125 mg/mL NAC with 0.031 µg/mL caspofungin), and reductions of viability from 1.15 to
1.28 log10, respectively (Figure S3). However, the Bliss independence analysis demonstrated antagonism
of NAC with nystatin for CaS (Figure 7A, CI from −0.6803–−0.0003 to −1.6437–−1.0301 for NAC at all
concentrations with 2 µg/mL nystatin) and CaR (Figure 7B, CI from−0.2059–−0.0398 to−1.2331–−0.5081
for NAC at 25 and 6.25 mg/mL, respectively, with 2 µg/mL nystatin). For CaS, synergism was observed
for NAC at 1.56 mg/mL with fluconazole at 0.125 µg/mL (Figure 7C, CI 0.0084–0.1115). For CaR,
synergism was observed with NAC at 0.78 mg/mL with fluconazole at 15.62, 7.81, 0.97, and 0.48 µg/mL
(Figure 7D, CI from 0.0684–0.1808 to 0.0720–0.3834), but antagonism was also observed for NAC at
6.25 mg/mL with fluconazole at 1.95 µg/mL (CI −0.2277–−0.0340). Synergism with higher values of
mean ∆E was observed for CaS when NAC at 6.25 and 3.125 mg/mL was associated with caspofungin
from 0.062 to 0.015 µg/mL (Figure 7E, CI from 0.0141–0.1560 to 0.0892–2.2102). For CaR, synergism was
also verified with NAC at 3.125 and 1.56 mg/mL associated with 0.25 µg/mL caspofungin (Figure 7F,
CI from 0.0035–0.1328 to 0.6138–0.6496). Bliss independence analysis was not performed for CFU/mL
data, because only samples with OD540 values lower than the control were plated (Figure S3).Microorganisms 2020, 8, x FOR PEER REVIEW 17 of 28 
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Peaks above the 0 correspond to synergism and valleys below the 0 correspond to antagonism, while
the 0 plane itself indicates no statistically significant interaction. Each experiment was performed in
three independent occasions.

Interaction of NAC with Caspofungin against Biofilms

All concentrations of caspofungin alone (with NAC at 0 mg/mL) resulted in the highest values
of metabolic activity for biofilms of both strains. Therefore, FICI was not calculated. NAC alone at
50 and 25 mg/mL (with caspofungin at 0 µg/mL) reduced the metabolic activity of CaS biofilms by
37.37% and 24.44%, respectively, and of CaR biofilms by 59.29% and 57.69%, respectively. NAC at
12.5 mg/mL with caspofungin at 0.03 µg/mL reduced the metabolic activity of CaS and CaR biofilms
by 85.05% and 49.45%, respectively. The Bliss independence analysis showed antagonism for CaS
(Figure 8A, CI from −0.1421–−0.1391 to −1.1360–−0.8701), but synergism for CaR (Figure 8B, CI from
0.0257–0.0408 to 0.1698–0.4252).
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3.8. CLSM

CLSM images (Figures 9 and 10) showed that biofilms treated with NAC were thinner than those of the
controls for viability, polysaccharide, lipid, and protein experiments for both strains, with the exception
of CaS viability (Table 2). When fluorescence intensity was quantified (Table 2), control biofilms showed
higher values compared with biofilms treated with NAC for living cells, polysaccharides (α-D-mannosyl
and α-D-glucosyl), and polar lipids for both strains; it also demonstrated a higher intensity of dead
cells when biofilms were treated with NAC. Conversely, for polysaccharides (β-glucans), proteins,
and neutral lipids, the fluorescence intensities of control biofilms were lower than those treated with
NAC for CaS, while CaR showed lower values for the biofilms treated with NAC.

Table 2. Thickness values and fluorescence quantification (mean ± standard deviation) determined
from CLSM of CaS and CaR biofilms labeled with different fluorochromes.

Fluorochromes

Thickness (µm) Fluorescence Intensity

CaS CaR CaS CaR

Contr. NAC Contr. NAC Contr. NAC Contr. NAC

S9
24.00 24.00 24.00 20.00

77.68 ± 18.47 45.86 ± 5.16 74.74 ± 9.96 38.85 ± 15.64
PI 13.22 ± 5.65 28.64 ± 6.06 6.04 ± 1.03 55.06 ± 18.52

Conc 36.00 30.00 18.00 12.00 105.99 ± 15.09 89.22 ± 11.86 78.82 ± 21.11 40.83 ± 14.44
CalcW 34.38 23.04 34.38 30.56 100.33 ± 30.68 125.12 ± 27.71 178.29 ± 9.86 23.34 ± 6.91

SR 51.92 23.60 47.2 23.60 25.70 ± 7.33 49.16 ± 10.36 70.42 ± 14.40 56.25 ± 19.30
NRp

40.00 28.00 37.76 28.32
44.85 ± 15.70 37.01 ± 11.12 148.14 ± 12.66 16.51 ± 4.29

NRn 69.62 ± 21.39 74.75± 21.50 107.62 ± 8.00 15.59 ± 2.51

Fluorochrome abbreviations and respective definitions: Syto 9 (S9) for live cells; Propidium Iodide (PI) for dead cells;
Concanavalin (Conc) for α-D-mannosyl and α-D-glucosyl; Calcofluor White (CalcW) for β-glucans; Sypro Ruby
(SR) for proteins; Nile Red for polar lipids (NRp) and Nile Red for neutral lipids (NRn). Contr.: Control (no NAC).
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Figure 9. Confocal laser scanning microscopy (CLSM) images obtained for pre-formed CaS biofilm
labeled with Syto9 (A,D, living cells) and propidium iodide (B,E, dead cells) for viability (C,F, overlap),
without (A–C) and with NAC (D–F); concanavalin A-Alexa Fluor 594 (G,J, α-D-mannosyl and -glucosyl
polysaccharides), Calcofluor White (H and K, β-glucans polysaccharide), and Sypro Ruby (I,L, proteins),
without (G–I) and with NAC (J–L); and Nile Red (M–R, lipids) without (M–O) and with NAC (P–R)
(O,R, overlap).
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Figure 10. CLSM images obtained for pre-formed CaR biofilm labeled with Syto9 (A and D, living
cells) and propidium iodide (B,E, dead cells) for viability (C,F, overlap), without (A–C) and with NAC
(D–F); concanavalin A-Alexa Fluor 594 (G,J, α-D-mannosyl and -glucosyl polysaccharides), Calcofluor
White (H and K, β-glucans polysaccharide), and Sypro Ruby (I,L, proteins), without (G–I) and with
NAC (J–L); and Nile Red (M–R, lipids) without (M–O) and with NAC (P–R) (O,R, overlap).
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4. Discussion

Our investigation demonstrated that NAC showed the same MIC (25 mg/mL) for CaS and CaR,
an important finding in the current battle against antimicrobial resistance. Although we did not
evaluate the target of NAC in the fungal cell to explain its fungicidal action, one of the limitations of our
study, we suggest that NAC may act on the polysaccharides of the fungal cell wall, which is composed
of mannan, glucan and chitin [4]. Such hypothesis is supported by our findings from the matrix
components assays (reduction of soluble polysaccharides) and may also explain the same susceptibility
of both fluconazole-resistant and -susceptible strains to NAC. Although other studies have shown
an antifungal effect of NAC against C. albicans, only clinical isolates were used [37,40,41] and only
one study reported that the strains were susceptible to ketoconazole [41]. Therefore, the present
investigation may be the first to report the antifungal effect of NAC on a resistant strain of C. albicans.
Moreover, this investigation evaluated reference strains since, as was observed by Alnuaimi et al.
(2013) [60], reference strains have higher biofilm growth activity than clinical isolates, which is important
for an in vitro evaluation before an in vivo evaluation. The studies mentioned above showed NAC
MIC values of 40, 20, and 16.5 mg/mL against clinical isolates of C. albicans using the macrodilution
and agar dilution methods [40,41]. The differences between the results of our investigation and those
of the mentioned studies [35,36] may be ascribed to the different stock concentrations of NAC and the
strains used. In all these investigations, the MIC values were close to the NAC stock concentrations
used, which demonstrates that high concentrations are needed for a fungistatic effect. However,
a fungicidal effect (MFC) was not observed in our investigation, since none of the concentrations
of NAC inhibited colony growth. Another study showed that NAC at 160 mg/mL inhibited 99.9%
of fungal growth [41]. However, inhibition of microbial growth should be evaluated by logarithm,
since only 1 log of reduction is the same as a 99% decrease. According to the American Society for
Microbiology, an agent is considered as antimicrobial when it reduces the microbial growth by at least
3 log [61]. In the present investigation, significant reductions from 1.81 to 4.06 log were observed.
Therefore, although an MFC was not found, NAC was effective in reducing the fungal viability of
both strains.

The time-kill curves showed that NAC at the MIC or higher concentrations reduced the fungal
growth after 24 h; this was more evident after 6–10 h. Another study also verified that NAC at
80 mg/mL decreased C. albicans viability after 24 h, while lower concentrations resulted in an increase
of fungal viability after 2–4 h [40]. The present investigation also found an increase of fungal growth
when NAC was used at subMIC levels. NAC is a precursor of glutathione, an essential metabolite for
C. albicans; at low concentrations NAC may provide glutathione to C. albicans, which is metabolized
via γ-glutamylcysteine synthetase—GCS1 [62]. Thus, the results suggest that NAC at subMIC levels
may stimulate fungal growth, but this in vitro finding cannot be extrapolated to the clinical scenario.

As a preventive strategy to control biofilm development, NAC was added during biofilm formation.
NAC at concentrations higher than the MIC inhibited biofilm formation for both strains tested, reducing
both the viability and the biomass of the biofilms. This result was not surprising, since the MIC
assay demonstrated that these concentrations were fungistatic. Another study showed a reduction of
biofilm formation in clinical C. albicans isolates using NAC at subMIC [41]. However, in this study,
NAC at subMIC (12.5 mg/mL) showed a similar result to the control biofilm (without NAC) for CaR,
while NAC at 12.5 mg/mL increased biofilm viability for CaS. These findings confirm that NAC at
low concentrations may have an opposite effect to an antimicrobial agent. When the incubation time
was evaluated, NAC at the MIC (25 mg/mL) reduced biofilm formation of CaR at the early stage (6 h),
while NAC at concentrations higher than the MIC decreased the biofilm formation at all stages (6, 12,
and 24 h) of both strains, except for the viability of CaS biofilms incubated with 50 mg/mL NAC for
24 h. Although NAC at the MIC was not evaluated for the intermediate–late stages (12 and 24 h),
the findings observed in the incubation time assay corroborated those found for 48 h biofilm formation,
in which only NAC at 100 and 50 mg/mL reduced biofilm formation.
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As NAC is a mucolytic agent, it was tested against pre-formed biofilms as a therapeutic strategy
for disrupting biofilms. Only NAC at 100 mg/mL reduced the viability and biomass of CaS biofilm,
while other concentrations (50, and 25 mg/mL, as well as 100 mg/mL) could also decrease the viability
and biomass of CaR biofilm. Therefore, NAC was more effective for pre-formed biofilms of CaR.
Other studies also have observed a reduction of the viability and biomass of pre-formed biofilms after
treatment with NAC [37,41]. However, these studies did not evaluate resistant strains. The present
investigation also demonstrated a significant increase in the biofilm viability when NAC was used
at 12.5 mg/mL. However, clinical isolates may have a different susceptibility response. Therefore,
since we did not evaluate clinical isolates, it may be a limitation of our study.

A novel aspect of this investigation is the evaluation of the effect of NAC on the matrix composition
of fungal biofilms. Before the quantification of the matrix components, the viability of biofilms treated
(pre-formed biofilms) and grown with NAC (biofilm formation in the presence of NAC) was evaluated.
The reductions observed for pre-formed biofilms treated with NAC at 100 mg/mL was lower than those
observed in the previous assay using 96-well microtiter plate (see Section 3.5). Probably the larger
area of 24-well microtiter plate and volume of fungal inoculum used in the matrix assays could have
improved the biofilm grown and reduced its susceptibility to NAC. On the other hand, for biofilm
formation, the reductions observed in the presence of NAC at 50 mg/mL and the increase of CaS with
NAC at 12.5 mg/mL agreed with those found the previous assay (see Section 3.3). The results also
showed that NAC reduced the soluble components of the biofilm matrix (soluble proteins for CaS,
and WSPs and eDNA for both strains) for pre-formed biofilms, but not for biofilm formation. Other
investigations have evaluated the effect of NAC only on the extracellular polysaccharides of the biofilm
supernatant (WSPs) of bacterial strains [31,38]. In those studies, NAC inhibited WSP production at
lower concentrations (0.5 and 1 mg/mL) than those needed for viability inhibition [31,38]. In this
study, only concentrations of NAC higher than the MIC were used to evaluate the matrix components,
since NAC at subMIC did not reduce biofilm formation and pre-formed biofilms in the previous assays.
Thus, NAC at subMIC would be effective in reducing the WSPs only for bacterial biofilms. Although
NAC reduced the viability, the biofilm dry weight, and the insoluble dry weight of both pre-formed
biofilms and of biofilms during their formation in the present investigation, it was able to reduce the
soluble components of the matrix only for pre-formed biofilm. NAC had no effect on the soluble
components during biofilm formation. This result suggests that NAC is able to disrupt pre-formed
biofilms by acting on their soluble components, but does not interfere in the synthesis of the matrix
components during biofilm formation.

NAC was ineffective in reducing most water-insoluble components (ASPs and lipids), with the
exception of the ASPs of CaR during biofilm formation. A previous study evaluated the effect of
an antifungal agent (fluconazole) on the biofilm matrix of the same resistant strain used in the present
investigation. Using the same methodology to quantify the matrix compounds, the authors observed
reduction of WSPs and biomass (total dry weight) for all strains evaluated, and reduction of ASPs only
for CaS [63]. Another investigation demonstrated higher values of ASPs than WSPs from biofilms
of CaS treated with fluconazole and nystatin [64]. All these findings demonstrate that the insoluble
components of the biofilm matrix may be less susceptible to antibiofilm approaches.

The CLSM analysis corroborated, in part, the biochemical quantification assays of the matrix
components. Biofilms treated with NAC showed a lower thickness than the control biofilms, except for
those of CaS stained with Live/Dead (for viability analysis). This unexpected result may be ascribed
to the dense cells observed for biofilms of CaS (Figure 9) compared with those of CaR (Figure 10),
which may hinder the penetration of NAC into the CaS biofilm. Moreover, the fluorescence intensity
results for biofilms treated with NAC also showed lower values than for the control biofilms, except for
polysaccharides (β-glucans), proteins, and neutral lipids of CaS biofilms. These exceptions may
be justified by the insolubility of these components in water, as observed in the matrix-component
quantification assays. However, beyond the lower thickness of samples treated with NAC, the images
clearly show more “black spaces” in the samples treated with NAC compared with controls. In addition,
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hyphae were observed only in biofilms stained with Sypro Ruby (proteins). Since the biofilms were
grown with an RPMI-based medium, it was expected that we would observe a predominance of hyphae
in the samples. It is likely that the supplementation of the medium with glucose and the staining
procedure used for the other chromophores may have influenced the yeast morphology of C. albicans.
Another study also used Calcofluor White and Sypro Ruby to evaluate, respectively, the architecture
and the permeability of the biofilms of two types of C. albicans: a heterozygous strain of the mating
type locus (MTL; a/α cells) and an MTL-homozygous strain (a/a cells). Although biofilms formed by
both kind of cells showed similar architecture, a/α biofilms showed pathogenic traits of impermeability,
impenetrability by human phagocytic leukocytes, and fluconazole-resistance, while a/a biofilms did
not show these traits [65].

According to Nett et al. (2007) [66] and Zarnowski et al. (2014) [12], the WSP comprises the α-mannans,
and the ASP comprises 1,6-β-glucan and 1,3-β-glucan. Mannan is indicated as the most abundant
polysaccharide in the fungal biofilm matrix, comprising approximately 87% of the polysaccharide,
followed by 1,6-β-glucan at 13%, and a tiny percentage of 1,3-β-glucan, which together give rise to
the mannan-glucan complex (MGC) [12]. Another investigation suggested that the stability of each
matrix polysaccharide (α-mannans, 1,6-β-glucan, and 1,3-β-glucan) is responsible for maintaining
the MGC, which is crucial for biofilm resistance [67]. Moreover, the 1,3-β-glucan in the biofilm is
also responsible for drug sequestration and fluconazole resistance [66,68]. Consequently, a reduction
in any polysaccharide of the matrix may increase the susceptibility of the biofilm to antifungal
agents. When the enzyme 1,3-β-glucanase was used against C. albicans, a reduction in the viability
of the biofilm but not the planktonic culture was observed [66]. Moreover, other enzymes promoted
detachment of C. albicans biofilms from a polystyrene surface, such as proteinase K, chitinase, DNAse
I, β-N-acetylglucosaminidase, and lyticase, while lipase type II, phospholipase A2, and protease
type XIV did not [13]. Lyticase, which also hydrolases 1,3-β-glucan, caused the greatest reduction of
the biofilms [13].

When associated with antifungal agents, NAC showed greater synergism with caspofungin
for planktonic cultures, which may be explained by the similar mechanism of action of the two
drugs. Since caspofungin inhibits 1,3-β-D-glucan synthase, an enzyme necessary for the synthesis of
an important fungal cell-wall polysaccharide [69], and NAC is reported to reduce the polysaccharides
of biofilm matrix [31,38], as observed in the quantification of WSPs of pre-formed biofilms in the present
investigation, the association of both drugs may have potentiated the antifungal effect. However,
this association showed antagonism for CaS biofilms, which suggests that the biofilm alters the action
of this combination of drugs, although higher decrease of metabolic activity of CaS was observed
when the drugs were associated than that observed with NAC alone. Moreover, antagonism was
also observed for NAC associated with nystatin, suggesting that the mechanism of action of one or
both drugs may be hindered when the drugs are combined. Although the combination of NAC with
fluconazole showed synergism at some concentrations, this result should be viewed with caution,
since low mean values of ∆E (percentage growth inhibition) were observed (only 6% for CaS and 12%
to 23% for CaR), which may be not enough to properly treat an infection caused by C. albicans.

In another study [37], NAC had a synergistic effect with amphotericin B and fluconazole against
biofilms of C. albicans. However, the authors did not evaluate planktonic cultures and the synergism
was evaluated by the median effect, which employs equations to calculate the combination indices.
Furthermore, NAC and fluconazole did not show synergism when the combination ratio was 1000:1,
evaluated by an inhibitory effect of 90% [37]. In the present investigation, we did not evaluate the
interaction of NAC with another polyene (nystatin) and fluconazole in biofilms, because the FICI
showed no synergism of these drugs in the planktonic assays. Another study demonstrated that
the association of NAC with ketoconazole promoted higher inhibition of biofilm adherence and
pre-formed biofilms than the drugs alone [41]. Synergism was also observed when fluconazole and
amphotericin B were associated with the enzyme 1,3-β-glucanase against C. albicans biofilm [66].
However, the mentioned studies did not use the Bliss independence method for synergism evaluation.
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It is important to note that NAC is a drug commercially available for clinical use, especially for
respiratory illnesses, and, therefore, it is safe. A report reviewing the multiple clinical applications of
NAC pointed out that even doses up to 1200 mg are well tolerated and have unusual side effects [70].
This information gave us confidence regarding the use of NAC in our research, because the highest
concentration tested was 100 mg/mL. For this reason, we did not evaluate the cytotoxic effect of NAC,
which is another limitation of our study. However, as already mentioned, the clinical use of NAC is
well established, and consequently it does not show side effects when properly used.

In conclusion, NAC showed a fungistatic effect against CaS and CaR. However, a subMIC level
(12.5 mg/mL) resulted in the opposite effect (an increase of fungal growth). The antibiofilm effect
of NAC was due to its fungistatic action, since only concentrations greater than the MIC reduced
biofilm formation, pre-formed biofilms, biofilm thickness, and the matrix composition, especially the
water-soluble components of pre-formed biofilms. NAC also showed synergism with caspofungin
for planktonic cultures, but not for biofilms of CaS. However, clinical isolates were not used in
this investigation, which may have different virulence factors and susceptibility to NAC. Therefore,
our in vitro findings cannot be extrapolated to the clinical scenario. Future studies are needed to
elucidate the fungistatic mechanism of action of NAC against C. albicans, and to evaluate the efficacy of
NAC against other non-albicans Candida species and the infections caused by them.
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viability of planktonic cultures obtained from the interaction of NAC with Nystatin for CaS (A) and CaR (B); NAC
with Fluconazole for CaS (C) and CaR (D); and NAC with Caspofungin for CaS (E) and CaR (F).
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