Supplementary material

Endophyte strain		Pathogen		
Strain ID	Taxon	Colletotrichum	Ceratobasidium	Drechslera
		graminicola	cereale	brizae
440364	FaTG-1			
AR542	FaTG-1			
E34	FaTG-1			
NEA13	FaTG-1			
NEA14	FaTG-1			
NEA15	FaTG-1			
NEA16	FaTG-1			
NEA22	FaTG-1			
NEA27	FaTG-1			
NEA30	FaTG-1			
NEA17	FaTG-2			
NEA34	FaTG-2			
610918	FaTG-3			
AR510	FaTG-3			
NEA21	FaTG-3			
NEA23	FaTG-3			
NEA33	FaTG-4			
NEA18	FaTG-5			
NEA19	FaTG-5			
15285	LpTG-1			
AR1	LpTG-1			
NEA10	LpTG-1			
NEA3	LpTG-1			
RU03001-60_E09	LpTG-1			
SE	LpTG-1			
18-C1	LpTG-2			
NEA11	LpTG-2			
FR15598_15310	LpTG-3			
NEA12	LpTG-3			
E1	LpTG-4			

Table S1: Antifungal activity of *Epichloë* spp. endophytes against selected grass pathogens.

Strong Moderate

Weak

Not tested

Figure S1: Dual culture assay for growth inhibition of pathogens *Ceratobasidium* sp. by four *Epichloë* spp. strains (in rows) NEA12 (*n*=5), NEA23 (*n*=5), NEA21 (*n*=5), positive control SE (*n*=5) and negative control (pathogen alone) (*n*=5). From left to right (in columns) it shows the growth of pathogen from day 2-8. The images are of a typical representative of the 5 replicates.

Figure S2: Dual culture assay for growth inhibition of pathogens *Drechslera* sp. by four *Epichloë* spp. strains (in rows) NEA12 (*n*=5), NEA23 (*n*=5), NEA21 (*n*=5), positive control SE (*n*=5) and negative control (pathogen alone) (*n*=5). From left to right (in columns) it shows the growth of pathogen from day 2-8. The images are of a typical representative of the 5 replicates.

Figure S3: Dual culture assay for growth inhibition of pathogens *Fusarium* sp. by four *Epichloë* spp. strains (in rows) NEA12 (*n*=5), NEA23 (*n*=5), NEA21 (*n*=5), positive control SE (*n*=5) and negative control (pathogen alone) (*n*=5). From left to right (in columns) it shows the growth of pathogen from day 2-8. The images are of a typical representative of the 5 replicates.

Figure S4: Dual culture assay for growth inhibition of pathogens *Ceratobasidium* sp., *Fusarium* sp. and *Drechslera* sp. by four *Epichloë* spp. strains (in rows) NEA12 (*n*=3), NEA23 (*n*=3), NEA21 (*n*=3), SE (*n*=3) and negative control (pathogen alone) (*n*=3).

Figure S5: Agar-well diffusion assay for pathogens *Ceratobasidium* sp. in the presence of (from left to right): NEA23 MS (*n*=5); NEA23 MP (*n*=5); NEA12 MS (*n*=5); NEA12 MP (*n*=5); antifungal compound carbendazim (1 mg/ml) (*n*=5); 80% methanol (*n*=5); and sterile water (*n*=5). From top to bottom (in rows) it shows the growth of pathogen from day 3-6. The images are of a typical representative of the 5 replicates.

Figure S6: Agar-well diffusion assay for pathogens *Fusarium* sp. in the presence of (from left to right): NEA23 MS (n=5); NEA23 MP (n=5); NEA12 MS (n=5); NEA12 MP (n=5); antifungal compound carbendazim (1 mg/ml) (n=5); 80% methanol (n=5); and sterile water (n=5). From top to bottom (in rows) it shows the growth of pathogen from day 3-8. The images are of a typical representative of the 5 replicates.

Figure S7: Agar-well diffusion assay for pathogens *Ceratobasidium* sp. (top panel) and *Fusarium* sp. (bottom panel) in the presence of (from left to right): NEA23 MS (*n*=5); NEA23 MP (*n*=5); NEA12 MS (*n*=5); NEA12 MP (*n*=5); antifungal compound carbendazim (1 mg/ml) (*n*=5); 80% methanol (*n*=5); and water (*n*=5). The images are of a typical representative of the 5 replicates.

1100 m/z

1002.5177 1112.6759

1313.7260

1443.5497

1766.4861

1968.2643

οĒ

44.9825

268.2462

Relative Abundance

496.3408 C₂₉ H₄₄ O₃ N₄

691.3065

883.5995

391.2852 C ₂₅ H₃₅ N₄

Figure S9: LCMS chromatograms of a) 80% methanol extract of perennial ryegrass plants with NEA23 b) 80% methanol extract of 2-week-old NEA23 PDB culture showing the presence of peramine (C12H18ON5 – m/z = 248.1509) eluting at 3.52 (±0.02 min) [2].

1. Ludlow, E.J.; Vassiliadis, S.; Ekanayake, P.N.; Hettiarachchige, I.K.; Reddy, P.; Sawbridge, T.I.; Rochfort, S.J.; Spangenberg, G.C.; Guthridge, K.M. Analysis of the Indole Diterpene Gene Cluster for Biosynthesis of the Epoxy-Janthitrems in Epichloë Endophytes. Microorganisms 2019, 7, 560.

2. Reddy, P.; Deseo, M.A.; Ezernieks, V.; Guthridge, K.; Spangenberg, G.; Rochfort, S. Toxic indole diterpenes from endophyte-infected perennial ryegrass Lolium perenne L.: isolation and stability. Toxins (Basel) 2019, 11, 16.