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Abstract: In February 2020, Italy became the epicenter for COVID-19 in Europe, and at the 

beginning of March, the Italian Government put in place emergency measures to restrict population 

movement. Aim of our analysis is to provide a better understanding of the epidemiological context 

of COVID-19 in Italy, using commuting data at a high spatial resolution, characterizing the territory 

in terms of vulnerability. We used a Susceptible–Infectious stochastic model and we estimated a 

municipality-specific infection contact rate () to capture the susceptibility to the disease. We 

identified in Lombardy, Veneto and Emilia Romagna regions (52% of all Italian cases) significant 

clusters of high , due to the simultaneous presence of connections between municipalities and high 

population density. Local simulated spreading in regions, with different levels of infection 

observed, showed different disease geographical patterns due to different  values and commuting 

systems. In addition, we produced a vulnerability map (in the Abruzzi region as an example) by 

simulating the epidemic considering each municipality as a seed. The result shows the highest 

vulnerability values in areas with commercial hubs, close to the highest populated cities and the 

most industrial area. Our results highlight how human mobility can affect the epidemic, identifying 

particular situations in which the health authorities can promptly intervene to control the disease 

spread. 

Keywords: COVID-19; commuting census data; municipality-specific infection contact rate; 

vulnerability; infectious disease modeling 

 

1. Introduction 

On December 31 2019, the Chinese Country Office of the World Health Organization (WHO) 

was informed about cases of pneumonia of unknown etiology in residents of Wuhan City, Hubei 

Province of China [1]. Later defined as a new disease (COVID-19) caused by a novel coronavirus 

(SARS-CoV-2), the epidemic was declared by WHO a public health emergency of international 

concern on January 30 and a “pandemic” on March 11. 

In February 2020, after the first outbreak of infection detected in Codogno municipality, Lodi 

province, of Lombardy region, Italy became the epicenter for COVID-19 in Europe and on February 

22 the Italian Government imposed a lockdown in hotspot areas in Lombardy and Veneto regions. 

On March 8, to further contain the spread of the virus, the red zone was extended to the whole area 

of Lombardy and to 14 other provinces of northern Italy [2–4]. On March 9, in response to the 

growing epidemic, emergency measures that restricted population movement (except for essential 

work categories and health reasons) were extended to the whole country. As of June 2, 233,515 



Microorganisms 2020, 8, 911 2 of 21 

 

positive cases were recorded, and 33,530 people died, making Italy the sixth country in the world by 

the number of total cases, after the United States of America, Brazil, the Russia, Spain and the United 

Kingdom and the third in the world by the number of deaths. 

Human mobility represents a crucial element to be considered in modeling human infectious 

diseases and the main factors influencing mobility patterns and its magnitude depend on the scale 

considered (global, national, local). At the global level, the study of air traffic connections may 

provide good indications for predicting a worldwide spread [5,6]. On a local scale, other types of 

movement must be considered. Open-data resources and data-driven models offer many 

opportunities to improve governments’ responses to the new epidemic and various studies have 

recently been conducted to assess how different human mobility data, such as Google’s mobility data 

or data collected via mobile phone, can guide government and public health authorities to evaluate 

the effectiveness of measures to control the COVID-19 spread [7–9]. However, commuting, defined 

as the daily movements from residence to work or school, is certainly the most relevant and widely 

studied factor to describe spatial mobility in local models [10–12]. 

In this paper, we analyze the commuting flows in Italy, using census data (ISTAT 2011) [13], in 

order to assess its contribution in spreading the COVID-19 at the beginning of the epidemic. 

The aim of our analysis is to provide a better understanding of the epidemiological context of 

COVID-19 in Italy, and to characterize the territory in terms of vulnerability either at the local or 

national level. The objective is not to accurately estimate the number of cases or the magnitude of the 

epidemic in absolute terms, but to understand how the disease can spatially and temporally spread 

countrywide. 

2. Materials and Methods 

The study is organized to first evaluate the use of commuting data as a risk factor of COVID-19 

spreading in Italy, calculating Social Network Analysis (SNA) centrality measures at the province 

level and performing a data correlation analysis. Then we examined the underlying mechanisms of 

propagation using a stochastic Susceptible–Infectious (SI) model mainly driven by the commuting 

network and by a revised infection contact rate parameter. We modeled a municipality-specific 

infection contact rate to capture the permeability to the disease of each municipality, considering the 

population at different times of the day and considering the characteristics of municipalities as 

attractors of commuters or displacing their workforce elsewhere. 

2.1. Demography and Commuting Network 

To analyze the Italian commuting network, we used census data collected in 2011 [13]. All data 

is obtained at the municipality level. About half of the 60 million people living in Italy declared a 

daily movement to their usual place of study or work. 

After adjusting the geographical dataset of the Italian municipalities according to the 

modifications that occurred after 2011, the matched commuting dataset contains 7,915 municipalities, 

a resident population of 60,340,328 and 28,805,440 commuters, within (17,497,742) and between 

(11,307,698) municipalities. Commuting flows directed to or coming from abroad are not considered 

in the analysis. Figure 1a,b shows the distributions of the Italian population and commuters, 

respectively. 
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Figure 1. Distribution of (a) the Italian population and (b) daily commuters at the municipality level. 

Source ISTAT. 

A commuting network is generated by creating a direct weighted edge between two nodes, 

represented by the municipalities of origin and destination. The weight indicates the number of 

commuters traveling on that connection in a typical working day (Figure 2a). The resulting network 

is composed of 7,915 nodes and 539,223 edges. Then, the commuting network is rescaled at the 

province level (the lowest NUTS level (Nomenclature of Territorial Units for Statistics), NUTS 3) in 

order to compare the results of the network analysis with the COVID-19 cases as recorded at the 

province level by the Dipartimento della Protezione Civile [14] and archived on GitHub [7]. The 

rescaled network has a size of 107 nodes and 3,310 edges (Figure 2b). 

 

Figure 2. Commuting network structure. (a) All categories of commuters and noncommuters that 

characterize each node of the network on a typical working day are represented: commuters inside 

the node (Cr), incoming and outgoing commuters (Ci and Co, respectively) and residents who are not 

commuters (R). The edge between two nodes, from a source to a destination, is represented by an 

arrow (direction) and its size is proportional to the number of commuters moving daily. (b) Graph 
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representation of the commuting network at the province level (undirected for display purposes). 

The scale color from green to red is based on the node degree value. 

The rescaled commuting network is analyzed by calculating the centrality measures commonly 

used in epidemic modeling [15–18]: degree (in-out), strength (in-out), betweenness, both for the 

global network and for subnetworks (incoming and outgoing commuters greater than 50, 100 and 

1,000). 

2.2. SI Model to Evaluate the COVID-19 Spread Dynamics 

2.2.1. Theoretical Geodemography Framework 

The model is based on the commuting network at the municipality level. In a municipality, we 

have the resident population divided into noncommuting (R), commuting within the municipality 

(Cr) and commuting outgoing the municipality (Co). Commuting affects the number of people 

present in a municipality during the different times of the day, significantly modifying the registered 

resident population. If we define Ci as the nonresident population commuting into a municipality, 

we have that the real population in a specific time of the day is given by R +Cr – Co + Ci (Figure 2a). 

On the right side of Figure 3, three municipalities (A, B, C) with their registered residents are shown; 

the left side shows the actual population present, following in and out commuting during the day. 

In Municipality C, the resident population equal to 10, becomes 4 during the day, due to a prevalent 

component of Co. Conversely, the population in B significantly increases during the day compared 

to the resident population, due to the higher Ci component (from 10 to 16). Municipality A has a 

balanced population during the entire day, having an equivalent Co and Ci components. 

 

Figure 3. A typical working day description considering three different municipalities and 

populations. Population changes due to commuting in two different times of the day (high activity 

and low activity). The municipalities, A, B, and C are displayed by circles in black, yellow, and green; 

the icons, colored according to the circles, represent the resident populations in the 3 municipalities; 

squared icons represent noncommuters resident (R) and circled icons commuters inside the node (Cr); 

the arrows represent commuters moving daily from a source to a destination (Co and Ci) and the 

arrow’s size is proportional to the number of moving commuters. Municipality C, with a population 

of 10, decreases to 4 during the day, due to a prevalent component of outgoing commuters (Co = 7). 

Conversely, the population in B increases significantly during the day, due to the higher incoming 

commuters (Ci = 8). Municipality A has a balanced population during the entire day, having an 

equivalent Co and Ci components. 

The typical working day is divided into two parts based on people’s daily contact dynamics: 

“high activity” time during which contacts are facilitated by the social common activities (e.g., work, 



Microorganisms 2020, 8, 911 5 of 21 

 

school, sports and similar) and “low activity” time in which the activities are reduced or stopped 

(e.g., during night or sleeping time). 

The “high activity” and “low activity” times of the day, in combination with the resident and 

commuters’ populations, determine different levels of contact (and therefore of infection) between 

municipalities and between individuals within the municipality. 

2.2.2. Model Implementation 

A Susceptible–Infectious (SI) compartmental model is implemented to simulate disease spread 

due to the commuting between municipalities, taking into account not only the absolute commuters 

values, but including the influence of the typical structure of a day (high and low activity) as 

described in the previous paragraph. It is an agent-based model where a subject susceptible can 

become infectious if living or working within an infected population. The following ODEs system 

describes the model: 

⎩
⎪
⎨

⎪
⎧ S�

�(t + 1)  =  S�
�(t) − β�

�
I�

�(t)S�
�

N�
�  

I�
�(t + 1)  =  I�

�(t) + β�
�

I�
�(t)S�

�

N�
�     

 (1) 

where S is the susceptible population, I is the infected population, N is the population size, β is the 

infection contact rate, i indicates the municipality, m indicates the time of the day (“high active” or 

“low active” time) and t is a specific day; the equation describing the transition state of each 

individual, from susceptible (s) to infected (i), follows a Bernoulli distribution: 

P(s (t) → i(t + 1))  =  Bern(β�
�

I�
�(t)

N�
� ) (2) 

Therefore, we assume a homogeneous mixing of the population adopting two infection contact 

rates for each municipality to take into account the time of the day (“high active” or “low active” 

time) and the related variation in population density due to commuting. 

Infection Contact Rate Parameter Modeling 

Assuming the same infection contact rate β for the whole country implies the disease spreads 

with the same strength everywhere, even inside those areas highly different spatially, 

demographically and in terms of commuting systems. 

Our approach defines a different β for each municipality in different times of the day as it takes 

into account the variation in population density due to commuting: β should be higher in densely 

populated places and lower in poorly populated ones. Moreover, in our theoretical framework, we 

assume two overlapping populations staying in the same place during the day (but in two distinct 

times) as shown in Figure 4. While the subpopulation is given by commuting within the municipality 

(Cr) and noncommuters (R) lives within the place (L) during the whole day, incoming (Ci) and 

outgoing (Co) commuters contribute to two different populations during the “high activity” and “low 

activity” times. In this scenario, during the “high activity” time the total population staying in the 

area is Cr + R + Ci, while during the “low activity” time, it is Cr + R + Co. 



Microorganisms 2020, 8, 911 6 of 21 

 

 

Figure 4. Within-day evolution of people staying in the same place L. Individuals staying inside the 

overlapping area during the whole day are commuting within the municipality (Cr) and 

noncommuters (R): Cr + R. During the high activity time (yellow circle), incoming commuters (Ci) 

stay with R and Cr, while during low activity time (blue circle), outgoing commuters (Co) come back 

and incoming commuters (Ci) go away and individuals inside the municipality are: Cr + R + Co. 

The ratio between the population staying in a municipality in each time of the day and its surface 

(area in km2) giving the population density per time is: 

D�  =  
��

�����
 (3) 

where m is the “high activity” (h) and “low activity” (l) times, and Pm = (R +Cr) + Ci if m = h, or Pm = 

(R +Cr) + Co if m = l. 

In Figure 3, assuming that the area of Municipality C is 100 km2, its corresponding population 

density during the “low activity” time is 10/100, while its population density during the “high 

activity” time is 4/100. We adjust Dm to account for commuters contributing to disease spread, using 

a (multiplicative) commuting factor (Cf), according to the following equation: 

��∗  =  ���� where �� =  
���

����
 (4) 

Cf increases the population density if the Cm component (i.e., the commuters given by Ci/o + Cr) 

is greater than the noncommuters population (R) and reduces it if Pm is mainly made of R.  

In this way, we assume that commuters have a greater weight than residents have in driving the 

disease spread within the municipalities. In Figure 3, Municipality C, during the “high activity” time, 

has a population density Dh = 4/100, having Ch = Ci + Cr = 2 and R = 2, the corresponding Cf = 2*2/(2+2) 

= 1 and thus the adjusted population density D* = Dh * Cf = Dh = 4/100 is the same of the nonadjusted 

population density. Differently, during the “low activity” time, the C population density is Dl = 

10/100, being Cl = Co + Cr = 8 and R = 2. The corresponding Cf = 2*8/(8+2) = 8/5 and the D* = Dl*8/5 = 

16/100. 

Hence, Cf made the population density higher during the low activity time (turning from 10/100 

to 16/100) because of its high number of commuters (Co) respect to noncommuters’ population (R). 

The following Figure 5 shows the effect of the adjustment applied to each municipality 

population density for low and high activity times (a) and the adjusted population density 

distributions using the logarithmic scale (b). 
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Figure 5. (a) Population density adjustment and (b) adjusted population density distribution for low 

activity time (blue) and high activity (red) time. 

Since the distribution of the adjusted population density is lognormal (Figure 5b) we use the 

following scaling function to get a Z measure for low and high activity time: 

Zscore�  =  
log(D�∗) − mean�log(D�∗)� 

sd�log(D�∗)�
 (5) 

As expected, Zscorem are highly correlated, meaning locations with high values of Zscore for 

“high activity” time also have high values of Zscore for “low activity” time. However, locations 

diverging from this general tendency have a peculiar meaning. 

Figure 6a shows the distribution of paired Zscores for each municipality, using two colors to 

code the difference between “high activity” and “low activity” times Zscores. Points (municipalities) 

with positive values of the difference (red dots), regardless of how dense the population is, are places 

having a higher incoming commuting component in comparison to the outgoing (Municipality B in 

Figure 3 is an example of this kind of structure). These kinds of municipalities are a sort of 

“attractors” of the workforce or students, like municipalities with developed industrial poles or 

universities. Figure 6b shows the Abruzzi region map (in central Italy) of such a difference. It is 

evident the presence of the industrial pole of Atessa municipality in the southern region (dark red 

municipality). Blue dots in Figure 6a represent instead places having negative values of the 

difference. In such places, commuters working outside their own municipality are the majority of the 

present population (as for Municipality C in Figure 3). These kinds of municipalities are typically 

emptied during the “high activity” time, because, lacking developed manufacturing, production, or 

tertiary sectors, they make their workforce available for attractors. Figure 6c shows the geographic 

distribution of the difference for the Lazio region (neighboring Abruzzi region in central Italy). It is 

evident the blue ring around Rome, made of municipalities where the majority of workers are 

outgoing commuters (to Rome). Municipalities having difference values close to zero (white dots) 

have both high or both low values of Zscores (like Municipality A in Figure 3). 
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Figure 6. Panel (a) include the scatterplot of the Zscores for low-activity time (x-axis) and high activity 

time (y-axis). The color of the points codes the difference y–x to diversify the municipalities where 

incoming commuters prevail over outgoing (red points) from municipalities where outgoing 

commuters prevail over incoming (blue points). Zscore difference for (b) Abruzzi and (c) Lazio 

regions, respectively. 

The effective infection contact rate (β0 = 0.244) is estimated from the temporal evolution of the 

cases observed between February 26 and March 6, assuming an exponential infection growth [19]. 

We use the following equation to scale the daily value of the effective infection contact rate: 

β�  =  (1 + β�)
��

� − 1 (6) 

where H is the number of hours in which the hourly β is greater than zero (we assume the hourly β 

= 0 during sleeping time, 10 h/d) and Hm is the number of hours relative to “high” and “low” activity 

times (H = 14 and Hm = 11: during “high activity” time, 3; during “low activity” time). Thus, being β0 

= 0.244, βm = {0.1871; 0.0479}. 

Finally, we define the infection contact rate for each municipality as depending on the 

population staying at different times of the day: 

β�
�  =  Zscore� �

vc ∗ log(D�
�∗)

2 ∗ β�
� + β� (7) 

where D�
�∗ is the adjusted population density according to commuting flows in municipality i and 

time m and vc is the coefficient of variation of the log(D�
�∗) distribution. 

The daily β per municipality is expressed as the product of the β�:  

β�  =  �β�
����

+ 1��β�
��� + 1� − 1 (8) 

Model Simulation Scenarios 

In order to highlight the different perspectives of the developed model and the potential of its 

application, three scenarios are considered: 

Scenario 1. COVID-19 spreading at the municipality level for the entire Italian territory between 

February 26 and March 6. We focused on the first 10 days of the epidemic because most of the impact 

that commuting may have had is before the application of the lockdown measures. The model 

assumes that no restrictions on human mobility are put in place at the beginning of the epidemic. 

Inside each province with confirmed COVID-19 cases at the starting time (February 26), the infected 

people are assumed to be randomly distributed. Results are then compared at the province level with 

the official data on confirmed cases. 
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Scenario 2. Local spreading (during the first 21 days of the epidemic). This scenario is 

implemented to explore and compare the spread patterns in different regions (rather than validate 

the predictive capacity), to better understand how human mobility as a spread driver can affect the 

epidemic. Lombardy, Abruzzi and Basilicata regions are chosen based on the level of infection (high, 

medium and low) observed during the epidemic. In this scenario we assume that the infection starts 

at the municipality level (the first infected municipality notified in the region is considered as seed); 

no restrictions on human mobility are put in place at the beginning of the epidemic; the regional 

network is closed to external commuting exchanges. A longer timeframe is chosen to better explore 

and compare the different spread patterns. 

Scenario 3. Local spread in the Abruzzi region is simulated (during the first 14 days of the 

epidemic) considering each municipality as a seed for each simulation. This scenario aims at defining 

the vulnerability of each municipality to a new epidemic (or a new epidemic wave) and it gives an 

indication about the potential of each municipality to be the index point of new infections. 

The choice of the Abruzzi region has only an illustrative purpose. We assume that the infection 

starts in turn in each municipality so as to assess the weak points of the whole region. 

All simulations use the infection contact rate β described in the previous paragraph, assuming 

that the number of plausible active cases (K) is 10 times the number of those officially detected, as 

reported by the Italian Institute for International Political Studies [20]. In Table 1, all the simulation 

parameters used in the three scenarios are listed. 

Table 1. Simulation parameters for each scenario. 

Scenari

o 

Num. of 

Simulatio

n 

Num. of 

Simulatio

n Runs 

Dee

p in 

Day 

Region 
Scale 

Resolution 
Seed (t0) I(t0) 

Scenari

o 1 
1 500 10 Italy 

Municipalit

y 

Randomly 

distributed 

inside the 

initial 

infected 

provinces 

(29) 

Observe

d cases 

as of 

February 

26 = 625 

Scenari

o 2 

1 

 

 

500 

  

21 

  

Lombard

y Municipalit

y 

  

Codogno 
 

1 

  
Abruzzi 

Roseto Degli 

Abruzzi 

Basilicata Trecchina 

Scenari

o 3 
305 500 14 Abruzzi 

Municipalit

y 

All 

municipalitie

s (305) 

1 

During the first five days of the week, as working days, β is calculated considering the “high 

activity” time for the commuters adjusted population (R + Cr - Co + Ci), whereas the “low activity” 

time is applied to the resident population (R + Cr + Co). The opposite occurs during the weekend (the 

last two days), to take into account that the resident population becomes more active than that 

determined by commuter flows. 

The model is run at the municipality level. For each node (municipality), for each individual of 

the node, and for each temporal step t of a day, the model recalculates the status (in terms of S and I) 

of the source and destination nodes for the next temporal step by following the equations above 

described. 

The pseudo model algorithm is coded as follows: 
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Algorithm 1 The pseudo model algorithm 

#constants shared between scenarios 

K = 10  

��
� 

#constants within scenario 

SIM (number of simulation) 

Deep (number of days to be simulated) 

NTW (Commuting network: weighted links among municipalities of the corresponding 

scenario) 

I (number of officially infected) 

 

For each simulation 

Sample infected according to scenario 

For each day  

If during weekend, switch the correspondence between active period and population 

For each sub-day period 

 For each infected municipality 

   find new infected according to ODE equations 

End 

 

The model is stochastically implemented in R-software (Version 3.6, R-Foundation for Statistical 

Computing, Vienna, Austria); “doparallel” R package is used for parallelizing the simulations [21]. 

Figures are created in R using “sp” and “ggplot2” libraries [22,23], in ArcMap 10.5 ESRI and 

Cytoscape (Version 3.2.1) programs. 

3. Results 

3.1. Analysis of the Commuting Network 

A Pearson’s correlation matrix was calculated among the SNA metrics of the commuting 

network (and subnetworks) and COVID-19 cases (at different times of the epidemic), (Figure 7a).  

Degree measures and COVID-19 cases showed a significant correlation (p< 0.05). In particular, 

the degree calculated for the subnetwork built on the basis of incoming and outgoing commuters 

greater than 50 (Deg50) and COVID-19 cases (as of March 26) have the highest correlation value equal 

to 0.72 (black-boarded square in Figure 7a). 

Figure 7b represents a scatter plot between Deg50 and COVID-19 cases on the logarithmic scale. 

To capture the commuting behavior of each province (node) the scale color from green to red is used 

to characterize the in-strength (incoming commuters from lower to higher) and the symbol size 

characterizes the node in terms of out-strength (outgoing commuters from smaller to bigger). 

It is evident that the northern provinces, most affected by the disease, are also those 

characterized by a high degree (flow of commuters among multiple provinces) and high strength 

(incoming and outgoing commuters exchanged) while the provinces of central and southern Italy, 

with a lower number of cases, are mainly characterized by lower degree and in-strength values. 
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Figure 7. Correlation analysis. (a) The heatmap of Pearson’s correlation coefficients among all the 

variables: Social Network Analysis (SNA) metrics for the rescaled commuting network and 

subnetworks (with in and out commuters greater than 50, 100 and 1,000), and COVID-19 cases (at 

different times). The X symbol indicates a nonsignificant correlation. The red scale color indicates a 

positive Pearson’s coefficient value. In the x-axis legend, the symbol color represents the variable 

groups: COVID-19 cases (green), betweenness (red), degree (light blue) and strength (purple); the 

symbols: circle, square and triangle represent the directions in terms of in (circle), out (square), and 

none (triangle); the symbol size from smaller to bigger represents the networks variables 

(subnetworks with in and out commuters greater than 50, 100 and 1,000 and the whole network). (b) 

A scatter plot graph between Deg50 and COVID-19 cases (as of March 26 2020) in the logarithmic 

scale. The scale color from green to red is used to characterize the in-strength (from a lower to higher 

number of incoming commuters) of the node and the symbol size (from smaller to bigger) 

characterizes the node in terms of out-strength (lower to higher number of outgoing commuters). 

3.2. Infection Contact Rate Parameter Estimation  

The infection contact rate β values are calculated based on commuting data and population size 

in each municipality. Figure 8a shows the β values per municipality (quantile aggregation), while 

Figure 8b shows the statistically significant hot spots, cold spots and spatial outliers of β values using 

the Anselin Local Moran’s I statistic [24]. 

Although the map of infection contact rates mainly reflects the resident population density, the 

municipality-specific infection contact rate captures the disease permeability of each municipality, 

considering the population in different moments of the day and depicting the characteristics of 

municipalities as attractors of commuters or as displacer of its workforce elsewhere. 

The clusterization of areas with similar characteristics in terms of vulnerability to the 

introduction and spread of the disease is highlighted by Moran’s analysis (Figure 8b). There are large 

areas characterized by the homogeneous presence of high β values (pink areas) where the 

introduction of the disease would inevitably lead to a spread more difficult to control due to the 

simultaneous presence of connections between municipalities and the high population density. On 

the contrary, the large areas with low β levels (light blue) represent areas in which the disease spreads 

slowly (e.g., Alps and Apennine areas, Basilicata, Sardinia, the southern part of Tuscany and Molise). 

The red areas constitute potential outliers which, despite a high β value, would hardly expand 

rapidly the disease in the surroundings which have instead low β values. In this way Figure 8b, 

grouping similar municipalities’ values gives an immediate and overall picture of the Italian territory 

in terms of higher or lower susceptibility to an epidemic. 
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Figure 8. (a) β values per municipality (in legend quantile classification). (b) statistically significant 

hot spots in pink (municipalities with high β values in significant clusters), cold spots in light blue 

(clustered municipalities with low β values); in red municipalities with high β values and surrounded 

by municipalities with low β values; in blue municipalities with a low β value surrounded by 

municipalities with high values. Municipalities with no significant clustering or outliers are shown 

in white. 

3.3. SI Model to Evaluate the COVID-19 Spread Dynamics 

Three scenarios are evaluated as listed in Table 1: COVID-19 spreading at the municipality level 

for the entire Italian territory between February 26 and March 6 (Scenario 1); local spreading (during 

the first 21 days of the epidemic) in Lombardy, Abruzzi and Basilicata regions (Scenario 2); local 

spread in the Abruzzi region (during the first 14 days of the epidemic) considering each municipality 

as a possible seed; origin of the infection (Scenario 3). 

3.3.1. Scenario 1 

The number of infected provinces during the studied period increased from 29 to 92 and only 

15 were still free from COVID-19 as of March 6. The number of infected people increased from 625 

to 5,699. Considering the results at the national level, the model was able to correctly catch the 

observed cases’ trend (Figure 9a), while the observed increase of infected provinces was more rapid 

than the estimated one (Figure 9b). 

Pearson’s correlation coefficient between observed and estimated infected people (median 

value) at the province level, at the end of the period, was equal to 0.92. 
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Figure 9. (a) Observed (red line) and estimated (blue line and 0.95, 0.80 and 0.50 CI) infected people 

in Italy. (b) Observed (red line) and estimated (blue line and 0.95, 0.80 and 0.50 CI) number of infected 

provinces. 

Figure 10 shows the agreement between observed and estimated infected provinces as of March 

6. Provinces’ color represents the estimated probability of being infected, red points indicate the 

observed infected provinces at the end of the period, green points represent the observed noninfected 

provinces at the end of the period, dashed provinces are the seeds at the beginning of the period. 

 

Figure 10. Results of the model. Provinces are colored based on the estimated probability of being 

infected; red points show the observed infected provinces at the end of the period (February 26–

March 6); the green points represent the noninfected provinces at the end of the period; dashed 

provinces represent the seeds at the beginning of the period (February 26). 
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A threshold of p = 5% on the percentage of simulations with at least one infected individual per 

province was chosen to evaluate the model’s performance in predicting the infection status of each 

province at the end of the period. The comparison with observed official status as of 6 March resulted 

in a number of True Positive (TP) = 85, True Negative = 6, False Positive (FP) = 9 and False Negative 

= 7. This leads to a Sensitivity = 92.4% and a Specificity = 40%, for a total accuracy of 85%. Figure 

11a,b shows the comparison between observed and estimated infected people (upper 95% confidence 

interval when a province is turned into infected in the simulations), respectively, excluding the seeds. 

 

Figure 11. Results of the model. Comparison between observed (a) and estimated (b) infected people. 

The upper 95% confidence interval of the estimated infected people is used (when a province is 

turned into infected during the simulations the value of infected people is considered). Dashed 

provinces are the initial seeds. 

As far as the seeding sites concern, Figure 12 shows the comparison between observed and 

estimated infected people in each seed province. For most of the cases the observed values fall into 

the 95% confidence interval of the estimates. Results are grouped in four panels depending on the 

magnitude of the observed COVID-19 epidemic. 
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Figure 12. Infected people in seeding provinces as of March 6. Black squares represent median values, 

lines the 95% confidence interval (CI), green and red diamonds represent observed data within 

(green) and outside (red) the CI, while white dots represent the observed cases as of February 26. The 

panels’ order (from low to severe level of infected people) is used for displaying purposes. 

3.3.2. Scenario 2 

The differences observed among the spread patterns in high (Lombardy), medium (Abruzzi) 

and low (Basilicata) affected areas might be explained by different infection contact rates and 

different commuting systems. 

Figure 13a–c compares β values, degree measure and the estimated probability of being infected, 

respectively, for each municipality. Starting from one seed in each region (the first municipality 

notified as infected), for a time window of 21 days, the disease seems to follow different patterns: in 

Lombardy, where β values are more homogeneous, the disease extends in wideness; in Abruzzi 

region the disease spreads along the Adriatic coast, driven by the β parameter higher in this corridor; 

in Basilicata, the disease remains confined to the point of origin because the region has neither high 

β values nor high connections. 
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Figure 13. β values (a), degree measure (b) and estimated probability (c) of being infected for each 

municipality of high (Lombardy), medium (Abruzzi) and Low (Basilicata) affected areas. 

Moreover, the differences between the three regions have been evaluated through the number 

of estimated infected people and infected municipalities (Figure 14a,b). The pattern of infected 

people is similar for Abruzzi and Lombardy (red and green line, respectively), but different from 

Basilicata (green line). However, the differences are more evident if we consider the number of 

infected municipalities that grows more rapidly in the case of Lombardy (Figure 14b). The speed 

with which the municipalities in Lombardy become infected is higher than in Basilicata and Abruzzi 

due to the connections underlying the commuting network (Figure 14c). It is noteworthy that 

Lombardy has 28% of municipalities with a degree greater than 140, while in Abruzzi and Basilicata 

regions 95% and 99% of municipalities, respectively are below a degree of 60. 
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Figure 14. (a) Number of estimated infected people (median values and 95%CI) and (b) estimated 

infected municipalities (median values and 95% confidence interval, CI) when the epidemic starts in 

one seed and lasts 21 days. (c). The blue line represents Lombardy, red line is Abruzzi region and 

green line, Basilicata region. Degree distribution in the three regions: L = Lombardy, A = Abruzzi, B 

= Basilicata. Bars are in class percentage descending order. 

3.3.3. Scenario 3 

In this scenario, each municipality is considered in turn as seed. The vulnerability of the Abruzzi 

region is calculated as the number of infected individuals (95th percentile) and infected 

municipalities that each municipality (seed) causes in the region (excluding itself) (Figure 15a,b). 

Figure 15c shows the ratio between the number of cases caused outside the municipality and the 

number of cases caused inside the municipality (× 100) that may be interpreted as the tendency of 

each municipality to act as a destination or origin of infection for the other territories. 

 

Figure 15. (a) Number of infected people (95th percentile) that each municipality causes in the region 

(excluding itself). (b) Number of infected municipalities caused by each seed (95th percentile). (c) 

Ratio between the number of cases caused outside the municipality (95th percentile) and the number 

of cases caused inside the municipality (95th percentile). 

4. Discussion and Conclusions 

Human mobility data have been largely used for modeling the spread of infectious diseases both 

at global [2,6,10,11,25,26] and national levels [27–29]. 

Data on commuting, defined as the daily local movements from home to work location or 

schools, have been used in the study of the epidemiology of infectious disease to a lesser extent. 

Recent use of these data for modeling the COVID-19 epidemic in Italy has been published by Gatto 

et al. [12] and Vollmer et al. [8]. 
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In Italy, the currently available data on commuting are census data, with the advantage of being 

structured, open-source and representative of the entire Italian population. It is updated every 10 

years does not seem to affect the spatial patterns of human mobility [7,12], thanks also to the stability 

of the production systems and persistence of attractive poles (schools, offices, etc.) in the same places. 

The use of data at a higher spatial resolution (municipality level) allows highlighting peculiar 

situations in which public health authorities may promptly intervene to control the spread of disease. 

For this reason, we have introduced within a metapopulation model, driven by the commuting 

network, a municipality-based infection contact rate able to capture the variability between 

municipalities in terms of population density and commuting system. 

To have a model suitable in the first phase or in the case of the resurgence of the epidemic (when 

the population is fully susceptible) we used a simple Susceptible–Infectious model in which more 

importance was given to model the infection contact rate, neglecting the Exposed, Recovered and 

Dead compartments. Indeed, we only consider two epidemiological parameters, the number of 

(undetected) cases per each officially detected case (K) and the infection contact rate . We made the 

assumption of K being equal to 10 [20]. Although more accurate estimation could soon be available, 

our results in terms of correlation and patterns are not affected by this parameter because it is a 

proportionality factor. Although we have reduced the number of parameters of the epidemiological 

model from one side, we have introduced other variables to model the socio-demographic and 

commuting aspects. 

The revised calculation of the infection contact rate β, based mainly on the resident population 

density, also incorporates the commuting component in each municipality, highlighting its 

characteristic of being an attractor of commuters or a displacer of workforces toward elsewhere. 

When areas with high β values are contiguous and significantly clustered, disease permeability tends 

to be greater. Lombardy, Veneto and Emilia Romagna (situated in northern Italy), which together 

made up 52% of all Italian cases (as of May 7, 2020), are effectively clustered with similar and high β 

values (Figure 8b). 

The revised municipality-based β can be generalized to any other epidemic that responds to the 

assumptions made for its calculation. 

The simulation model was applied considering three different scenarios. The first scenario 

(Scenario 1), considering COVID-19 spreading at the municipality level for the entire Italian territory 

between February 26 and March 6, was used to assess the model accuracy. 

At the national level, the model estimates the trend of infected people similar to the observed 

trend of cases (Figure 9a), despite the introduction of the β variability. As far as the number of 

provinces involved concerns, the estimates are more variable. In particular, the model estimates a 

growth rate of the infected provinces lower than the observed one (Figure 9b). This might be due to 

the uncertainty about the real number of provinces already infected at the beginning of the period. 

If a higher number of initially infected provinces had been considered, the outcomes of the model 

would have been more similar to the observed ones. 

Considering the capacity of the model to correctly classify a province as infected at the end of 

the observation period, despite a global accuracy of 85%, the model failed in classifying 16 provinces. 

However, the misclassification may be due not only to the model capacity, but also to the influence 

of uncontrolled factors such as errors in the observed data, timing in the notification of cases, ability 

to identify the disease, containment local measures, long-distance displacement of people from 

infected areas to noninfected areas. 

As for the false negative (FN) provinces, the model failed in identifying as infected, provinces 

in which the number of observed cases at the end of the study period was actually very low (from 

one to three); only one province out of seven never turned out infected in any simulation. 

Furthermore, most of the FN provinces are located in southern Italy, an area that was affected by the 

massive return of university students from the North, after all schools were closed. The nine false 

positive (FP) provinces were officially detected as positive a few days after the considered period. 

The outcomes of the model were compared with the observed number of COVID-19 cases for 

the initially infected provinces, grouped by different virus circulation levels (from low to high). For 
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some provinces, such as Palermo (PA), Savona (SV), Padua (PD), Milan (MI) and Lodi (LO) the model 

overestimates the cases, whereas in few others, like Pesaro–Urbino (PU) and Parma (PR) the number 

of cases was underestimated (Figure 12). One of the possible explanations for this disagreement may 

be found in the application of control measures by local authorities, which anticipated the measures 

of the central government. On the other hand, the model was able to estimate quite precisely the 

number of cases in several provinces (either at low or high virus circulation level). Among these, 

Bergamo (BG) province was one of the Italian provinces that suffered more for the COVID-19, with 

more than 10,000 cases and almost 3,000 deaths. This would lead one to think that, in the province, 

the control measures were not strictly applied at the very beginning of the epidemic. It is important 

to note that the limitation of the model in correctly estimating the magnitude or the extent of the 

epidemic also depends on the difficulty of including in the model the establishment of the 

community (hospitals, health care settings, working) or household clusters of infection. 

The second scenario (Scenario 2) was developed to explore and compare the spread pattern in 

three different regions. The chosen regions (Lombardy, Abruzzi and Basilicata) are characterized by 

different epidemiological conditions. When the outcomes for the three regions are compared, the 

population density and level of industrialization must be taken into account. The mobility of 

workforces in Lombardy, which is one of the major economic driving areas in Europe, is much 

greater than in the other two regions. The differences among these regions are more evident when 

the number of infected municipalities is considered (Figure 14b), being the infection spreading across 

municipalities directly linked to the connections underlying the commuting network. Indeed, in the 

case of Lombardy, about 50% of the municipalities are connected to more than 100 municipalities 

(against 3% in Abruzzi and Basilicata regions; Figure 14c). 

In the last scenario (Scenario 3) the local spread in the Abruzzi region is estimated (during the 

first 14 days of the epidemic) considering each municipality as a seed for simulation. This scenario 

has the purpose of identifying those municipalities more vulnerable to the virus introduction and 

those playing a major role in spreading the infection. The vulnerability of the Abruzzi region is 

calculated as the number of individuals that each municipality (seed) causes in the region and the 

number of infected municipalities (Figure 15a,b). In addition, the ratio between the number of cases 

caused outside the municipality and the number of cases caused inside the municipality may provide 

a useful hint about the risk category (capability to infect rather than become infected), of each 

municipality (Figure 15c). The obtained maps, at the municipality level, provide the decision-makers 

with useful information on where mobility restriction measures should be focused to have the 

strongest effects on transmission reduction. The highest vulnerability values can be observed in areas 

with commercial hubs, close to the highest populated city of the region, Pescara (Figure 15b, the 

darker blue area on midcoastal line) and the most industrial area of the region, in the Sangro Valley 

(Figure 15b, in the south of the Abruzzi region), where many medium and big factories are present. 

Our approach, therefore, provides decision-makers with geographically detailed metrics to 

evaluate those areas at major risk for infection spreading and for which restrictions on human 

mobility would give the greatest benefits. It can provide risk maps in which health administration 

can modulate the application of strong lockdown measures, evaluating in advance the effects on 

reducing the spread of the infection. 

This approach is particularly useful not only at the beginning of the epidemic but also in the last 

phase, when the risks deriving from the gradual lockdown exit strategies must be carefully 

evaluated. In fact, the major risk in this latter phase is the resurgence of infection transmission 

through a progressive reopening of the productive systems. 

The analysis of daily human mobility patterns for working reasons is clearly providing a well-

detailed picture of the areas and productive systems more at risk of sustaining a restart of the 

epidemic. This study although, based on the current epidemic, will provide useful elements for other 

influenza-like epidemics that might happen in the future, helping health authorities to implement 

and direct the right interventions measures. 
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