2.3.1. Fluorescence analyses

Fluorescence excitation–emission matrix (EEM) spectroscopy was performed using a F-7000 fluorescence spectrophotometer (Japan) in a clear quartz curette. Excitation and emission were simultaneously scanned at wavelengths ranging from 200 to 450 nm at 5-nm intervals and from 250 to 600 nm, at 1-nm intervals, respectively. The slit width was 10 nm for both excitation and emission monochromators and the scan speed was set to 2400 nm min⁻¹. The corrected and standardized EEMs were modeled using PARAFAC analysis. The PARAFAC analysis in this work was performed in MATLAB using the DOMFluor toolbox (http://www.models.kvl.dk/), according to the procedure recommended in Stedmon and Bro (2008) (Stedmon and Bro, 2008). In this study, in order to minimize the differences in scores, the fluorescence measurements were performed at the same temperature (25 ± 1 °C). Meanwhile, EEMs are presented in Raman Units (R.U.) (Lawaetz and Stedmon, 2009).

2.3.2 Fluorescence spectroscopy analyses

According to Lavonen et al., (Lavonen et al., 2015), the fluorescence index (FI) is a proxy of sources of fulvic acids, which represents the ratio of the emission intensity at a wavelength of 470 to that at 520 nm, with a calculated excitation wavelength of 370 nm; and the biological index (BIX) (Huguet et al., 2009), an index of recent autochthonous and biological contribution, is a ratio of the emission wavelength at 380 and 430 nm when the excitation wavelength is 310 nm; and the humification index (HIX) (Ohno, 2002), is a ratio of the areas under the emission spectra over 435–480 nm to that by the sum of the area at emission of 300 to 345 nm at an Ex of 254 nm; the freshness index (β : α) was calculated as the ratio of 310 nm (Zhou et al., 2019). *F*n280 and *F*n355 represented for the relative abundance of protein-like substance and humic-like substance (Zhang et al., 2009).

2.3.3 UV–Visible absorption spectroscopy analyses

The UV–Visible absorbance spectra on each extracted sample were performed by using a UV–Vis spectrometer (DR6000) from 200 to 800 nm and using Millipore water as blank with 1 cm quartz cuvette (Shafiquzzaman et al., 2014). The specific UV absorbance at 254 nm (α_{254}) and at 355 nm (α_{355}) were acted as an indicator of DOM concentration (Zhou et al., 2019). The ratio of absorption at 250 nm to 365 nm (E2/E3) was calculated as a proxy of the aromaticity and the average molecular weight of DOM (Li and Hur, 2017). The E3/E4 ratio, an indicator of aromaticity of aquatic humic substances of DOM, was calculated by dividing the absorbance at 300 nm by the absorbance at 400 nm (Li and Hur, 2017). Absorption spectral slope ratio (S_R , the ratio of log transformed absorbance spectra slope at 275–295 nm to that of 350–400 nm) is inversely correlated to the Molecular weight (MW) of DOM (Helms et al., 2008). The E4/E6 was related to the degree of humic (Chen et al., 1977). More detailed information of UV–Visible absorption spectroscopy analysis has been described elsewhere (Li and Hur, 2017).

Figure lengend

Figure S1. Relative abundance of bacterial communities in Baiyangdian Lake. (A, at the phylum level; B, at the class level; C, at the genus level)

Figure S2. PCoA of microbial structure in Baiyangdian Lake.

Figure S3. The relative abundance of various predicted functions of microbial communities based on PICRUSt2, Tax4Fun, and FARPROTAX in Baiyangdian Lake.

Figure S4. Ultraviolet-visible spectroscopy, fluorescence intensity and relative abundance, and correlations of spectral characteristic and environment factors based on UV-vis and EEMs in Baiyangdian Lake. (A, Ultraviolet-visible spectroscopy; B, fluorescence intensity and relative abundance; C, correlations of spectral characteristic and environment factors based on UV-vis; D, correlations of spectral characteristic and environment factors based on EEMs)

Figure S2

Figure S3

Figure S4

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU5141	Proteobacteria	unclassified Sphingomonadaceae	2	8	0.30	40.23	0.46
OTU3359	Actinobacteria	Unclassified Actinobacteria	2	44	0.38	799.07	0.39
OTU5117	Proteobacteria	Roseomonas	2	12	0.33	251.78	0.36
OTU1301	Cyanobacteria	Planktothrix_NIVA-CYA_15	2	49	0.39	1077.52	0.37
OTU9975	Patescibacteria	norank Saccharimonadales	2	15	0.34	212.41	0.42
OTU4613	Actinobacteria	Norank PeM15	2	21	0.34	492.61	0.49
OTU1988	Actinobacteria	Norank Gaiellales	2	48	0.38	1053.17	0.40
OTU8195	Cyanobacteria	Norank Chloroplast	2	21	0.34	139.84	0.60
OTU4334	Cyanobacteria	Norank Chloroplast	2	38	0.38	718.37	0.43
OTU1619	Cyanobacteria	Norank Chloroplast	2	42	0.37	640.22	0.45
OTU10572	Cyanobacteria	Norank Chloroplast	2	21	0.35	131.76	0.54
OTU1622	Actinobacteria	Norank Sporichthyaceae	2	20	0.35	142.49	0.56
OTU8159	Proteobacteria	Norank Mitochondria	4	31	0.36	968.69	0.33
OTU1043	Planctomycetes	Norank Gemmataceae	2	35	0.35	683.95	0.47
OTU6234	Bacteroidetes	Norank Chitinophagaceae	2	27	0.36	377.05	0.46
OTU3340	Proteobacteria	MWH-UniP1_aquatic_group	4	47	0.37	701.58	0.40
OTU9287	Verrucomicrobia	Luteolibacter	2	12	0.32	332.18	0.45
OTU8189	Verrucomicrobia	Luteolibacter	2	38	0.39	1177.65	0.37
OTU7082	Actinobacteria	hgcI_clade	2	49	0.37	763.34	0.41
OTU2316	Bacteroidetes	Fluviicola	2	26	0.36	732.15	0.43
OTU7100	Bacteroidetes	Flavobacterium	2	39	0.38	1053.93	0.43
OTU6236	Bacteroidetes	Flavobacterium	2	33	0.37	533.55	0.45
OTU2247	Bacteroidetes	Flavobacterium	2	10	0.31	46.96	0.78
OTU2246	Bacteroidetes	Flavobacterium	2	30	0.38	876.93	0.48
OTU3358	Bacteroidetes	Dinghuibacter	2	41	0.37	663.75	0.44
OTU3640	Cyanobacteria	Cyanobium_PCC-6307	2	42	0.38	639.69	0.45
OTU4279	Planctomycetes	CL500-3	2	32	0.37	286.80	0.48
OTU2721	Actinobacteria	CL500-29_marine_group	2	59	0.40	1643.05	0.35
OTU1748	Actinobacteria	CL500-29_marine_group	2	54	0.38	781.67	0.42
OTU1630	Actinobacteria	CL500-29_marine_group	2	40	0.37	456.93	0.46
OTU5491	Actinobacteria	Candidatus Limnoluna	2	38	0.37	471.64	0.43
OTU3354	Actinobacteria	Aurantimicrobium	2	36	0.36	689.99	0.40

Table S1 Topological properties of microbial community related to C1 in Bauyangdian Lake.

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU3359	Actinobacteria	unclassified_cActinobacteria	2	44	0.38	799.07	0.39
OTU5117	Proteobacteria	Roseomonas	2	12	0.33	251.78	0.36
OTU4318	Actinobacteria	norank_oPeM15	3	17	0.33	660.73	0.35
OTU4613	Actinobacteria	norank_oPeM15	2	21	0.34	492.61	0.49
OTU1988	Actinobacteria	norank_oGaiellales	2	48	0.38	1053.17	0.40
OTU5112	Cyanobacteria	norank_oChloroplast	3	20	0.34	486.45	0.51
OTU5759	Cyanobacteria	norank_oChloroplast	3	17	0.34	319.60	0.56
OTU10572	Cyanobacteria	norank_oChloroplast	2	21	0.35	131.76	0.54
OTU1619	Cyanobacteria	norank_oChloroplast	2	42	0.37	640.22	0.45
OTU4334	Cyanobacteria	norank_oChloroplast	2	38	0.38	718.37	0.43
OTU8195	Cyanobacteria	norank_oChloroplast	2	21	0.34	139.84	0.60
OTU1622	Actinobacteria	norank_fSporichthyaceae	2	20	0.35	142.49	0.56
OTU8159	Proteobacteria	norank_fMitochondria	4	31	0.36	968.69	0.33
OTU1043	Planctomycetes	norank_fGemmataceae	2	35	0.35	683.95	0.47
OTU9287	Verrucomicrobia	Luteolibacter	2	12	0.32	332.18	0.45
OTU7082	Actinobacteria	hgcI_clade	2	49	0.37	763.34	0.41
OTU2316	Bacteroidetes	Fluviicola	2	26	0.36	732.15	0.43
OTU10548	Bacteroidetes	Flavobacterium	2	24	0.36	635.82	0.51
OTU2246	Bacteroidetes	Flavobacterium	2	30	0.38	876.93	0.48
OTU2247	Bacteroidetes	Flavobacterium	2	10	0.31	46.96	0.78
OTU6236	Bacteroidetes	Flavobacterium	2	33	0.37	533.55	0.45
OTU7100	Bacteroidetes	Flavobacterium	2	39	0.38	1053.93	0.43
OTU9951	Bacteroidetes	Emticicia	3	10	0.34	529.29	0.09
OTU3358	Bacteroidetes	Dinghuibacter	2	41	0.37	663.75	0.44
OTU3640	Cyanobacteria	Cyanobium_PCC-6307	2	42	0.38	639.69	0.45
OTU4279	Planctomycetes	CL500-3	2	32	0.37	286.80	0.48
OTU1630	Actinobacteria	CL500-29_marine_group	2	40	0.37	456.93	0.46
OTU1748	Actinobacteria	CL500-29_marine_group	2	54	0.38	781.67	0.42
OTU2721	Actinobacteria	CL500-29_marine_group	2	59	0.40	1643.05	0.35
OTU5491	Actinobacteria	Candidatus_Limnoluna	2	38	0.37	471.64	0.43
OTU3354	Actinobacteria	Aurantimicrobium	2	36	0.36	689.99	0.40

Table S2 Topological properties of microbial community related to C1% in Bauyangdian Lake.

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU1011	Bacteroidetes	Ferruginibacter	2	47	0.39	2050.98	0.26
OTU1043	Planctomycetes	norank_fGemmataceae	2	35	0.35	683.95	0.47
OTU10548	Bacteroidetes	Flavobacterium	2	24	0.36	635.82	0.51
OTU10572	Cyanobacteria	norank_oChloroplast	2	21	0.35	131.76	0.54
OTU1619	Cyanobacteria	norank_oChloroplast	2	42	0.37	640.22	0.45
OTU1622	Actinobacteria	norank_fSporichthyaceae	2	20	0.35	142.49	0.56
OTU1630	Actinobacteria	CL500-29_marine_group	2	40	0.37	456.93	0.46
OTU1748	Actinobacteria	CL500-29_marine_group	2	54	0.38	781.67	0.42
OTU1988	Actinobacteria	norank_oGaiellales	2	48	0.38	1053.17	0.40
OTU2246	Bacteroidetes	Flavobacterium	2	30	0.38	876.93	0.48
OTU2247	Bacteroidetes	Flavobacterium	2	10	0.31	46.96	0.78
OTU2316	Bacteroidetes	Fluviicola	2	26	0.36	732.15	0.43
OTU2721	Actinobacteria	CL500-29_marine_group	2	59	0.40	1643.05	0.35
OTU3354	Actinobacteria	Aurantimicrobium	2	36	0.36	689.99	0.40
OTU3358	Bacteroidetes	Dinghuibacter	2	41	0.37	663.75	0.44
OTU3359	Actinobacteria	unclassified_cActinobacteria	2	44	0.38	799.07	0.39
OTU3640	Cyanobacteria	Cyanobium_PCC-6307	2	42	0.38	639.69	0.45
OTU3700	Bacteroidetes	Flavobacterium	2	17	0.34	862.09	0.38
OTU4279	Planctomycetes	CL500-3	2	32	0.37	286.80	0.48
OTU4334	Cyanobacteria	norank_oChloroplast	2	38	0.38	718.37	0.43
OTU4613	Actinobacteria	norank_oPeM15	2	21	0.34	492.61	0.49
OTU5117	Proteobacteria	Roseomonas	2	12	0.33	251.78	0.36
OTU5491	Actinobacteria	Candidatus_Limnoluna	2	38	0.37	471.64	0.43
OTU6234	Bacteroidetes	norank_fChitinophagaceae	2	27	0.36	377.05	0.46
OTU6236	Bacteroidetes	Flavobacterium	2	33	0.37	533.55	0.45
OTU7082	Actinobacteria	hgcI_clade	2	49	0.37	763.34	0.41
OTU7100	Bacteroidetes	Flavobacterium	2	39	0.38	1053.93	0.43
OTU7831	Bacteroidetes	Dinghuibacter	2	36	0.39	2052.59	0.24
OTU8189	Verrucomicrobia	Luteolibacter	2	38	0.39	1177.65	0.37
OTU8195	Cyanobacteria	norank_oChloroplast	2	21	0.34	139.84	0.60
OTU9287	Verrucomicrobia	Luteolibacter	2	12	0.32	332.18	0.45
OTU9975	Patescibacteria	norank_oSaccharimonadales	2	15	0.34	212.41	0.42

Table S3 Topological properties of microbial community related to C2 in Bauyangdian Lake.

OTU4670	Bacteroidetes	Flavobacterium	4	8	0.31	366.68	0.25
---------	---------------	----------------	---	---	------	--------	------

Table S4 Topological properties of microbil	ial community related to	C2% in Bauyangdian Lake.	

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU1988	Actinobacteria	norank_oGaiellales	2	48	0.38	1053.17	0.40
OTU5117	Proteobacteria	Roseomonas	2	12	0.33	251.78	0.36
OTU9287	Verrucomicrobia	Luteolibacter	2	12	0.32	332.18	0.45
OTU5071	Proteobacteria	Limnohabitans	3	5	0.30	587.88	0.10
OTU3874	Epsilonbacteraeota	Sulfuricurvum	1	6	0.30	141.26	0.20

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU9992	Proteobacteria	unclassified_pProteobacteria	1	19	0.35	160.79	0.52
OTU7828	Bacteroidetes	unclassified_cBacteroidia	1	35	0.37	459.00	0.52
OTU9974	Proteobacteria	Rhodoferax	1	36	0.37	1155.65	0.35
OTU10024	Proteobacteria	Rheinheimera	1	44	0.39	969.85	0.43
OTU2001	Proteobacteria	Peredibacter	1	53	0.41	1331.26	0.34
OTU10564	Proteobacteria	OM27_clade	1	28	0.37	416.66	0.43
OTU10558	Cyanobacteria	norank_oChloroplast	1	37	0.40	1104.80	0.38
OTU10578	Cyanobacteria	norank_oChloroplast	1	18	0.34	124.71	0.44
OTU9943	Cyanobacteria	norank_oChloroplast	1	41	0.39	1119.33	0.35
OTU1036	Bacteroidetes	norank_oChitinophagales	1	33	0.37	405.39	0.46
OTU10007	Proteobacteria	norank_fT34	1	16	0.34	221.46	0.40
OTU10023	Proteobacteria	norank_fT34	1	40	0.39	1251.08	0.38
OTU3689	Proteobacteria	norank_fT34	1	46	0.40	1296.81	0.36
OTU8598	Proteobacteria	norank_fT34	1	25	0.38	1769.65	0.28
OTU9891	Proteobacteria	norank_fNeisseriaceae	1	42	0.38	1284.04	0.38
OTU5135	Proteobacteria	norank_fMitochondria	1	12	0.32	137.95	0.33
OTU8625	Bacteroidetes	norank_fChitinophagaceae	1	51	0.40	1560.86	0.34
OTU5139	Proteobacteria	Methylobacter	1	48	0.39	1603.68	0.34
OTU6011	Bacteroidetes	Lutibacter	1	3	0.32	11.09	0.33
OTU3346	Spirochaetes	Leptospira	1	27	0.37	728.62	0.41
OTU1777	Bacteroidetes	Flavobacterium	1	31	0.37	575.02	0.38
OTU4274	Actinobacteria	CL500-29_marine_group	1	18	0.34	1078.32	0.23
OTU5801	Actinobacteria	CL500-29_marine_group	1	50	0.40	2325.41	0.30
OTU10012	Proteobacteria	Cellvibrio	1	35	0.38	470.39	0.51
OTU4644	Proteobacteria	alphaI_cluster	1	8	0.32	35.45	0.50

Table S5 Topological properties of microbial community related to C3 in Bauyangdian Lake.

Nodes	Phylum	Genus	Modularity	Degree	Closness centrality	Betweenness centrality	Clustering
OTU8159	Proteobacteria	norank_fMitochondria	4	31	0.36	968.69	0.33
OTU4318	Actinobacteria	norank_oPeM15	3	17	0.33	660.73	0.35
OTU1043	Planctomycetes	norank_fGemmataceae	2	35	0.35	683.95	0.47
OTU10548	Bacteroidetes	Flavobacterium	2	24	0.36	635.82	0.51
OTU1619	Cyanobacteria	norank_oChloroplast	2	42	0.37	640.22	0.45
OTU1630	Actinobacteria	CL500-29_marine_group	2	40	0.37	456.93	0.46
OTU1748	Actinobacteria	CL500-29_marine_group	2	54	0.38	781.67	0.42
OTU1988	Actinobacteria	norank_oGaiellales	2	48	0.38	1053.17	0.40
OTU2246	Bacteroidetes	Flavobacterium	2	30	0.38	876.93	0.48
OTU2247	Bacteroidetes	Flavobacterium	2	10	0.31	46.96	0.78
OTU2316	Bacteroidetes	Fluviicola	2	26	0.36	732.15	0.43
OTU2721	Actinobacteria	CL500-29_marine_group	2	59	0.40	1643.05	0.35
OTU3354	Actinobacteria	Aurantimicrobium	2	36	0.36	689.99	0.40
OTU3358	Bacteroidetes	Dinghuibacter	2	41	0.37	663.75	0.44
OTU3359	Actinobacteria	unclassified_cActinobacteria	2	44	0.38	799.07	0.39
OTU4279	Planctomycetes	CL500-3	2	32	0.37	286.80	0.48
OTU4334	Cyanobacteria	norank_oChloroplast	2	38	0.38	718.37	0.43
OTU4613	Actinobacteria	norank_oPeM15	2	21	0.34	492.61	0.49
OTU5117	Proteobacteria	Roseomonas	2	12	0.33	251.78	0.36
OTU5491	Actinobacteria	Candidatus_Limnoluna	2	38	0.37	471.64	0.43
OTU6234	Bacteroidetes	norank_fChitinophagaceae	2	27	0.36	377.05	0.46
OTU6236	Bacteroidetes	Flavobacterium	2	33	0.37	533.55	0.45
OTU7082	Actinobacteria	hgcI_clade	2	49	0.37	763.34	0.41
OTU7100	Bacteroidetes	Flavobacterium	2	39	0.38	1053.93	0.43
OTU8195	Cyanobacteria	norank_oChloroplast	2	21	0.34	139.84	0.60
OTU9287	Verrucomicrobia	Luteolibacter	2	12	0.32	332.18	0.45

Table S6 Topological properties of microbial community related to C3% in Bauyangdian Lake.

Reference

- Chen, Y, Senesi, N, Schnitzer, M, 1977. Information provided on humic substances by E4/E6 ratios 1. Soil Sci. Soc. Am. J. 41:352-358.
- Helms, J R, Stubbins, A, Ritchie, J D, Minor, E C, Kieber, D J, Mopper, K, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53:955-969.
- Huguet, A, Vacher, L, Relexans, S, Saubusse, S, Froidefond, J-M, Parlanti, E, 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706-719.
- Lavonen, E, Kothawala, D, Tranvik, L, Gonsior, M, Schmitt-Kopplin, P, Köhler, S, 2015. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production. Water Res 85:286-294.
- Lawaetz, A J, Stedmon, C A, 2009. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63:936-940.
- Li, P, Hur, J, 2017. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Env. Sci. Tec. 47:131-154.
- Ohno, T, 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 36:742-746.
- Shafiquzzaman, M, Ahmed, A T, Azam, M S, Razzak, A, Askri, B, Hassan, H F, Ravikumar, B, Okuda, T, 2014. Identification and characterization of dissolved organic matter sources in Kushiro river impacted by a wetland. Ecol. Eng. 70:459-464.
- Stedmon, C A, Bro, R, 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr-Meth 6:572-579.
- Zhang, Y, Liu, M, Qin, B, Feng, S, 2009. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia 627:159-168.
- Zhou, S, Zhang, Y, Huang, T, Liu, Y, Fang, K, Zhang, C, 2019. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. Sci. Total Environ. 651:998-1010.