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Abstract: Minimally processed or fresh fruits and vegetables are unfortunately linked to an increasing
number of food-borne diseases, such as salmonellosis. One of the relevant virulence factors during the
initial phases of the infection process is the bacterial flagellum. Although its function is well studied in
animal systems, contradictory results have been published regarding its role during plant colonization.
In this study, we tested the hypothesis that Salmonella’s flagellin plays a versatile function during the
colonization of tomato plants. We have assessed the persistence in plant tissues of a Salmonella enterica
wild type strain, and of a strain lacking the two flagellins, FljB and FliC. We detected no differences
between these strains concerning their respective abilities to reach distal, non-inoculated parts of the
plant. Analysis of flagellin expression inside the plant, at both the population and single cell levels,
shows that the majority of bacteria down-regulate flagellin production, however, a small fraction of
the population continues to express flagellin at a very high level inside the plant. This heterogeneous
expression of flagellin might be an adaptive strategy to the plant environment. In summary, our study
provides new insights on Salmonella adaption to the plant environment through the regulation of
flagellin expression.
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1. Introduction

The burden of human foodborne diseases is substantial. The most common illnesses resulting
from unsafe food include diarrheal diseases, affecting 550 million people per year [1]. Salmonella is one
of the four key global causes of diarrheal diseases. Indeed, the food-borne pathogen Salmonella enterica
is associated with a number of diseases in a wide range of animal hosts. Therefore, Salmonella-related
infections still represent an important health concern worldwide. Whether bacteria remain restricted to
the gastrointestinal tract and local lymphatic system, or whether they spread to organs like the spleen
or liver, is highly dependent on the individual host and the particular Salmonella strain. Severe cases of
infection may lead to serious clinical problems, including death [2].
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The flagellum is an important virulence factor, often involved in the initial phase of the
infection. Flagella are long, helical appendages that allow bacteria to direct their movement towards
nutrient sources or away from harmful substances [3,4]. Salmonella enterica serovar Typhimurium
(S. Typhimurium) has approximately 6 to 10 peritrichous flagella distributed around the cell [5].
The flagellum is a complex structure made of approximately 30 different proteins that extends up to
20 pm beyond the cell surface [6]. Typically, it consists of three main segments: the basal body, the hook,
and the filament. The basal body anchors the flagellum into the bacterial inner and outer membranes
and includes rotor and stator protein complexes, necessary for force generation and flagellar rotation [7].
The flexible extracellular hook functions as a universal joint that connects the basal body with the third
segment, the filament [8,9]. The filament forms a helical propeller and consists of approximately 20,000
subunits of flagellin. Many Salmonella serovars alternate flagellin expression between two antigenically
different proteins, FljB and FliC, in a process known as flagellar phase variation. Usually only one
of the flagellins is produced at a time in a given cell [5]. These flagellin variants display structural
variability resulting in differences in swimming towards host cell surfaces. For example, bacteria
expressing FliC-flagella are more efficient in the identification of target sites on host cell surfaces and
therefore have an advantage when invading epithelial cells. They outcompete FljB-flagellated bacteria
during intestinal colonization in both gastroenteritis and typhoid murine infection models even though
their intracellular survival and the responses triggered on the host immune system are similar [10].

Besides being involved in bacterial motility and chemotaxis, flagella are also required for many
other processes that contribute to a successful colonization of the host. In mammalian systems, physical
forces between flagella and the host cell surface allow Salmonella to scan the host’s surface topology
and to determine the optimal infection site [11]. Moreover, the flagellar filament seems to be important
for intestinal cell adhesion, which enables triggering of membrane ruffling and initiate invasion [12].

While flagella actively contribute to the infection process during pathogenic interactions, flagellin
may cause a disadvantage. Flagellin is one of the best-studied Pathogen-Associated Molecular Patterns
(PAMPs) and is recognized in mammals and plants by the Toll-like receptor 5 (TLR5) and FLAGELLIN
SENSING2 (FLS2) immune receptors, respectively [13-15]. Although PAMPs are considered to be
conserved, several reports revealed that some bacteria have evolved divergent flagellin sequences,
leading to reduced Pattern-Triggered Immunity (PTI) activation [16-19].

In plant systems, reports regarding the importance of flagella for the survival and colonization
of Salmonella are conflicting. Shaw et al., reported that flagella do not have a role in attachment to
tomato plants [20]. In contrast, other studies showed that the absence of a flagellar filament has an
impact on adhesion to various plants. Berger et al., reported reduced adhesion to basil leaves for the
S. Senftenberg AfliC mutant [21], whereas in Arabidopsis thaliana the AfliC mutant exhibited enhanced
colonization of roots [22]. Differences in the role of flagella in colonization of rhizosphere versus
phyllosphere have been recently suggested [23]. These authors reported decreased adhesion levels
to corn salad (Valerianella locusta) leaves for strains lacking flagella filaments. Hence, flagella were
proposed to play an important role during both adhesion and motility, while in contact with corn
salad. This discrepancy in results might be attributed to the different plant models used in each study.
Additionally, variations in the physiological conditions of the plants used in the different studies,
as well as analogous variations in the corresponding Salmonella strains, could have added to those
discrepancies. Noteworthy, a recent study reported differences in the structures and motility functions
of FliC and FIjB under high-viscosity conditions. The authors stated that Salmonella strain expressing
FljB showed a higher motility than the one expressing FliC under high viscosity. They attributed
these differences to the density of D3 domain, which was much lower in FljB than FliC, offering more
flexibility and mobility than to that of FliC [24].

In this work, we hypothesize that flagella might play a versatile role during colonization of
plants. We used tomato (Solanum Iycopersicum cultivar Moneymaker) as a representative crop plant,
which fruits are widely consumed and have been associated to several salmonellosis outbreaks [25].
We assessed the ability of S. Typhimurium wild type strain 14028s and a double flagellin mutant
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S. Typhimurium AfljBAfliC to persist inside the plant, as well as to reach distal, non-inoculated tissues
of the plant. We compared the respective abilities of these strains using competitive index assays.
The defense response of tomato plants to the presence of wild type Salmonella strains and strains
lacking flagella was evaluated through gene expression analysis of marker genes. We also analyzed
the expression of motility and adhesion-related bacterial genes in response to plant media. Finally,
we evaluated the expression of fliC at the single-cell level following expression of a chromosome-located
transcriptional fusion to Green Fluorescent Protein (GFP) by confocal microscopy and flow cytometry.
We analyzed f1iC expression in bacteria growing in medium supplemented with plant extract, and also
in bacteria directly extracted from the plant apoplast. Our results show that the majority of cells within
the S. Typhimurium apoplastic population down regulate the expression of flagella. However, a small
subpopulation maintains flagellar expression in planta at a very high level. Heterogeneous expression
of flagella might be an adaptive strategy of Salmonella to efficiently colonize the plant environment:
non-motile cells not expressing flagellin could reduce recognition by the plant immune system or
display increased fitness, while those retaining motility might be ready to colonize new ecological
niches such as, for example, the herbivore. Taken together, our results provide new insights on how
Salmonella adapts to the plant environment and on which strategies Salmonella uses in order to persist
in this environment.

2. Materials and Methods

2.1. Bacterial Strains, Culture Conditions and Media Preparation

Salmonella enterica serovar Typhimurium strain 14028s (S. Typhimurium 14028s), resistant to
rifampicin, was used in this study as the wild type reference strain. In addition, a flagellin double
mutant Salmonella enterica serovar Typhimurium 14028s AfljBAfliC, (S. Typhimurium AfljBAfliC) kindly
provided by Michael Hensel (University of Osnabriick, Osnabriick, Germany) was used. Bacteria were
grown in Luria-Bertani (LB) broth (Carl Roth GmbH & Co., KG, Karlsruhe, Germany) or on LB agar
plates. Plant-based media, namely lettuce medium (LM) and tomato medium (TM), were prepared as
described previously by [26,27], respectively. Minimal medium (MM) was used as a control medium
and was prepared as described by [27]. Xylose-lysine-desoxycholate (XLD) agar (Carl Roth GmbH
& Co., KG) was used as a selective medium for Salmonella. Antibiotics were used at the following
concentrations: rifampicin 50 mg/L for S. Typhimurium 14028s, rifampicin 50 mg/L plus kanamycin
50 mg/L for AfljBAfliC, and chloramphenicol 50 mg/L for fliC-gfp strain. Bacteria were incubated
overnight on LB and XLD agar plates at 28-37 °C, or at 25-28 °C on plant-based media. All strains
used in this study are listed in Supplementary Table S1.

2.2. Fluorescent Labeling of Salmonella Strains

In order to visualize colonization patterns, S. Typhimurium 14028s and S. Typhimurium AfljBAfliC
were GFP-labeled with the pSM1890 GFP plasmid [28]. The preparation was performed according
to [29]. Briefly, Salmonella strains were allowed to mate with E. coli carrying the IncQ plasmid pSM1890
GFP (derived from the IncQ plasmid plE723 [30] and E. coli carrying the helper plasmid R751 [31].
Cells were re-suspended from LB plates into 1 mL of a 10 mM MgCl, solution. The cell suspensions were
combined, mixed and centrifuged and the supernatant discarded. The pellets were re-suspended in the
remaining supernatant. The solution was placed on a filter disc (0.22 pm, Durapore membrane filters,
Merck, Darmstadt, Germany) on LB agar and incubated overnight at 28 °C. Cells were re-suspended
by vortexing the filter in 5 mL of 10 mM MgCl, solution and transconjugants were selected by plating
serial dilutions on LB. After overnight incubation at 28 °C, green fluorescent colonies were picked and
plated on XLD agar for further detection on the following day.

In addition, a transcriptional fusion to the gfp gene was generated in S. Typhimurium 14028s
downstream of the stop codon of the fliC ORFE. The source of the promoterless gfp ORF including its
ribosomal-binding site, and the chloramphenicol resistance cassette, used for selecting the integration
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by allelic exchange of the gfp-containing DNA fragment, was pZEP07 [32]. The construct was integrated
into the chromosome of S. enterica using the Lambda Red recombination system [33].

2.3. Plant Cultivation

Tomato (Solanum lycopersicum cultivar Moneymaker) seeds were surface sterilized with 70%
ethanol for 1 min followed by incubation for 3 min in 3% sodium hypochlorite (NaClO) solution.
The seeds were later vigorously washed with sterile distilled water. Seeds were germinated for
7-10 days in Petri dishes on sterile }I—strength Murashige and Skoog (MS) agar medium (Sigma-Aldrich
Chemie GmbH, Miinchen, Germany), pH 5.4 including vitamins and 5 g/ L sucrose. Seedlings were
grown under sterile conditions with a light intensity of 150 pmol m?/s (16 h photoperiod) at 22 °C for
either two additional weeks in sterile glass pots (for spray inoculation), or for 2 days in 50 mL conical
tubes, containing 20 mL }I MS liquid medium for microscopic analysis.

In order to evaluate the survival of the bacteria in leaves, plants were grown under greenhouse
conditions in standard bedding substrate (substrate 1, Klasmann-Deilmann GmbH, Geeste, Germany)
at 22 °C and 16 h photoperiod for 4-5 weeks. The plants were watered as needed from the bottom to
avoid contamination of the non-inoculated leaf parts.

2.4. Confocal Laser Scanning Microscopy (CLSM)

Tomato plants were grown under sterile conditions in order to visualize the colonization patterns
of Salmonella. Seven to ten-day old plants were transferred to conical tubes containing 1-strength
MS liquid medium. Plants were allowed to adapt to the medium for 24 h before the medium was
inoculated with a final ODgpp nm = 0.1 corresponding to 108 colony forming units/mL (CFU/mL) of
either S. Typhimurium 14028s-GFP or S. Typhimurium AfljBAfliC-GFP strain. Plants were sampled
(leaves and roots) 24 h post inoculation (hpi), stained with propidium iodide (PI) solution (1 pg/ mL)
for 5 min and mounted on a microscope slide in 4/, 6-diamidine-2’-phenylindole dihydrochloride
(DAPI) solution (10 ug/ mL). Confocal laser scanning microscopy was performed using SP8 microscope
(Leica Microsystems, Wetzlar, Germany) with excitation 405 nm, emission 430-480 nm (blue), excitation
488 nm, emission 500-550 nm (green), excitation 561 nm, emission 600-680 nm (red) including
autofluorescence of chloroplasts.

2.5. Persistence of Salmonella in Plants

To assess the survival of Salmonella inside tomato leaves, plants were grown in substrate under
greenhouse conditions as described above. Leaves were inoculated with S. Typhimurium 14028s
and S. Typhimurium AfljBAfliC strains using either syringe infiltration or dip-inoculation. To avoid
contamination of the entire plant, the non-inoculated parts were covered with plastic bags until the
inoculated parts dried (Supplementary Figure S1). Bacterial inocula were prepared using fresh bacterial
colonies grown on LB plates. Biomass thus obtained was adjusted to 107 CFU/mL (infiltration) or
10% CFU/mL (dipping) using 10 mM MgCl,. Additionally, some plants were either inoculated with
10 mM MgCl, or non-treated (N.T.) and used as controls. Leaves were sampled three hours (0 day),
7 and 14 days post inoculation (dpi). Five mm diameter leaf discs were obtained using a sterile
biopsy punch (GlaxoSmithKline PLC, Brentford, UK) and homogenized in 1 mL 10 mM MgCl, using a
tissue homogenizer (Xenox, Gotze, Berlin, Germany). Serial dilutions were prepared in duplicates and
10 pl of each dilution was dropped in duplicates onto XLD agar plates. CFUs were counted after an
overnight incubation at 37 °C. The experiment was performed in three (infiltration) or four (dipping)
replicates (one leaf per plant and replicate). Student’s t-test was applied and p < 0.05 was considered
significant. No colonies were found in negative control (N.T.) or MgCl,-treated plants.

2.6. Translocation of Salmonella within Tomato Plants

To test the requirement of flagella in systemic colonization of tomato, plants were grown under
greenhouse conditions as described previously. Leaves were inoculated with S. Typhimurium 14028s
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or S. Typhimurium AfljBAfIiC strains following the methods described above (infiltration or dipping).
Leaves (inoculated and non-inoculated) were sampled 5 h (0 dpi), 7 and 14 dpi, cut with sterile scissors
and placed in 50 mL conical tubes containing 10 mL Buffered Peptone Water (BPW) (Carl Roth GmbH &
Co. KG). Tubes were incubated at 37 °C overnight under shaking conditions (140 rpm) and 10 pL of the
suspension was transferred to 190 uL. Rappaport Vassiliadis Broth (RVS) (Carl Roth GmbH & Co. KG)
and incubated overnight at 42 °C. Ten puL of both enrichments (BPW and RVS) was dropped on XLD
agar plates to confirm the presence of Salmonella after overnight incubation at 37 °C. The experiment
was conducted in seven (infiltration) or eight (dipping) replicates. One leaf per plant per treatment
and replicate was used.

2.7. Competitive Bacterial Colonization Assays

Competitive index (CI) assays were carried out as previously described in [34]. Briefly, leaves
from four to five-week old tomato plants, growing under greenhouse conditions, were infiltrated with
a5 x 10° CFU/mL of a mixed bacterial suspension, containing equal CFU of wild type (S. Typhimurium
14028s) and mutant derivative strain (S. Typhimurium AfljBAfliC), using a blunt syringe. Serial dilutions
of the inoculum were plated onto LB agar and LB agar with kanamycin to confirm dose and relative
proportion between the strains, which should be close to one. Seven- or 14-days post-inoculation (dpi),
five 10 mm-diameter leaf discs were taken from the infiltrated area of each leaf and homogenized
together by mechanical disruption into 1 mL of 10 mM MgCl,. Then, bacteria were enumerated by
plating serial dilutions onto LB agar supplemented with cycloheximide, and the colonies obtained
were replica-plated onto LB agar and LB agar with kanamycin, to differentiate the strains within the
mixed infection. Bacterial enumeration was carried out in the dilution displaying between 50 and 500
colonies per plate. The Cl is defined as the mutant-to-wild type ratio within the output sample divided
by the mutant-to-wild type ratio within the input (inoculum), which should be close to one [35,36].
Cls presented were obtained from six plant replicates. Mean CI values are shown. Error bars represent
standard error. Each CI was analyzed using a homoscedastic and 2-tailed Student’s t-test and the
null hypothesis that mean index is not significantly different from 1 (p < 0.05).

2.8. Quantitative Real Time PCR Analysis

To assess the response of tomato to the presence of Salmonella and to evaluate the role of flagella
in this response, S. Typhimurium 14028s and S. Typhimurium AfljBAfliC were sprayed onto 3-week
old sterile plants. Plants were grown on }—L-strength MS agar medium. In order to allow the bacteria to
adapt to the plant environment, bacteria were pre-grown overnight on tomato-based medium (TM) at
25-28 °C. Plants were spray-inoculated with ODggg nm = 0.1 (108 CFU/mL). Leaves were sampled at 0,
6 and 24 hpi and samples were pooled from three plants per treatment. About 100 mg of leaf tissue
was homogenized in a TissueLyser (Qiagen, Hilden, Germany) and the total RNA was extracted using
peqGOLD TriFast Reagent (Peqlab, Darmstadt, Germany) according to the manufacturer protocol.
DNase treatments, using PerfeCTa DNase I, and cDNA synthesis were performed using 1 pg of total
RNA and qScript cDNA Synthesis kit (Quanta BioSciences, Gaithersburg, MD, USA). Target cDNA
was then amplified in a 20 pL reaction mixture containing 5 uL of sample DNA and LUNA Master Mix
(New England Biolabs, Frankfurt, Germany) according to the manufacturer procedure. Reactions were
run for 5 min at 95 °C, followed by 40 cycles of 30 s at 95 °C, 30 s at 58 °C and 60 s at 72 °C in the CFX
connect System (Bio-Rad, Miinchen, Germany). Primers used for the qPCR are listed in Supplementary
Table S2. Relative gene expression was normalized to the expression of the Actin gene. The experiment
was performed in 6 replicates. Tukey HSD Test was applied with 95% family-wise confidence level
on R version 3.6.1 and p < 0.05 was considered significant (Supplementary Table S3). Additionally,
the experiment was repeated using 100 nM flg22 peptide (QRLSTGSRINSAKDDAAGLQIA) (AnaSpec.
Inc., Fremont, CA, USA), as a control. The samples were obtained at 0 and 6 hpi and the experiment
performed in 3 replicates.
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2.9. Salmonella Response to Plant Media

Two experimental approaches were designed in order to test how well Salmonella adapts to the
plant host and uses potential nutrients available in the plant environment. The first approach was
intended to test the ability of the plant media to support growth of Salmonella, hence S. Typhimurium
14028s and S. Typhimurium AfljBAfliC strains were grown in liquid tomato-based medium (TM)
overnight at 25-28 °C. The initial bacterial concentration was set to ODgpp nm = 0.01 and samples were
taken at different time points. Serial dilutions were prepared in duplicates and 10 pl of each dilution
was dropped onto XLD agar plates, and CFUs were quantified after overnight incubation at 37 °C.
The experiment was performed in three replicates.

The second experimental approach was designed to assess the expression of fIjB, fliC and fimA
in Salmonella in response to different media. S. Typhimurium 14028s and S. Typhimurium AfljBAfIiC
were cultured in LB liquid medium overnight at 37 °C with aeration (150 rpm). Cells were pelleted
at low speed (1500x g, 10 min), washed and re-suspended in 1 mL of 10 mM MgCl,. Two mL of
the suspension (10 CFU/mL) was pipetted into cellulose ester dialysis membrane tubes with a pore
size of 100 kD (Spectrum Europe, Breda, The Netherlands), which were knotted at both ends using
dental floss. The dialysis membranes were placed into 50 mL conical tubes containing 30 mL of TM,
LM, LB (positive control), or MM (negative control) media. The conical tubes were incubated at
25-28 °C for 24 h while shaking at 130 rpm. Subsequently, 2 X 0.5 mL from each dialysis membrane
were mixed with RNAprotect (Qiagen), incubated for 5 min at room temperature and centrifuged
at high speed (4000x g, 10 min). Total RNA was extracted from the bacterial samples using the RNeasy
Mini Kit (Qiagen) according to the manufacturer instructions. DNase digestion and cDNA synthesis
were performed using Maxima H Minus First Strand cDNA Synthesis Kit (ThermoFisher Scientific,
Braunschweig, Germany). The qPCR analysis was performed as described above. Primers used for the
gPCR are listed in Supplementary Table S2. Relative gene expression was normalized to the expression
of the rfaH gene from Salmonella. All treatments were performed in five replicates. Tukey HSD Test
was applied with 95% family-wise confidence level on R version 3.6.1 and p < 0.05 was considered
significant (Supplementary Table S3).

2.10. Western Blot Analysis

S. Typhimurium 14028s and S. Typhimurium AfljBAfliCwere cultured in dialysis membranes merged
into conical tubes containing different media, as described earlier. Half mL of the bacterial culture was
sampled from the dialysis membranes and centrifuged at low speed (1500 g, 10 min, 4 °C) in order to
reduce shearing and loss of flagella. Pellets were re-suspended in 100 uL of 10 mM MgCl,. Proteins were
extracted using methanol/chloroform. Protein concentration was measured at ODsg5 ny, using Bradford
assay Roti® Quant 5 x concentrated (Carl Roth GmbH & Co. KG). Five ug proteins were separated on
SDS-PAGE using 12% polyacrylamide gels and electrophoretically transferred to a PVDF membrane
(Immun-Blot® PVDF, Bio-Rad) for the following western blot analysis. Anti-flagellin FliC monoclonal
antibody (1:5000; InvivoGen, San Diego, CA, USA) was used as a primary antibody and goat anti-mouse
polyclonal-HRP (1:5000; Carl Roth GmbH & Co. KG) was used as a secondary antibody. Bands were
detected after adding substrate mixture (SERVA Electrophoresis GmbH, Heidelberg, Germany) using
an Optimax X-ray film processor (PROTEC Medizintechnik GmbH & Co., Oberstenfeld, Germany).
The experiment was performed in three replicates.

2.11. Quantification of Flagellin Protein in Different Media

Salmonella strains were grown and proteins were extracted as described above. We used 2 x 50 pL
of each protein sample to coat clear bottom and high binding 96-well plates (Greiner bio-one GmbH,
Frickenhausen, Germany). Coating was done for 3 h at 37 °C, the 96-well plates were subsequently
washed and proteins were blocked overnight using 10% milk in PBS. Afterwards, samples were
incubated with anti-flagellin FliC monoclonal antibody (1:1000; InvivoGen) for 1 h followed by
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another 1 h incubation with goat anti-mouse polyclonal-HRP (1:5000; Carl Roth GmbH & Co. KG).
After each incubation step, 4 washing steps were performed. To measure absorbance, TMB substrate
kit (ThermoFisher Scientific) was added and incubated in darkness for 30 min followed by addition of
the stop solution (ThermoFisher Scientific). Measurements were carried out using TriStar’S multimode
Reader (Berthold Technologies GmbH & Co., Wildbad, Germany) at 450 nm and 652 nm wavelengths
applying a single endpoint protocol. To calculate the percentages of flagellin present, the values from
the 652 nm measurement were subtracted from those obtained at 450 nm in order to correct the optical
imperfections in the microplate. BO (No antigen was added) and NSB (No primary antibody was
added) were used as controls for non-specific binding between primary-secondary antibodies and
antigen-secondary antibody, respectively. The experiment was performed in 3 replicates.

2.12. Flow Cytometry and Confocal Laser Scanning Microscopy (CLSM)

Salmonella cells from steady-state cultures in LB were washed with 10 mM MgCl, and diluted in
TM or LB at ODggg = 0.1, followed by incubation at 28 °C with shaking (aerophilia) or without shaking
(microaerophilia) for time-course flow cytometry analyses. At different time points 300 uL of each
culture were washed with 10 mM MgCl, and analyzed by flow cytometry. For flow cytometry analysis
of apoplast-extracted bacteria, tomato leaves were syringe infiltrated at ODggg = 0.1 and both inoculum
and apoplast-extracted bacteria were used. To recover bacteria from tomato leaves an apoplastic
fluid extraction was carried out at the indicated time point post inoculation as previously described
by [34]. Summarily, the apoplastic fluid was obtained by pressure infiltrating a whole leaf with 10 mL
of 10 mM MgCl, solution inside a 20 mL syringe. Following five cycles of pressure application, the
flow-through was removed and placed in a fresh 50 mL tube. Both tubes were centrifuged for 30 min
at low speed (900x g) at 4 °C. Pellets were re-suspended into 1 mL MgCl, and analyzed by flow
cytometry. Cultures and apoplast-extracted bacterial suspensions were collected using a BD FACSVerse
cytometer and data were analyzed with Kaluza Analysis Software (Beckman Coulter, Brea, CA, USA).
To analyze cytometry data the following conventions were applied: all SSC, FSC, and fluorescence
zero values were excluded. Data were excluded that fell within the forward scatter (FSC) and side
scatter (SSC) region where significant counts appeared in “buffer only” controls. FSC and SSC medians
were calculated and a series of circular gates expanding out from the FSC and SSC medians were
applied. All data were collected for 100,000 events per sample and were compared with the data from
the control strain (without GFP reporter) to establish the fraction of fliCON cells. Live/dead staining
was carried out using propidium iodide at 20 mM (Sigma, St. Louis, MO, USA). Each independent
experiment included two replicate samples, as indicated for each figure. Figures show typical results.

For microscopy images of apoplast-extracted bacteria, samples were stained with 20 uM of
FM4-64 (N-3-triethylammoniumpropyl-4-6-4-diethylaminophenylhexatrienylpyridinium dibromide)
(Thermo Fisher Scientific, Waltham, MA, USA) and observed under either a SP8 microscope (Leica
Microsystems) or a confocal microscope LSM 800 (Zeiss, Wetzlar, Germany) with excitation 488 nm,
emission 500-533 nm for GFP and excitation 488 nm, emission 604-674 nm for FM4-64.

3. Results

3.1. Salmonella Does Not Require Flagella to Persist and to Colonize Plants

In order to verify how flagellin, and therefore the ability to form a functional flagella, influences
the persistence of Salmonella in plants, we analyzed the persistence of the wild type Salmonella enterica
serovar Typhimurium strain 14028s (S. Typhimurium 14028s) and the double mutant S. Typhimurium
AfliBAfliC in tomato plants (Solanum lycopersicum cultivar Moneymaker). The number of colony forming
units (CFU) within inoculated tissues was assessed 14 days post infiltration (dpi). We observed no
differences in the number of CFU recovered from leaves inoculated with the S. Typhimurium AfljBAfliC
mutant strain versus those from leaves inoculated with the wild type S. Typhimurium 14028s (Figure 1a).
These results are in line with our previous reports of Salmonella persistence in tomato plants [27],
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and indicate that the presence of functional flagella is not required for persistence of Salmonella in
plants. Growth of both strains was also very similar in tomato-based medium (TM) (Figure 1b) [27].
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Figure 1. Salmonella persistence in and on leaves does not require flagella. Salmonella enterica serovar
Typhimurium strain 14028s (S. Typhimurium 14028s) and the double S. Typhimurium Af[jBAfliC mutant
were infiltrated at ODgpg nm = 0.01 (ca. 107 CFU/mL) into tomato leaves. The presence of viable colony
forming units (CFUs) was assessed during the following 14 days in cutout leaf discs. Both Salmonella
strains persisted at the same level after infiltration (a). To monitor Salmonella growth in tomato-based
(TM) medium, the number of CFU of S. Typhimurium 14028s and the double mutant S. Typhimurium
MiBAfliC was assessed during 24 h post inoculation (hpi) into TM (b). Both strains reached the
steady state during the 24 h, no difference between the wild type and the mutant proliferation rates
was observed. Translocation of bacteria to non-inoculated leaves was verified using two inoculation
techniques: infiltration (c) and dipping (d). After inoculation of leaves with bacterial suspensions
(107 CFU/mL for infiltration or 108 CFU/mL for dipping), leaves were cut at the indicated days post
inoculation (dpi) and subsequently incubated in enrichment media Buffered Peptone Water (BPW)
and Rappaport Vassiliadis Broth (RVS). Graphs represent the translocation efficiency after infiltration
(c) or dipping (d) inoculation. The enrichment cultures in RVS medium were plated on XLD-agar
medium. The bars represent the percentage of plants for which non-inoculated leaves were positive
for Salmonella from an average of seven (infiltration) and eight (dipping) replicates (one leaf per plant
per treatment). (e) Direct comparison between persistence of S. Typhimurium 14028s and the double
mutant S. Typhimurium AfljBAfliC was assessed using competitive index (CI) assays. Both strains were
co-inoculated by infiltrating a 5 x 10° CFU/mL with a 1:1 proportion of these two strains. Bacteria were
extracted 7 and 14 dpi from tomato leaves and plated on LB plates for CFU determination. Replica
plating was carried out in LB and LB plus kanamycin to differentiate between the two strains. Cls
presented are representative results from six replicates. Mean CI values are shown. Errors bars represent
standard error. Each CI was analyzed using a homoscedastic and 2-tailed Student’s t-test and the
null hypothesis that mean index is not significantly different from 1, p < 0.05 were considered significant.
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Next, we asked whether flagella are required for systemic colonization of tomato plants. To thisend,
we monitored the presence of the wild type S. Typhimurium 14028s and the double S. Typhimurium
AfljBAfliC mutant in distal, non-inoculated leaves of previously inoculated plants, following either
infiltration or dipping as inoculation methods (Supplementary Figure S1). Remarkably, cells of both
Salmonella strains were found in distal non-inoculated parts of the plant. The highest percentage of
leaves that tested positive for Salmonella was observed after infiltration, reaching a maximum of 40% at
7 dpi (Figure 1c).

Although the percentage of non-inoculated leaves that tested positive were lower after dipping,
20% of the leaves inoculated with S. Typhimurium 14028s at 7 and 14 dpi, and 10% of those inoculated
with the S. Typhimurium AfljBAfliC mutant were still colonized, respectively (Figure 1d). Importantly,
the presence of Salmonella in the plant apoplast caused no observable disease symptoms, even 14 days
after infiltration (Supplementary Figure S2).

These results encouraged us to test whether the wild type strain had any advantage over the
S. Typhimurium AfljBAfliC mutant during persistence in tomato plants, using mixed infections
and calculating the corresponding competitive indices (Cls). Competitive assays are very sensitive
and can accurately measure small differences in bacterial performance within the host, such as
in host colonization. Those assays have been optimized for Salmonella in animals [37], and in plants
systems for several bacterial pathogens [38,39]. Equal amounts of S. Typhimurium 14028s and
the S. Typhimurium Afl[jBAfliC mutant were co-inoculated by infiltration into tomato leaves at a
final concentration of 5 X 10> CFU/mL. This inoculation dose has been shown before to prevent
trans-complementation between virulent and attenuated derivatives of plant pathogenic Pseudomonas
syringae. In this experimental setting, co-inoculated strains have been shown to grow as they would
in individual infections [38]. Since the competitive index (CI) is calculated as the test strain (mutant
in this case)-to-wild type output ratio divided by their input ratio, a CI significantly smaller than
one indicates a growth defect for the mutant strain being tested, and a CI significantly higher than
one would indicate a competitive advantage for the mutant. The CI calculated after infiltration of
S. Typhimurium AfljBAfliC mutant in mixed infection with the wild type strain was not significantly
different from 1.0 neither 7 nor 14 dpi (Figure le), suggesting that the ability to persist and to colonize
plants in Salmonella does not rely on the function of flagella or the expression of flagellin. Analysis of a
single S. Typhimurium AfliC mutant strain versus the S. Typhimurium 14028s wild type using Cl in the
same experimental conditions and time points rendered the same results (Supplementary Figure S3).

3.2. Salmonella Strain Lacking Flagellin Displays a Colonization Pattern on Tomato Leaves Similar to That of
the Wild Type

Next, we wondered if the colonization pattern on tomato plants is altered when Salmonella is
deprived of flagella. Wild type S. Typhimurium 14028s and S. Typhimurium AfljBAfliC double mutant
were labeled with the green fluorescent protein (GFP) and plants were submerged into }L—strenght MS
medium and inoculated with GFP-expressing bacteria. Colonization patterns were assessed 24 h post
inoculation (hpi) using confocal laser scanning microscopy (CLSM), evaluating both roots and leaves
as potential entry sites. We observed no differences between the colonization patterns of wild type
and mutant strains. Both strains assosiated to structures akin to root cells (Figure 2) and colonized
the epidermis of tomato leaves. Similar to wild type bacteria, double mutant bacteria were observed
gathering around stomata openings (Figure 2).



Microorganisms 2020, 8, 815 10 of 21

leaf root

S. Typhimurium
14028s

S. Typhimurium
AfliBAfliC

Figure 2. Attachment to plants does not require flagella. Salmonella enterica serovar Typhimurium
strain 14028s (S. Typhimurium 14028s) and the double mutant S. Typhimurium AfljBAfliC were labeled
with the green fluorescent protein (GFP) using the pSM1890 GFP-plasmid. Plants were dip-inoculated
with a 108 CFU/mL suspension of GFP-expressing Salmonella. Attachment of Salmonella to plant roots
and leaves was assessed after 24 h, using the confocal laser scanning microscopy with the following set
up: excitation 405 nm, emission 430-480 nm (blue); excitation 488 nm, emission 500-550 nm (green)
and excitation 561nm, emission 600-680 nm (red). Auto-fluorescence of chloroplasts is indicated in red
and GFP-labeled Salmonella cells are indicated in green. Scale bars indicate 20 pum. The cross lines in
orthogonal scaling are pointing the corresponding areas.

3.3. Expression of Flagellin-Coding Genes Is Down-Regulated in Plant-Mimicking Media

One possible explanation for flagellin not having an impact on Salmonella persistence or plant
colonization would be that flagellin expression is down-regulated after bacterial entry into the plant
tissue. To evaluate this possibility, expression of flagellin-coding fIjB and fliC genes was determined
first in media supplemented with plant extracts. Expression levels for these two genes were assessed
at three different time points during bacterial replication in tomato-based medium (TM) [27] and,
to evaluate a potential influence of diverse plant environments, expression was also assessed in
lettuce-originated medium (LM) [29], as well as in a minimal medium (MM) with similar composition
to TM and LM media but without added plant extracts. LB medium was used as a reference. All media
were inoculated with equal amounts of wild type S. Typhimurium 14028s and cells were harvested 6,
24 and 48 h thereafter. The expression of fIjB and fliC was reduced in both plant-supplemented media
as soon as 6 hpi (Figure 3).

The fimA gene encoding for type 1 fimbriae (major subunit) was used as a control. Fimbriae
play a role in mediating Salmonella adherence to eukaryotic cells [40]. In contrast, expression levels
of the control gene fimA at 6 hpi were very similar in all media for both strains. At later time points,
expression of fljB, fliC and fimA genes was significantly reduced (Figure 3).
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Figure 3. Flagellin expression is reduced in plant-based media. Expression of the flagellin fIjB, fliC and
the adhesin fimA genes was assessed 6, 24 and 48 h after inoculation of S. Typhimurium 14028s into
plant-based (LM or TM) media. Inoculations into LB and minimal media (MM) were used as controls.
The expression of fimA was assessed additionally in the AfljBAfliC mutant. The amount of mRNA
was normalized to the expression level of Salmonella rfaH. Asterisks indicate p < 0.05 in Tukey HSD

test. For more information about significant differences among treatments, please see Supplementary
Table S3.

We further verified the down regulation of flagellin synthesis by analyzing the corresponding
protein levels. Both strains, S. Typhimurium 14028s and S. Typhimurium AfIjBAfliC double mutant,
were inoculated into TM, LM and MM media, as described above. The presence of flagellin was
assessed 24 and 48 hpi by both western blot and ELISA assays, using an anti-FliC antibody. Results
obtained by these two methods were very similar, detecting flagellin in bacteria cultured in LB medium
even after 48 h of incubation (Figure 4a). Flagellin levels were drastically reduced in both TM and LM
plant-supplemented media, and were undetectable in control MM medium. As expected, flagellin
was not detected in the double S. Typhimurium Af[jBAfliC mutant (Figure 4a). In line with these
observations, the results obtained using the more sensitive ELISA technique revealed a similar pattern.
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Flagellin was present in LB-originated samples 24 and 48 hpi, but was detected at significantly lower
levels in both plant-supplemented media, and its presence in MM was below the level of detection,
as for the S. Typhimurium AfljBAfliC mutant (Figure 4b).

S. Typhimurium S. Typhimurium
14028s AfliBAfliC
LB ™ LM MM LB ™ LM MM

24 48 24 48 24 48 24 48h 24 48 24 48 24 48 24 48h

~55KDa o, |wee ww o e o o

anti-FliC

Coomassie blue
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5000 His O™ By B MM
4000
(=]
S 3000
N
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. lplnunnun
24h 48h
CFU/mL S. Typhlmurlum S. Typhimurium
14028s AfliBAfliC

(b)

Figure 4. Flagellin synthesis is reduced in plant-based media. Presence of flagellin protein was
determined using western blot (a) and ELISA (b) techniques. Total Salmonella proteins were extracted
24 or 48 h after inoculation of S. Typhimurium 14028s into LM, TM, MM or LB media. Inoculation
with the S. Typhimurium AfljBAfliC mutant was used as a negative control. Five pug of total protein
was separated on SDS-PAGE and blotted on a PVDF membrane prior to probing with a primary
anti-Salmonella specific flagellin (anti-FIiC) antibody, followed by probing with secondary anti-mouse
antibody coupled to HRP enzyme and exposition (a). Alternatively, 96-well plates were coated with
proteins isolated as indicated and probed with primary (anti-FIiC) and secondary anti-mouse antibody
coupled to HRP antibodies. The resulting substrate production was assessed 30 min after reaction start
using 450 nm and 652 nm wavelengths. As internal control, several dilutions of the wild type strain
growing in LB at 24 hpi were used to compare the expression level. The dilutions used were 108, 10°,
and 10* CFU/mL (b).

3.4. Flagellin Is Heterogeneously Expressed in the Plant Environment

In Salmonella, expression of fliC has been described to display high levels of phenotypic heterogeneity
due to molecular noise [41]. Thus, we decided to investigate the changes in fliC expression at a single-cell
level, both in plant-mimicking media and in planta.

To this purpose, we generated a chromosome-located transcriptional fusion of fliC to the gfp
reporter gene (fliC::gfp) and followed the fluorescence levels at different time points of bacterial
proliferation in either LB or TM, using flow cytometry. At the start of the experiment, right after
dilution of a stationary LB culture incubated overnight at 37 °C with areation, the vast majority of the
cells express fliC, as established by comparing fluorescence levels of each individual cell with the levels
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of fluorescence of a non-gfp Salmonella control strain. The OFF subpopulation was hereafter defined as
the level of fluorescence at which 99% of the non-gfp control bacteria are included, thus all bacteria
displaying higher levels of fluorescence are considered part of the ON subpopulation (Figure 5a).
However, even though the initial population mostly expresses fliC (92% ON), a heterogeneous pattern
emerges as soon as 2 hpi, when an OFF subpopulation can be clearly identified (approximately 20%
OFF) for cells grown in either TM or LB. This OFF subpopulation grows up to 58% for 8h in TM,
whereas in LB the OFF subpopulation grows up to 26%, therefore a higher proportion of FliCON bacteria
is present in the population growing in LB (Figure 5a). Interestingly, the level of heterogeneity of the
population increases during the experiment, to the point of establishing two subpopulations displaying
different levels of fliC expression, or even three (OFF, ON-low, and ON-high) in the case of LB and
TM-grown bacteria at 2 and 4 hpi. In addition we evaluated the potential impact of microaerophillia
on fliC expression during a similar time-course experiment in both LB and TM media. Microaerophilia
mimics a restricted availability of oxygen, as found for example in plant stems. Microaerophilia did
not affect expression of fliC in LB, however, it did cause a clear increment on the percentage of FiCON
bacteria present in TM at the later time points of the experiment (68% compared to 42% in aerobic
conditions at 8 hpi) (Figure 5b).

Aerophilia
™ LB
OFF ON OFF ON
" GFP GFP
Non-gfp average average
level level
0h _ 721 721
2 2
& =
2h 3 386 3 448
g 5
3 ki
4h = 211 2 332
2 T
6h £ 365 £ 689
8h 209 " 749%)| 746
GEP intensity (A.U) GFP fluorescence intensity (A.U.)
Events
(a)
20
- Microaerophilia
80 ™ LB
OFF ON OFF ON
” GFP . GFP
Non-gfp average average
level level
oh 721 _ ¥ 929%| 721
Q 1)
£ £
2h % 422 3 77 %| 445
] g
g gl
4h § 332 ';. ¥ o 67 %| 333
g H
£ £ "
5 s
6h = 457 = ,:gm 74 %| 711
8h 648 m 72% 887

(b) GFP fluorescence intensity (A.U.)

Figure 5. The fliC gene is heterogeneously expressed in plant-supplemented media. Dot plots showing
time course expression of fliC::gfp in tomato-based (TM) and LB media under aerophillic (a) and
microaerophillic (b) conditions. Dot plots represent the GFP fluorescence intensity versus the forward
scatter cell or the cell size, both in arbitrary units (A.U.) The OFF subpopulation is defined as the
fluorescence level below which 99% of the cells of a non-gfp control strain cultured in the same
conditions. Percentages of ON cells are indicated inside the graphs. The average level of GFP intensity
for each time and condition is shown to the right of the dot plot.

Finally, it is worth noting that the average level of GFP intensity shown for each time point and
condition is indicative of the average of fliC expression level in the population. A higher decrease of
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this value is observed during growth in TM compared to growth in LB, being this difference higher in
aerophilic conditions than in microaerophilic.

Taking advantage of the fluorescent reporter, we further analyzed the impact of the plant
environment on the expression of fliC by evaluating the GFP expression level by flow cytometry and
microscopy, in bacteria directly extracted from the tomato apoplast (Figure 6). Inocula were also
analyzed by flow cytometry and CLSM prior to plant infiltration, as a reference. As observed during
the time course experiments (24 h), three distinct subpopulations could be clearly identified: OFF,
ON-low and ON-high (Figure 6a). Remarkably, the difference in fluorescence intensity between these
three subpopulations can be appreciated directly on the bacterial colonies grown in LB used to prepare
the inocula, and even as colony sectors (Supplementary Figure S4a). Observations of the fliC::gfp
strain using CLSM shows representative cells of all three populations in the inoculum (Figure 6a, right
panels). One day-post inoculation, bacteria extracted from the tomato leaf apoplast were analyzed
by flow cytometry. Prior to the analysis, bacterial cells were stained with propidium iodide (PI) in
order to identify dead cells within the apoplastic subpopulation. Apoplast-extracted bacteria were
mostly below the level of GFP expression of the control non-gfp bacteria (80-85% FIiCOFF) (Figure 6b
and Supplementary Figure S4b), including 8% of dead bacteria. Only 15-20% of apoplast-extracted
bacteria were ON, with levels mostly coinciding with those of the ON-low subpopulation. A similar
percentage of dead cells were found in FliCON and FliCOFF subpopulations, indicating that there is
no significant bias towards dead bacteria among the fliC-expressing cells. Additional CLSM images
confirmed cytometry results, showing examples of bacteria in ON-high state recognizable by very
bright GFP fluorescence (Figure 6b).
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Figure 6. The fliC gene is heterogeneously expressed in plants. Dot plot representation of flow
cytometry analysis of inoculum (a) and apoplast-extracted bacteria (b). Dot plots represent the GFP
fluorescence intensity versus the forward scatter cell or the cell size, both in arbitrary units (A.U.) (a) or
the GFP fluorescence intensity versus the propidium iodide (PI) fluorescence intensity, both in arbitrary
units (A.U.) (b). The OFF subpopulation is defined as the fluorescence level below which 99% of the
cells of a non-gfp strain cultured in the same conditions. Apoplast-extracted bacteria were stained
with propidium iodide to determine percentage of dead cells. Representative CLSM image of bacterial
cells within the inocula (upper panel) and apoplast-extracted bacteria (lower panel) from 1 dpi tomato
leaves infiltrated with 5 x 108 CFU/mL. Red corresponds to membrane staining FM4-64. Scale bar
corresponds to 5 um (left panel) and 2 um (right panel).
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3.5. Recognition of Salmonella in Tomato Is Not Exclusively Based on Flagellin

The heterogeneous expression of flagellin and the very low percentage of FliC®N bacteria, both
ON-low and ON-high bacteria (Figure 6b) in tomato apoplast suggests that the absence of flagellin could
be advantageous, perhaps to avoid recognition of this archetypal PAMP by the plant immune system.
To get further data on this issue, we monitored the response of tomato plants to spray-inoculation with
wild type S. Typhimurium 14028s and the S. Typhimurium AfljBAfliC double mutant. Expression of five
defense-associated marker genes, CHI3, CHI9, GlucA, GlucB [27] and FRK1.1 was analyzed. Expression
of all genes (except for FRK1.1) was induced 6 h post inoculation, but no significant differences in the
plant response were detected after inoculation with either strain (Figure 7). In the case of CHI9 and
GlucB, the expression decreased 24 h post inoculation. The lack of differences in response motivated us
to verify the response of tomato plants to Salmonella flagellin in the absence of bacteria. To this end,
we monitored the expression level of CHI3, GlucA and FRK1.1 marker genes after treatment with the
flg22 peptide, constituted by 22 amino acids corresponding to S. Typhimurium flagellin [42]. Strikingly,
we could observe an accumulation of CHI3 transcript and, although to a lower extent, also of GlucA
and FRK1.1 (Figure 8). Taken together, these results suggest that even though tomato is able to respond
to the presence of Salmonella flagellin, Salmonella appears to synthesize a reduced amount of flagellin
within the plant environment.
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Figure 7. Flagella is not the only PAMP recognized by tomato. Response to inoculation with
S. Typhimurium 14028s and the double mutant S. Typhimurium AfljBAfliC was monitored in tomato
plants by assessing the transcriptional activation of several Pathogenesis-Related genes. The expression of
CHI3, CHI9, GlucA, GlucB and FRK1.1 was normalized using the expression of tomato Actin. The amount
of mRNA was assessed in non-treated plants (N.T.) and 6 as well as 24 h (hpi) after challenge with
10 mM MgCly, S. Typhimurium 14028s or the S. Typhimurium Afl[jBAfliC mutant. The experiment
was conducted in six replicates, in each on which three plants per treatment were pooled and used for
RNA extraction. Asterisks indicate p < 0.05 in Tukey HSD test. For more information about significant
differences among treatments, please see Supplementary Table S3.
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Figure 8. Expression of tomato defense genes is induced upon contact with Salmonella’s flagellin.
Response to inoculation with S. Typhimurium 14028s, the double mutant S. Typhimurium AfljBAfliC as
well as 100 nM flg22 was monitored in tomato plants by assessing the transcriptional activation of CHI3,
GlucA, and FRK1.1. The expression was normalized using the expression of tomato Actin. The amount
of mRNA was assessed also in non-treated plants (N.T.). The experiment was conducted in three
replicates, where three plants per treatment were pooled and used for RNA extraction. For information
about significant differences among treatments, please see Supplementary Table S3.

4. Discussion

During the last decades, there have been many reports on salmonellosis outbreaks associated
to fresh produce, leading to public health concerns on the safety of fresh produce and the efficiency
of food protection measures during agricultural handling. The most recent outbreak occurred in
14 states in the USA, affected a total of 165 people, 73 of which were hospitalized. The source was
associated to cut fruits, including honeydew melons, cantaloupes, pineapples and grapes infected with
S. Javiana [43].

Several studies have already attempted to comprehend the interaction between Salmonella and
plant hosts. Flagella’s role in the Salmonella-plant interaction has been extensively studied, mostly
considering flagellin as a conserved PAMP. Typically, the recognition of PAMPs activates PTI in
plants and leads to the onset of several responses, including activation of kinase cascades, production
of reactive oxygen species (ROS), activation of the expression of defense genes, stomata closure,
and accumulation of defense hormones [14,44-47]. Nonetheless, several reports have indicated the
possible evolvement of divergent flagellin sequences in some bacteria, modifications which would have
impact on its recognition and therefore on the interaction between the plant and the bacterium [16-19].
The N-terminal and C-terminal regions of flagellin are conserved in different bacterial species, while
variations take place in the central part. The elicitor activity of flagellin has been attributed to the
most conserved domain within the N-terminal part [16,48], which is recognized in plants by the FLS2
receptor [14]. Very intriguing is the fact that the animal ortholog of FLS2 (TLR5) recognizes a different
domain [13].

In our previous work [27], results obtained from transcriptomic analysis of S. Typhimurium
14028s in tomato-based medium showed that the majority of motility and adhesion related genes were
not differentially expressed in this plant-mimicking medium. This led us to speculate that flagella
might not be necessary for the survival of Salmonella in plants.

Our current work shows that S. Typhimurium wild type strain 14028s and the double flagellin
mutant S. Typhimurium AfljBAfliC display the same ability to persist within the inoculated tissue and to
colonize non-inoculated areas of tomato plants. Consistent with our results, some studies have reported
that Salmonella lacking flagellin was able to survive better in alfalfa (Medicago sativa) than the respective
wild type, suggesting that down-regulation of flagellin synthesis may increase Salmonella fitness in
plants [22,49]. Likewise, using non-flagellated mutants, flagella were found to be non-essential for
attachment of both S. Typhimurium and S. Senftenberg to tomatoes [20]. Contrarily, in the attachment
of S. Senftenberg to salad leaves, flagella seemed to play a major role [21]. Furthermore, a recent study
showed the importance of flagellum-mediated motility in adhesion of S. Typhimurium to Valerianella
locusta (corn salad) leaves [23]. In addition, Salmonella colonization or internalization in Arabidopsis,
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Medicago sativa and lettuce was reduced in mutants impaired in motility [50,51]. Noteworthy, it was
previously shown that Salmonella from infected Arabidopsis retain virulence in human cells and mice [52].
This may suggest an adaptive value for the loss of flagella while in contact with plants, thereby gaining
more virulence while infecting mammals by not triggering defense mechanisms. Interestingly, previous
reports have shown that flagella may play a minor role for endophytic bacteria since endophytes are
usually non-motile upon entering plants [49,53,54]. Our results indicate that Salmonella inside a tomato
plant could adopt a similar lifestyle.

Generally, bacteria express various adhesive structures such as capsule, fimbriae or pili. However,
these structures are usually not expressed at the same time as flagellin [55]. For instance, flagella
are often involved in reversible attachment that permits individual cells to swim toward suitable
biotic or abiotic surfaces. On the other hand, irreversible attachment often involves loss of flagella
and synthesis of curli or type 1 fimbriae. Such changes are triggered by different environmental
conditions, such as temperature, osmolarity, or pH, which regulate the expression of the flagellar
master operon, fIhDC [47,56]. The assessment of the flagellin expression and synthesis, while in contact
with plant-supplemented medium, revealed reduction in both transcript and protein levels of flagellin.
This could indicate that Salmonella down-regulates the expression of flagella in order to either improve
its fitness or to evade plant defense mechanisms associated to the activation of PTL

Previous reports indicated that S. enterica flagellin mutants triggered reduced defense responses
in Arabidopsis and tomato [57]. This may implicate that tomato, at least partially recognizes Salmonella’s
flagella as a PAMP. Interestingly, our results showed no differences in the expression of several tomato
defense-related genes in plants treated either with the wild type or with the mutant. This raises the
question of whether Salmonella is generally recognized by tomato Pattern Recognition Receptors (PRRs),
and if it does, whether this recognition is due to flagella or to other PAMPs. Another explanation
could be attributed to the highly efficient mechanisms of neutralizing ROS that Salmonella possesses,
which allows it to proliferate inside plants, even when triggering the plant immune response [58,59].
However, our results showed that the expression and synthesis of FliC was higher in LB than in the
plant-related media at the population level. Hence, yet another possibility could be that Salmonella
switches off the production of flagella once in contact with plants in order to evade plant defense
system as an evolutionary or adaptive strategy.

Here, we analyzed the S. Typhimurium strain expressing a fliC::gfp transcriptional fusion to
follow fliC expression at a single-cell level using both flow cytometry and confocal microscopy. After
infiltration of this strain into tomato leaves, we observed significant heterogeneity within the population
in regards to the levels of fliC expression, detecting FiCOF and FliCON bacterial subpopulations.
This heterogeneity was also clearly observable using the confocal laser-scanning microscope.

Particularly striking were the big differences in the level of fliC expression between individual cells.
It was apparent that a small subpopulation of Salmonella cells continued to express fliC at a very high level.
Such heterogeneous expression has been already observed, and even associated to higher virulence in
animal hosts. The phenotypic heterogeneity in Salmonella flagellar gene expression has been shown
to provide a mechanism by which the pathogen maximizes fitness within the mammalian host [60].
Whether such behavior is part of Salmonella’s adaptation to colonize plant tissues or plays a role beyond
the plant host as part of an adaptation to the eventual progress to an herbivorous host, is a very
intriguing question. Further work will be necessary to explore these hypotheses.

Further characterization of additional virulence genes and their expression patterns within the
population could define the specificity of interactions between Salmonella and crop plants and open
doors to new insights of this interaction, leading thereby to the design of informed strategies for
enhanced food safety.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/6/815/s1,
Table S1: Bacterial strains used in this study [61]. Table S2: Oligonucleotides used in this study [62]. Table S3.
Statistical analysis of results presented in Figures 3, 7 and 8. Figure S1. Dipping and infiltration methods used
in the translocation assays. Figure S2. Changes in leave appearance caused by Salmonella in tomato are not
dependent on flagellin. Figure S3. Comparison between persistence of S. Typhimurium 14028s and the mutant
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S. Typhimurium AfliC assessed using competitive index assays. Figure S4. Populations of Salmonella display
differences in heterogeneous expression in laboratory rich medium versus plant tissues.
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