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Abstract: Quantifying which assembly processes structure microbiomes can assist prediction, 
manipulation, and engineering of community outcomes. However, the relative importance of these 
processes might depend on whether DNA or RNA are used, as they differ in stability. We 
hypothesized that. RNA-inferred community responses to (a)biotic fluctuations are faster than those 
inferred by DNA; the relative influence of variable selection is stronger in RNA-inferred 
communities (environmental factors are spatiotemporally heterogeneous), whereas homogeneous 
selection largely influences DNA-inferred communities (environmental filters are constant). To test 
these hypotheses, we characterized soil bacterial communities by sequencing both 16S rRNA 
amplicons from the extracted DNA and RNA transcripts across distinct stages of soil primary 
succession and quantified the relative influence of each assembly process using ecological null 
model analysis. Our results revealed that variations in α-diversity and temporal turnover were 
higher in RNA- than in DNA-inferred communities across successional stages, albeit there was a 
similar community composition; in line with our hypotheses, the assembly of RNA-inferred 
community was more closely associated with environmental variability (variable selection) than 
using the standard DNA-based approach, which was largely influenced by homogeneous selection. 
This study illustrates the need for benchmarking approaches to properly elucidate how community 
assembly processes structure microbial communities.  

Keywords: 16S rRNA gene; community turnover; ecological modeling; selection; dispersal; drift 
 

1. Introduction  

Research on ecological succession is key to advance our understanding of how communities are 
assembled and affect ecosystem functioning and dynamics. In accordance with classical studies on 
plant community succession, the relatively recent advances in high-throughput sequencing 
technologies and microbiome profiling have revealed that microbial communities across a broad 
range of habitats also undergo sequential changes through different time scales [1–3]. 

Most studies have profiled bacterial community composition across succession gradients by 
sequencing 16S rRNA gene from environmental DNA [3–6]. However, the environmental DNA used 
for identifying bacterial taxonomy/composition can not only come from viable cells, but also from 
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extracellular DNA and undecomposed DNA from dead cells (termed as ‘relic DNA’), which is known 
to be ubiquitous in soils [7,8]. Due to the fact that relic DNA can stay in the environment for an 
unpredicted period of time, profiling bacterial communities by DNA not only has the risk of over 
inflating the diversity estimation [9], but also can lead to potentially erroneous signals of temporal 
variability in microbial communities [10]. It was argued that relic DNA contribute minimally to the 
characterization of bacterial community composition, but bias can still arise when community 
turnover is faster than the turnover of the relic DNA pool [11]. Since the sequential change of the 
bacterial community over time is the interest of studies on ecological succession, relic DNA left in the 
environmental DNA samples will obscure these changes. Unlike DNA, RNA has short half-life times, 
and can often be used to represent putatively active fractions of bacterial taxa that are alive in the 
environment [12]. As such, the RNA-based approach can better reflect the turnover of bacterial 
communities during succession, especially for short term successional dynamics. However, few 
studies have examined bacterial community succession using both DNA- and RNA-based 
approaches [13–15], and we still lack understanding of how much those two approaches affect the 
outcome of bacterial community turnover during succession. 

Disentangling the relative influences of community assembly processes structuring the 
microbiome distribution is important for understanding community turnover during succession [16]. 
For instance, the trajectories of bacterial communities during primary and secondary succession have 
been shown to follow different assembly processes [16]. In brief, during primary succession, the 
assembly processes were found to gradually shift from stochastic to deterministic [16]. Conversely, 
during secondary succession, the assembly processes governing the dynamics of bacterial 
communities were found to be influenced by the previous state of the communities prior to a 
disturbance event [16]. For instance, soil bacterial communities were structured from more to less 
stochastic processes after a wildfire disturbance [17]. While a disturbance experiment has shown a 
strong deterministic recovery during secondary succession [15]. 

Quantifying the assembly processes is often dependent on either taxonomic or phylogenetic 
information of the investigated meta-community. Interestingly, it was shown that the phylogenetic 
structure of RNA-inferred bacterial communities is significantly more clustered than that of the 
DNA-inferred communities, thus resulting in a stronger environmental filtering signal [18]. Selection 
through environmental filter or biotic interactions allows species with certain traits to establish and 
persist within the local community. The selective pressure can be either evenly distributed among 
communities (i.e., homogeneous selection) or heterogeneous (i.e., variable selection), resulting in 
community turnover and variation differences [16,19]. Given that DNA and RNA differ in stability, 
we expect RNA-inferred communities response to biotic/abiotic fluctuations to be faster than those 
inferred by DNA. Therefore, the signal of variable selection is expected to be stronger in RNA-
inferred communities, while the signal of homogeneous selection is expected to be stronger in DNA-
inferred communities. 

In this study, we investigated the dynamics of bacterial communities across five successional 
stages in a primary succession soil chronosequence. Soil samples were collected across the 
successional stages and within successional stages at four time points. The analysis of DNA-derived 
16S rRNA gene sequences encompassed the total fraction of bacterial communities including DNA 
from non-viable cells; and the RNA-derived 16S rRNA sequences encompassed the content of 
bacterial ribosomes indicating the potentially active fraction of total bacteria communities. We first 
examined to what extent these two approaches affect the results of bacterial community turnover 
during primary succession, and then compared the interplay of community assembly processes, and 
evaluated whether these two approaches affect the outcomes and conclusions of microbial 
community successional dynamics in soils. 

2. Materials and Methods  

2.1. Study Site and Soil Sampling 
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The study was conducted in a salt marsh ecosystem at the island of Schiermonnikoog, the 
Netherlands (53°30′ N, 6°10′ E). This island displays a progressive growth expansion eastwards 
caused by the continuous sedimentation of particles carried by wind, currents and flooding cycles. 
This natural chronosequence spans over 100 years of succession, in which early successional stages 
are located in the east and late stages in the west. Soil physicochemical properties, aboveground 
biomass, and ecosystem disturbances gradually change from early to late successional stages [20,21]. 
For instance, the flooding frequency, soil sand content and soil pH decrease as succession proceeds, 
while vegetation coverage, soil silt and clay content and overall nutrient status (e.g., total nitrogen, 
total carbon, nitrate and ammonia) increase [21]. A detailed description of the sampling sites can be 
found in Dini-Andreote et al. [21]. 

To characterize the spatiotemporal variation of bacterial communities in this system, triplicate 
soil samples were collected from five successional stages (i.e., 0, 10, 40, 70 and 110 years) in May, July, 
September and November 2017 (60 samples in total). At each replicate, 20 soil cores (3.5 cm diameter, 
10 cm depth) were randomly sampled. A total of 2 g of the collected soil that was homogenously 
mixed was preserved in LifeGuard Soil Preservation Solution (Qiagen, Hilden, Germany) and stored 
at −80 °C for further nucleic acid extraction. 

2.2. Nucleic Acid Extraction, Amplicon Library Preparation and Sequencing 

The total RNA and DNA were co-extracted from 2 g of soil for each of the 60 samples using the 
RNeasy PowerSoil Total RNA kit (Qiagen, Hilden, Germany) with the RNeasy PowerSoil DNA 
Elution kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions (Figure 1). After 
eluting the RNA samples from the capture column of the RNeasy PowerSoil Total RNA kit, the bound 
DNA on the capture column was further eluted using the RNeasy PowerSoil DNA Elution kit. 
Remaining DNA in RNA samples was removed using the DNase Max kit (Qiagen, Hilden, Germany). 
We performed PCR reactions for 10% of RNA samples to verify whether the amount of DNase 
applied was enough to ensure DNA was completely removed from RNA samples. The DNA-free 
RNA was converted to cDNA by incubating with random hexamers using the Transcriptor High 
Fidelity cDNA Synthesis Kit (Roche, Basel, Switzerland), which was then purified using the MinElute 
PCR Purification Kit (Qiagen, Hilden, Germany). DNA and cDNA were quantified using a NanoDrop 
2000 Spectrophotometer (Thermo Fisher scientific, Waltham, MA, USA). 
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Figure 1. Workflow applied in this study. Procedures for analyzing RNA samples are shown in red, 
procedures for analyzing DNA samples are shown in blue, and common procedures are shown in 
black. 

We profiled the DNA- and RNA-inferred bacterial communities by sequencing the V4 region of 
the bacterial 16S rRNA gene and 16S rRNA transcripts, respectively, using primer pair 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) [22,23]. Each 
PCR (25 µL) contained 12.5 µL of AccuStart II PCR ToughMix (final concentration 1×; QuantaBio, 
Beverly, MA, USA), 1 µL of DNA/cDNA template, 1 µL of each primer (final concentration 200 pM), 
and 9.5 µL of MOBIO PCR water (MOBIO, Carlsbad, CA, USA). PCR amplification was run for 35 
cycles for DNA samples, and 23 cycles for RNA samples to minimize the accumulation of random 
errors during reverse transcription. Apart from this, all library preparation procedures were kept 
identical for DNA and cDNA samples. The PCR started with 3 min at 94 °C followed by 35 or 23 
cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s, with a final extension at 72 °C for 10 min. 
Amplicons were pooled in equimolar concentrations and used for paired-end sequencing (2 × 151 bp) 
on an Illumina MiSeq platform (Illumina, Hayward, CA, USA) using the MiSeq reagent kit V2 [22]. 
Sequencing was performed in separate runs for DNA and cDNA samples at the Environmental 
Sample Preparation and Sequencing Facility of the Argonne National Laboratory, USA. Raw reads 
of both DNA- and RNA-based sequences used in this study are available in the Sequence Read 
Archive of the National Center for Biotechnology information under the accession number 
PRJNA546612. 

2.3. Sequence Processing, Analysis of Community Structure and Statistical Analyses 

We used the QIIME2 pipeline (version 2019.10) to process 16S rRNA gene and rRNA sequences 
[24]. The demultiplex sequences were uniformly trimmed to 150 bp (forward and reverse), and then 
were denoised to infer Amplicon Sequence Variants (ASVs) that were of 253 bp in length using the 
DADA2 plugin with default settings [25]. Because the error models might be different between runs, 
we performed a DADA2 denoising process on each run separately, and then merged feature tables 
and representative sequences from the two runs. Taxonomy was assigned to representative 
sequences using the Silva 132 Naive Bayes 515F/806R taxonomy classifier [26]. All ASVs affiliated to 
archaea, chloroplast and mitochondria, as well as singletons were removed from the dataset. A de 
novo phylogenetic tree was generated from representative sequences by aligning sequence fragments 
via MAFFT, masking ambiguous alignments and inferring a tree using the FastTree algorithm [27]. 
A rooted tree was created by putting root at the midpoint of the farthest tips among the tree. To make 
samples comparable, the feature table was rarefied to a depth of 15,000 sequences per sample. We 
estimated β-diversity using both the weighted and unweighted UniFrac distance in QIIME 2. 

All subsequent analyses were carried out in R (v3.5.0) [28,29]. To compare bacterial communities 
between DNA- and RNA-based approaches, among successional stages and across time points, 
principal coordinate analysis (PCoA) and permutational multivariate analysis of variance 
(PERMANOVA) were conducted using the ‘pcoa’ and ‘adonis’ function in the packages ape and 
vegan, respectively [30,31]. Pair sample Wilcoxon tests were performed to compare the temporal 
turnover between the DNA- and RNA-inferred bacterial communities within each successional stage 
[30]. 

2.4. Quantification of Community Assembly Processes Governing Community Succession 

We applied a framework that assesses the phylogenetic and taxonomic turnover of communities, 
and further used null modelling distributions to quantify the relative influences of distinct assembly 
processes mediating community turnover [19,32]. In the first step, we estimated the importance of 
stochasticity and selection using the β-nearest taxon index (βNTI) between pairs of communities. This 
index compares the observed phylogenetic turnover in species between a pair of communities and a 
null distribution. The observed phylogenetic turnover between pairs of communities was determined 
by β-mean nearest taxon distance (βMNTD) using function ‘comdistnt’ in the package picante [33]. 
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The null distribution of phylogenetic turnover was generated by randomly shuffling the ASVs at the 
tip of the phylogenetic tree 999 times. As previously described [16,19], βNTI > 2 indicates variable 
selection is the dominant assembly process governing the turnover between a given pair of 
communities, since the phylogenetic turnover is significantly greater than that expected by chance. 
βNTI < -2 indicates homogeneous selection takes a leading role between a given pair of communities, 
as phylogenetic turnover is significantly lower than expected by chance. |βNTI| < 2 indicates the 
absence of selection, and a greater influence of stochastic processes, such as dispersal and/or drift. In 
the second step of the analysis, we examined the non-selection processes with the abundance 
weighted Raup-Crick metric (RCbray). We did this by comparing the ASV taxonomic turnover between 
a pair of communities and the null distribution [32,34]. To create a RCbray metric, the Bray–Curtis 
dissimilarity between observed communities was first calculated. Then, the null distribution of the 
Bray–Curtis dissimilarity between simulated communities were constructed by randomly sampling 
ASVs 999 times. The RCbray matrix was generated by comparing the Bray–Curtis dissimilarity 
between a pair of communities and the null distribution of Bray–Curtis dissimilarity. When |βNTI| 
< 2 and RCbray > 0.95, community turnover is dominated by dispersal limitation, as the dissimilarity 
between observed communities is higher than the expectation. |βNTI| < 2 and RCbray < -0.95 indicates 
homogenizing dispersal, as the community turnover between observed communities is lower than 
the null expectation. If |βNTI| < 2 and |RCbray| < 0.95, both phylogenetic and taxonomic community 
turnover of observed communities are not different from the null distributions. In other words, 
neither selection nor dispersal dominate the assembly processes, their influences on community 
turnover act together with drift, thus being termed as ‘undominated processes’. Together, we 
quantify the relative influence of each assembly process by the proportion of each assembly process 
within each dataset or treatment. 

The analysis of βNTI relies on the correlation between relatedness of species phylogeny and 
their ecological niches. We estimated the optimal niche of ASVs (occurrence > 5) with soil pH, soil 
sodium concentration, soil organic carbon and soil water content using the function ‘wascores’ in the 
package vegan. Phylogenetic distance across ASVs was generated using the ‘cophenetic’ function in 
the package picante. Last, we tested the phylogenetic signal (i.e., the correlation between 
phylogenetic distances and the distances between optimal soil conditions across ASVs) using the 
function ‘mantel.correlog’ in the package vegan. For all the four soil parameters, significant positive 
correlations were observed at short phylogenetic distances, confirming the assumption for suitable 
ecological inferences using short phylogenetic distance based on βNTI (Figure S1). 

Figures were made using the ggplot2 package [35]. All scripts used in this study are available 
on GitHub: https://github.com/Jia-Xiu/Jia_et_al_Microorganisms_2020. 

3. Results  

3.1. Comparing Bacterial Community Structure Based on DNA and RNA Approaches 

After denoising, filtering the low quality, short length and chimeric sequences, as well as 
removing singleton and non-target taxa, the total dataset consisted of 12,741,738 reads (this 
encompasses 120 bacterial 16S rRNA libraries, 60 for DNA- and 60 for RNA-inferred bacterial 
communities). After rarefying the feature table to 15,000 reads per sample, the rarefaction curves for 
most DNA-based samples reached a steady plateau, but some RNA-based samples did not, which 
indicates the sampling efforts were enough for most DNA-based samples, while more sequencing 
depth was potentially needed for some RNA-based samples (Figures S2 and S3). In the end, a total of 
28,278 unique ASVs were obtained for the complete dataset, in which 19,608 ASVs were observed 
from the DNA-based dataset and 20,784 ASVs from the RNA-based dataset (Figure S4). We found 
the variation of α-diversity (i.e., richness, phylogenetic diversity, Shannon and Pielou’s evenness 
indexes) to be greater in RNA-inferred communities than in DNA-inferred communities across all 
successional stages (see Table S1 and Figure S5 for details). 

Principal coordinates analysis based on both weighted and unweighted UniFrac metrics showed 
a clear separation of bacterial communities in each successional stage at the first axis of PCoA, 
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indicating the majority of the variation in β-diversity was attributed to differences across successional 
stages (Figure 2a, b). Sequencing approach (DNA- and RNA-based samples) had a lower effect on 
community composition than the successional stage. Even though community profiles based on DNA 
and RNA taken at the same successional stages were similar, a cluster separation of the DNA- and 
RNA-inferred bacterial communities was observed at the third axis of PCoA plots (Figure 2c–f). 
Accordingly, PERMANOVA results showed that successional stage was the most significant factor 
influencing the turnover of bacterial communities measured by both weighted and unweighted 
UniFrac metrics (R2 = 0.48 and R2 = 0.41, respectively; p < 0.001), followed by sequencing approach (R2 
= 0.12 and R2 = 0.07, respectively; p < 0.001; Tables 1 and S2). We also observed the sampling month 
significantly contributes to the variation of bacterial communities, albeit at a smaller magnitude (R2 
= 0.03, p < 0.001; Tables 1 and S2). 

By further looking into the temporal variation of bacterial communities within each successional 
stage, we found the temporal turnover of RNA-inferred communities to be significantly higher than 
that of DNA-inferred communities across all successional stages (p < 0.001 in Wilcoxon signed-rank 
test, Figure 3). This pattern was further statistically supported by PERMANOVA (the influence of 
sampling time points on RNA-inferred communities: R2 = 0.051, p < 0.001; DNA-inferred communities: 
R2 = 0.038, p < 0.05; Table S3). Across successional stages, we found the temporal turnover of bacterial 
communities to be higher at early successional stages and to progressively decrease as succession 
spans for both DNA- and RNA-based approaches (Figure 3). The influence of sampling month on 
community turnover was stronger at early (i.e., 0 and 10 years) than late successional stages (i.e., 40, 
70 and 110 years; Table S4). 

Table 1. Three-way permutational multivariate analysis of variance (PERMANOVA) showing the 
influence of different factors onβ-diversity of bacterial communities based on weighted UniFrac 
distances. The rows ‘Dataset’, ‘Year’ and ‘Month’ indicate RNA- or DNA-based approaches, 
successional stages and within-stage temporal turnover, respectively. 

Groups Df * SumSqs * MeanSqs * F.Model * R2 * p-Values † 
Dataset 1 0.605792 0.605792 65.36243 0.123029 <0.001 

Year 4 2.373268 0.593317 64.01644 0.481983 <0.001 
Month 3 0.164918 0.054973 5.931321 0.033493 <0.001 

Dataset:Year 4 0.309029 0.077257 8.335727 0.06276 <0.001 
Dataset:Month 3 0.047992 0.015997 1.72604 0.009747 0.0436 

Year:Month 12 0.523401 0.043617 4.706062 0.106297 <0.001 
Dataset:Year:Month 12 0.158108 0.013176 1.421602 0.03211 0.0246 

Residuals 80 0.741456 0.009268  0.150581  

Total 119 4.923963   1  

* Df—degrees of freedom; SumSq—sum of squares; MeanSqs—mean of squares; F.Model—F value 
by permutation; R2—explained variation; p-values based on 9999 permutations. † significant p-values 
(p < 0.001) are shown in bold. 
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Figure 2. β-diversity patterns of bacterial communities displaying differences according to soil 
successional stages and sequencing approach (i.e., DNA- or RNA-based). Weighted (a,c,e) and 
unweighted (b,d,f) UniFrac distances were used to calculate β-diversity, which was visualized using 
principal coordinate analysis (PCoA). PCoA results are illustrated in different ordinate axes. Colors 
represent successional stages (i.e., 0, 10, 40, 70 and 110 years of succession), and different shapes 
represent RNA- and DNA-based approaches. The percentages in the axes show the variation of 
species composition explained by each ordinate. 
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Figure 3. Boxplots displaying the temporal variation of RNA- and DNA-inferred communities along 
the soil successional stages. The temporal variation was based on weighted UniFrac distances of 
communities across distinct sampling time points. *** indicates p < 0.001 in Wilcoxon signed-rank test. 

We identified the dominant phyla (>3% of total abundance) in both DNA and RNA datasets to 
be Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria and Planctomycetes (Figure 4). As 
ecological succession proceeds, the relative abundance of most bacterial phyla change in a similar 
manner in both DNA- and RNA-based samples. For instance, the relative abundance of Firmicutes 
were nearly identical in both datasets across all successional stages. However, even though most of 
the dominate phyla changed their relative abundances in a similar manner, their relative abundances 
in DNA- and RNA-based samples were different. Some phyla had higher relative abundances in the 
DNA dataset, such as Acidobacteria, Actinobacteria, Planctomycetes, Gemmatimonadetes and 
Verrucomicrobia, while others such as Proteobacteria and Entotheonellaeota had higher relative 
abundances in the RNA dataset. Besides, we also found different phyla distribution patterns across 
successional stages between DNA- and RNA-based samples. For example, Cyanobacteria only 
appeared at a higher relative abundance in the RNA-inferred communities at early successional 
stages, but not in the DNA-inferred communities. The relative abundance of Nitrospirae in the RNA-
inferred communities decreased quickly along succession, but not in the DNA-inferred communities. 
The relative abundance of the candidate phylum V18 was stable in the RNA-inferred communities 
but declined rapidly at the DNA-inferred communities as succession proceeded. 
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Figure 4. Line plots displaying the dynamic changes in relative abundances of bacterial phyla (mean 
relative abundance > 0.1%) based on DNA- and RNA-inferred communities. The x-axis displays 
successional stages in years (i.e., 0, 10, 40, 70 and 110 years of succession), and the y-axis displays the 
phyla relative abundance (in % of the total abundance). Points indicate average, and error bars 
represent standard errors from the averages. 

3.2. Differences in Aseembly Processes between DNA- and RNA-inferred Communities 

We examined whether and how the interplay of assembly processes varies between DNA- and 
RNA-based samples by calculating the βNTI and the RCbray metric. The results show that selection 
(i.e., variable and homogeneous) dominated the assembly processes of both DNA- and RNA-inferred 
communities (Figure 5a). Homogeneous selection was the dominant process across all samples, 
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especially for the temporal variation, as succession proceeded (Figure 5b). Variable selection was 
overall less frequent, accounting for the temporal variation of communities at the initial successional 
stage (0 year of succession; Figures 5b and S6) and the spatial turnover of communities at different 
sampling time points (Figure S7). Interestingly, in relative terms, we found homogeneous selection 
to have a stronger signal in the community assembly of DNA-inferred communities, whereas variable 
selection had a stronger signal in the RNA-inferred communities (Figure 5a). Similar results were 
also observed in the interplay of assembly processes accounting for both temporal and spatial 
variations of bacterial communities (Figures 5b and S7). 

 
Figure 5. Pie charts and stacked-bar plots displaying the relative influences of assembly processes 
governing community turnover. (a)The pie charts show the relative influence of distinct assembly 
processes determining the spatiotemporal variation of RNA- and DNA-inferred communities. (b) 
Stacked-bar plots display the relative influences of distinct assembly processes structuring the 
temporal variation of bacterial communities in each successional stage based on both RNA- and DNA-
based approaches. * indicates the influence of homogenizing dispersal and undominated processes 
for the turnover of RNA-inferred communities to be 0.62% and 0.06%, respectively. ** indicates the 
influence of homogenizing dispersal and undominated processes for the turnover of DNA-inferred 
community to be 0.68% and 0.45%, respectively. 

4. Discussion  

In this study we examined the assembly processes underlying bacterial community succession 
by considering discrepancies in characterizing bacterial communities using DNA- and RNA-based 
approaches. Similar to previous studies [21], we found bacterial communities gradually change over 
time along this primary successional chronosequence based on both DNA and RNA community 
inferences. Patterns of temporal turnover of DNA- and RNA-inferred communities were also found 
to significantly change over the course of succession. We detected significantly higher temporal 
turnover at the early stages of succession, corroborating with previous findings in the ecological 
successional ecosystems [21,36]. Although community composition and dynamics were found to be 
similar between DNA- and RNA-based approaches, differences exist between both methods which 
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is consistent what has been found in previous work [37]. Most importantly, the DNA- and RNA-
inferred communities often displayed different dynamic changes, with RNA-inferred communities 
changing faster over time [38,39]. These differences are likely attributed to the distinct noises imposed 
by extracellular DNA and RNA due to differences in their stabilities and lifetime in the environment. 
In this salt-marsh ecosystem, the tides constantly bring microbial cells (i.e., dispersal) from sea and 
replenish the soil bacterial communities at initial stages. It is likely that maladapted organisms can 
rapidly die and significantly enrich the pool of environmental relic DNA, thus affecting the diversity 
estimation [11]. 

Moreover, observed differences between RNA- and DNA-inferred communities can occur due 
to intrinsic differences in the copy number and transcription of the 16S rRNA genes across distinct 
taxa. For example, we found Proteobacteria and Cyanobacteria to be detected at higher relative 
abundances in the RNA- rather than DNA-inferred communities, which corroborates the finding 
reported by Denef et al. [13]. Proteobacteria taxa are likely to have higher copies of the 16S RNA gene 
in their cells, which have been previously considered as copiotrophs [40,41]. However, in some cases, 
the copy number of ribosomes has nothing to do with cell activity. For instance, a Cyanobacteria 
species, Aphanizomenon ovalisporum, has a high number of ribosomes in its dormancy rather than in 
its vegetative cell [42]. Cell size was also suggested to positively correlate with the number of 
ribosomes in bacterial cells [13]. These discussions are not only relevant for bacterial communities, as 
fungal communities in groundwater aquifers were also found to have discrepant profiles when based 
on DNA and RNA approaches. For instance, 30%–40% of the total fungal operational taxonomic units 
(OTUs) were only detected in RNA-based sequencing [43]. Taken together, the copy number of 16S 
rRNA gene, the metabolic state of a cell and innate ribosome content all can affect the 
disproportionate recovery of different bacteria based on DNA- and RNA-inferred community 
profiling. 

DNA-based amplicon sequencing was previously found to inflate richness estimation, given that 
environmental DNA does not only encompasses viable bacteria cells but also relic DNA. However, 
our results show an opposite pattern. This discrepancy might occur because low-abundant bacteria 
that are metabolically active have higher chances of being detected using RNA- rather than DNA-
based gene sequencing, since metabolic active (high growth rate) bacterial cells contain more 
ribosomes than inactive cells [44]. In this study, we observed more unique rare taxa in the RNA 
dataset compared to the DNA dataset (Figure S8). In addition, a substantial number of rare taxa were 
detected in higher rRNA:rDNA ratios (Figure S9), which suggest they were metabolically active. In 
line with our expectation, a study in glacier-fed streams reported that low abundant taxa were over-
present in the community profiled by 16S rRNA (cDNA) sequencing [45]. In this context, the higher 
richness of taxa in the RNA dataset is reasonable and to some extent expected, since active rare taxa 
that are not identified by DNA-based sequencing can be detected using the RNA-based approach. 
Given that metabolically active rare taxa can disproportionally be detected when using these two 
approaches, we advise that future studies focusing on rare taxa should take a careful consideration 
of data interpretation when based on DNA and RNA sequencing inferences. 

The quantification of community assembly processes using both DNA- and RNA-based 
approaches was dominated by selection. In relative terms, the influence of variable selection was 
higher in the RNA-inferred communities, suggesting that RNA-inferred communities more rapidly 
respond to environmental fluctuations compared to a more ‘stable’ scenario of DNA-based 
communities. This is consistent with a previous finding showing that the phylogenetic community 
structure of RNA-based communities changes quickly in response to variations in pH and carbon to 
nitrogen ratios [18]. Moreover, the higher influence of homogenous selection in the DNA-based 
communities indicates that communities profiled by DNA are expected to display higher overall 
correlations with stringent environmental factors that are homogeneously distributed. In addition, 
the direct use of DNA (particularly in systems such as soils) can often account for a large proportion 
of inactive cells/taxa that has no environmental responses. This aligns with the idea that cell 
inactivation and dormancy constitute a life strategy to persist in the environment under unfavorable 
conditions [46]. Together, since DNA- and RNA-based sequencing have different outcomes in 
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recovering bacterial communities, inferences in the quantitative influence of community assembly 
processes inferred by null modelling analysis will also likely vary significantly. 

5. Conclusions 

The broad use of amplicon sequencing has greatly advanced our understanding of the ecological 
processes structuring bacterial communities during succession. However, DNA- and RNA-based 
approaches can generate distinct profiles of community composition. This can be caused by 
differences in the stability of DNA and RNA, differences in the copy numbers of the 16S rRNA gene, 
in addition to changes in the number of transcripts of this gene, i.e., differences in cell active states 
and lifestyle. Here, we used these two approaches to profile bacterial communities across a primary 
successional gradient and quantified the relative influences of community assembly processes 
governing community turnover. Our results demonstrate that RNA-based communities have greater 
variation in community composition and are relatively more influenced by variable selection; while 
DNA-inferred communities have less variation and are relatively more influenced by homogeneous 
selection. Future studies advancing knowledge on the community assembly of bacterial communities 
and successional dynamics must be cautious when interpreting data obtained from either DNA- or 
RNA-based sequencing approaches. 
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ASVs across RNA- and DNA-based datasets. Figure S5: Changes in α-diversity along successional stages as 
indicated for both RNA- and DNA-based approaches; (a) observed richness and (b) Simpson index. Figure S6: 
β-nearest taxon indexes (βNTI) between bacterial communities in (a) each successional stage and (b) each 
sampling month based on both RNA-based and DNA-based approaches. Figure S7: Stacked-bar plots showing 
the relative influence of distinct assembly processes structuring the spatial variation of bacterial communities in 
each sampling month, based on both RNA- and DNA-based approaches. Figure S8: Venn diagram showing the 
overlaps of ASVs across the rare and common biospheres characterized by RNA- and DNA-based approaches. 
Figure S9: Density plot showing the distribution of RNA:DNA ratio in the rare and common biospheres. Table 
S1: Coefficient of variation (cv) of α-diversity metrics (i.e. richness, Shannon index, phylogenetic diversity and 
Pielou’s evenness) in each successional stage based on both DNA and RNA datasets. Table S2: Three-way 
permutational multivariate analysis of variance (PERMANOVA) showing the influence of different factors on 
β-diversity of bacterial communities based on unweighted UniFrac distances. Table S3: Permutational 
multivariate analysis of variance showing the influence of successional stages (Year) and sampling time (Month) 
on the turnover of RNA- and DNA-based datasets (based on weighted UniFrac distances). Table S4: 
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