Supplementary File Communication ## Quantifying plant-borne carbon assimilation by root-associating bacteria Spenser Waller¹, Stacy L. Wilder², Michael J. Schueller^{2, 3}, Alexandra B. Housh^{2, 3} and Richard A. Ferrieri^{2, 3, 4, *} **Fig. S.1.** Raw radioactivity count data and fluorescence data from Figure 6. Root pieces were subjected to isolated green fluorescent protein (GFP) imaging to monitor the effect of sequential removal of bacteria during serial sonication in saline solution on root fluorescence. Table S.1. Raw radioactivity count data and fluorescence data from Figure 6. | Study No. | Sample Counted | delta T (min) | Radioactivity | Decay Corrected Activity | Efficiency Corrected (dpm) ** | Fraction Total Plant
C-11 Activity | Number of
C-11 Atoms | nmoles
of Carbon | Cuvette
Fluorescence | CFU | |----------------|----------------|---------------|---------------|-----------------------------|-------------------------------|---------------------------------------|-------------------------|---------------------|-------------------------|------| | | | | | | | | | | | | | Shoots | 257 | 34292 | 212213354 | 3021918163 | 41.0586 | | | | | | | Load Leaf | 274 | 16237 | 179014385 | 2549164849 | 34.6354 | | | | | | | Root Wash | 187 | 559 | 320824 | 4568541 | 0.0621 | | | | | | | Turface Medium | 202 | 105 | 100692 | 1433854 | 0.0195 | | | | | | | | Roots | 241 | 33792 | 121435174 | 1729236879 | 23.4950 | | | | | | | | | | Total Plant Activity | 7360006550 | 100 | | | | | | 2 | Cuvette | 104 | 29914 | 1023791 | 1023791 | 0.04 | 2.36E+14 | 0.39 | 250105 | 0.92 | | | Shoots | 291 | 15517 | 304789720 | 3340205606 | 19.85 | | | | | | | Load Leaf | 304 | 134950 | 1929926567 | 4601862151 | 68.01 | | | | | | | Root Wash | 104 | 14703 | 503203 | 7165604 | 0.03 | | | | | | | Turface Medium | 100 | 13067 | 390391 | 5559168 | 0.03 | | | | | | | Roots | 293 | 8797 | 184941180 | 2633562402 | 12.04 | | | | | | | | | | Total Plant Activity | 21870364184 | 100 | | | | | | 3 | Cuvette | 158 | 921 | 197366 | 197366 | 0.0831 | 1.23E+15 | 2.04 | 465015 | 1.71 | | | Shoots | 208 | 37717 | 44178188 | 629097392 | 27.9328 | | | | | | | Load Leaf | 304 | 24856 | 85377454 | 1215774942 | 53.9821 | | | | | | | Root Wash | 87 | 1335 | 25646 | 365194 | 0.0162 | | | | | | | Turface Medium | 113 | 24 | 1115 | 15880 | 0.0007 | | | | | | | Roots | 180 | 62867 | 28444988 | 405056633 | 17.9851 | | | | | | | | | | Total Plant Activity | 2252180895 | 100 | | | | | | 4 | Cuvette | 124 | 10949 | 739224 | 739224 | 0.0781 | 8.86E+14 | 1.47 | 618505 | 2.27 | | | Shoots | 260 | 57533 | 394238619 | 5613957937 | 62.5394 | | | | | | | Load Leaf | 262 | 26085 | 191501842 | 2726845101 | 30.3770 | | | | | | | Root Wash | 94 | 10290 | 250738 | 3570507 | 0.0398 | | | | | | | Turface Medium | 111 | 4274 | 185543 | 2642129 | 0.0294 | | | | | | | Roots | 249 | 9272 | 43725012 | 622644172 | 6.9363 | | | | | | | | | | Total Plant Activity | 8976667050 | 100 | | | | | ^{*} cpm defined as radioactivity counts per minute. Raw data is shown in Table S.1 reflecting the nature of applied calculations. Carbon-11 activity was counted on a gamma counter giving counts per minute (cpm). Samples included the cuvette which contained the sonication solution, the load leaf which was initially exposed to ¹¹CO₂, the distal plant tissues where all ¹¹C-photosynthate translocated to and the root wash solution and TurfaceTM growth medium accounting for ¹¹C-exudates. Altogether, all components counted comprised the total amount of ¹¹C-activity fixed by the plant at the beginning of the study. The delta T values reflect the elapsed time in minutes from the end-of-bombardment (EOB) when the radioactivity was first produced on the cyclotron to the time when the sample was counted. Raw radioactivity counts were decay corrected back to EOB using the following equation: $$A_0 = A_T * exp(\lambda T)$$ where A_0 is the calculated decay corrected radioactivity at T_0 or EOB, A_T is the measured radioactivity at time T, λ is the decay constant equal to (ln2/t½) where t½ is the half-life for 11 C equal to 20.4 min., and T is the elapse time from EOB to when the sample was counted. After decay correction, data was corrected for intrinsic detector efficiency and geometry efficiency enabling us to convert counts per minute (cpm) to disintegrations per minute (dpm). All the samples were summed providing a total plant ¹¹C-activity value that was used to calculate ^{**} dpm defined as radioactivity disintegrations per minute. microbial ¹¹C-assimilation as the fraction of total ¹¹C-activity. Disintegrations per minute (dpm) can be related to theoretical number of ¹¹C atoms by the relationship: $$2.22 \times 10^{12} \text{ dpm} = 1 \text{ Curie}$$ (Ci) of radioactivity (or $3.7 \times 10^{10} \text{ Becquerel}$ (Bq) in SI units) 1 Curie of radioactivity is defined as the amount of radioactivity given off by 1 gm amount of 226 Ra. Using this relationship the number of 11 C atoms can be calculated and converted to molar mass units using Avogadro's number (6.023 x 10^{23} atoms/mole). Cuvette fluorescence values were converted to CFUs using the relationship from Fig. 5: $$y = 833.3 x^2 + 182037 x$$ where y represents the experimentally measured cuvette fluorescence corrected for background fluorescence obtained from a deionized water sample and x is the calculated colony forming units (CFU) of bacteria.