Primer name	Sequences 5' – 3'
TEF-F	GGTCTAGAACCTGGACAAATCGTTAAAC
CYC-R	GCGGCCGCCTTCGAGCGTCCCAAAACCT
sgURA3-1	GGTGGGCTTCAGCTCTCGTCGTTTTAGAGCTAGAA
sgURA3-2	GTCCGTGAGGACGAAACGAGTAAGCTCGTCGGTGGGCTTCAGCTC
sgURA3-3	TTCGTCCTCACGGACTCATCAGGGTGGGTATGAATTATATAA
sgAOXS-1	GATCAATGTAGACAAGCTTGGTTTTAGAGCTAGAA
sgAOXS-2	GTCCGTGAGGACGAAACGAGTAAGCTCGTCGATCAATGTAGACAA
sgAOXS-3	TTCGTCCTCACGGACTCATCAGGATCAATATGAATTATATTAA
sgAOX2-1	CTGCATTTCCGGCATTCCCAGTTTTAGAGCTAGAA
sgAOX2-2	GTCCGTGAGGACGAAACGAGTAAGCTCGTCCTGCATTTCCGGCAT
sgAOX2-3	TTCGTCCTCACGGACTCATCAGCTGCATTATGAATTATAA

Table S1. Oligonucleotide used for sequencing and amplification of sgRNAs.

Table S2. Plasmid used in this study.

Name	Backbone	Marker	Promoter	Gene	Terminator	origin
P414 CAS9(TEF1)	P414	TRP1	ScTEF1p	CAS9	ScCYC1t	Reference 28
pNTA	pNTA	NTC	CaGAPp	NTA	SaGAPt	This study
pAN-ARS	pAN	NTC	CaURA3p	NTA	CaURA3t	This study
pAN-CAS9	pAN	NTC	CaGAPp	CAS9	CaGAPt	This study
pAN-	pAN-CAS9	NTC	CaTEF1p	sgURA3	ScCYC1t	This study
CAS9gURA3				_		
pAN-	pAN-CAS9	NTC	CaTEF1p	sgAOXS	ScCYC1t	This study
CAS9gAOXS				-		
pAN-gURA3	pAN	NTC	CaTEF1p	sgURA3	ScCYC1t	This study
pAN-gAOXS	pAN	NTC	CaTEF1p	sgAOXS	ScCYC1t	This study
pAN-gAOX2	pAN	NTC	CaTEF1p	sgAOX2	ScCYC1t	This study

Ca : *Candida aaseri, Sc* : *Saccharomyces cerevisiae,* sg: single guide

Strain number	Yeast species	Accession No.	Similarity (%)	Lipase activity
1	Candida sp.	JQ247717	94.0	+
2	Cryptococcus laurentii	FN428921	97.1	+++
3	Yamadazyma mexicana	AB365477	97.0	+
4	Rhodotorula mucilaginosa	HE660061	95.0	+
5	Pichia caribbica	KC111450	94.4	
6	Candida sp.	JQ247716	91.0	+
7	Pichia caribbica	KC111450	95.3	+
8	Pichia caribbica	KC111450	96.0	+
9	Rhodotorula mucilaginosa	KC205168	96.2	++
10	Sphingobium yanoikuyae	JN700070	99.0	++
11	Pantoea agglomerans	FJ593002	99.2	-
12	Ochrobactrum intermedium	AM490610	98.5	-)
13	Uncultured Verticillium	GU055566	96.2	++
14	Candida aaseri	JQ247716	94.1	+++++
15	Rhodotorula sp.	JX310560	96.7	++
16	Candida sp.	JQ247716	93.4	+

Figure S1. Lipase activity of 16 yeasts isolated from compost of empty fruit bunches of palm oil. Cells were spotted on YNB plate containing 2% glucose and 1% of tributyrin and grown for 5 days.

Figure S2. Utilization of long-chain fatty acids and alkanes by different yeasts and resistance to organic acids. Serially diluted yeasts were spotted on YNB plate containing 2% of the indicated carbon sources and grown for 5 days. ML; methyl lauric acid, MM; methyl myristic acid, MP; methyl palmitic acid, MO; methyl oleic acid.

XbaI/NotI digestion and cloning into the same sites of pAN-CAS9gRNA vector

Figure S3. Construction of sgRNA expression vector. NNNNNN indicate 6 bp complementary sequence required for release of HH from sgRNA. Two fragment were amplified using TEF-F/tgRNA2 and tgRNA1/CYC-R primers, respectively and annealed into a single fragment by overlap extension PCR using TEF-F and CYC-R primers.

Figure S4. Antibiotic sensitivity test of *C. aaseri* SH14. Serially diluted *C. aaseri* SH14 was spotted on YPD plate containing 100 μ g/mL of antibiotics and grown for 5 days **(A)**. Determination of minimum inhibitory concentration for NTC **(B)** and hygromycin **(C)**.

>ARS1 (1265 bp)

CTGCAGCCCGGGGGATCAATCCAACTTAAAGTTTCTCTTTGTTGATATGGGTGGTAAAGTTAGT GAATTTAAAGAAGAGTTCAAGAAGTTAGATTTGTACGCCCCTAATGGTGTGGATATTGTCATTC ATAATGCTGGTATCAGTGGTCCTAACTTCTTTGTTAAATCTACTGAATACGATGTAGAATCTGCA CTTCCAGTAGTTGCAATCAACTATCTTGGTACTGTGAAATTGTATCAAGCTGTTTACCCATACCT TTTCAAAGGAAATGGAACAAAAAAGCTCATTTTAACAAGCTCACTTGCTAGTTCTATGGGACA AATGCCTTTTGGAAGTAATACTTATGGAGCTTCTAAAGCTGCTGTCAACCATTTTGGTGTCCAA ATTGCTACTGAACATCAAAATTCAGACAATCCTCTTATTAAAAATTCTATCACTGTATTATTACA TCCCGGTCTTGTTCTTACTGATATGGCTGCCATGGAAGGAGACTCTGGCTCTTCGGATACTACA CCTTCTTGTGAATTAATTACACCAGATGTATCTGCAAAAGGCACTTTAGATTTGGTTGCACGTCT TACCTCAAAAGACAATGGTAAGTTTTTCGATTACCAAGGAAACAACATAAGTTTGTAAGTCCA **CTAGTGGAGGTCATATTCCATTTTTGTTTAAGGTATTTCACTTGTTGAAATCATTTGTATGATAAA TGAAACATCAAGAGTCGTGTATGGTCATTTGAATAATATCTAGTAATAATCCACTAAAAGACCA** TATTTTTAAAGCTCTTTGAAATGAATTGTTAAAACTTCTTGATAT CTTTACTCTTTATTTTCTCTGT TGTGAAAATCACAATTTAAAAAATTTTCTACTCTCATACTGTTACTGAATTCTTCACTCATCAAT TCACTAGGTGAATATAGAAGCAGTATATACAGTATGGCATCCTCTGGAGAACCTATTCGGATGG GACTTACTACCCTATATTATGGTTCCTCGCGAAAAATCTGGGGAAATTATCACACCATGTTCAG TACAAGAACCATTGCCTCGAGATTGTTTGGAACTAGATTCGTTTCCCATTCTCTTTCAGTGGTCA AATATGATAAGAGTTCCACCTCATTGAAGATCCACT

>ARS2 (789 bp)

Figure. S5. Sequences of ARS1 and ARS2. Yellow boxes indicate the core regions of *ARS1* and *ARS2* for the replication and stability of plasmid.

ATGGATAAGAAATACTCAATAGGCTTAGATATTGGCACAAATAGCGTCGGATGGGCGGTGATC ACTGATGAATATAAGGTTCCGTCTAAGAAGTTCAAGGTTTTGGGAAACACAGACCGCCACAGT ATCAAGAAGAATCTTATAGGGGCTCTTTTATTTGACAGTGGAGAGACAGCGGAAGCGACTCGT CTCAAACGGACAGCTCGTAGAAGGTATACACGTCGGAAGAATCGTATTTGTTATCTACAGGAA TGGTGGAAGAAGACAAGAAGCATGAACGTCATCCTATCTTTGGAAATATAGTAGATGAAGTTG GCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTCGTGGTCATTTCTTGATT GAGGGTGATCTAAATCCTGATAATAGTGATGTGGACAAACTATTCATCCAGTTGGTACAAACCT ACAATCAATTATTTGAAGAAAAACCCTATTAACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTC TGCACGATTGAGTAAATCAAGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAA AAATGGCTTATTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTCAAATCAAATT TTGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGATTAGATAA CTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTCTTGGCAGCTAAGAATTTATCAGATG CTATCTTACTTTCAGATATTCTAAGAGTAAATACTGAAATAACTAAGGCTCCCCTATCAGCTTCA ATGATTAAACGCTACGATGAACATCATCAAGACTTGACTCTTTTAAAAGCGTTAGTTCGACAA ATTGATGGGGGGGGCTAGCCAAGAAGAGTTCTATAAGTTCATCAAACCAATCTTAGAAAAGATG TTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGTTGCATGCTATTTTGAGAAGAC AAGAAGACTTCTATCCATTCTTAAAAGACAATCGTGAGAAGATTGAAAAGATCTTGACTTTTC GAATCCCTTATTATGTTGGTCCATTGGCGCGTGGCAACAGTCGTTTTGCATGGATGACTCGGAA GTCTGAAGAAACAATTACCCCTTGGAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCA ATCATTTATTGAACGCATGACAAACTTTGATAAGAATCTTCCAAATGAGAAAGTTCTACCAAA ACATAGTTTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTACTG AAGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAGCCATTGTTGATTTACTCT TCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAGATTATTTCAAGAAAATAGAA TGATTTGCTAAAGATCATTAAAGATAAAGATTTCTTGGATAATGAAGAGAATGAAGACATCTTA GAGGATATTGTCCTTACATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAA ACATATGCTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGGTT GGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGCAAAACAATATT AGATTTCTTGAAATCAGATGGTTTTGCCAATCGCAATTTCATGCAGTTGATCCATGATGATAGTT TGACATTCAAAGAAGACATTCAAAAAGCACAAGTGTCTGGACAAGGCGATAGTTTACATGAA CATATTGCAAACTTAGCTGGTAGCCCTGCTATCAAGAAAGGTATTTTACAGACTGTAAAAGTTG TTGATGAATTGGTCAAAGTAATGGGGCGGCATAAGCCAGAGAACATCGTTATTGAAATGGCAC GTGAAAATCAGACAACTCAAAAGGGCCAGAAGAACTCGCGAGAGCGTATGAAACGAATCGA AGAAGGTATCAAAGAGTTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATACTCAATT ATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACATTGTTCCACAAAGTTTCCTTAAAG ACGATTCAATAGACAATAAGGTCTTAACGCGTTCTGATAAAAATCGTGGTAAATCGGATAACG TTCCAAGTGAAGAAGTAGTCAAAAAGATGAAGAACTATTGGAGACAACTTCTAAACGCCAAG TTAATCACTCAACGTAAGTTTGATAACTTGACGAAAGCTGAACGTGGAGGTTTGAGTGAACTT GATAAAGCTGGTTTCATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGGCA

CAAATTTTGGATAGTCGCATGAATACTAAGTACGATGAAAATGATAAACTTATTCGAGAGGTTA AAGTGATTACCTTAAAGTCTAAATTAGTTTCTGACTTCCGAAAAGATTTCCAATTCTATAAAGT ACGTGAGATTAACAATTACCATCATGCCCATGATGCGTATCTAAATGCCGTCGTTGGAACTGCT TTGATTAAGAAATATCCAAAACTTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGT TCGTAAGATGATTGCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAGTATTTCTTTTA CTCTAATATCATGAACTTCTTCAAGACAGAAATTACACTTGCAAATGGAGAGAGTTCGCAAACG CCCTCTAATCGAAACTAATGGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGCGAGATTTTGC CACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAAGAAGACAGAAGTACAGA CAGGCGGATTCTCCAAGGAGTCAATCTTACCAAAAAGAAATTCGGACAAGTTGATTGCTCGTA AGAAAGACTGGGACCCAAAGAAGTATGGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCC TAGTGGTTGCTAAGGTGGAGAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTA GGGATCACAATTATGGAAAGAAGTTCCTTCGAGAAGAATCCGATTGACTTTTAGAAGCTAAA GGATATAAGGAAGTCAAGAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGAGTTAG AAAACGGTCGTAAACGGATGTTGGCTAGTGCCGGAGAATTACAGAAAGGAAATGAGTTGGCT TTGCCAAGCAAATATGTGAATTTCTTATATTTAGCTAGTCATTATGAAAAGTTGAAGGGTAGTCC AGAAGATAACGAACAAAAACAATTGTTTGTGGAGCAGCATAAGCATTATTTAGATGAGATTAT TGAGCAAATCAGTGAGTTCTCTAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTT TTTACGTTGACGAATCTTGGAGCACCCGCTGCTTTCAAATATTTTGATACAACAATTGATCGTA AACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATCCATCACTGGTCT TTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGAC

Figure S6. Sequence of C. aaseri codon optimised Cas9 gene.

AGTATCAAATTTCATTAATGAATAAGTTTCAACTTGTAAATCACATAAAATCTCTACCGCTTTAT CCAAATCATTTTCTTTGTTAAATAAATATCACTCAAATTACGTGATACAATTGCCCTTTCTACTT CTTTATGATTATTCTCATCTAAACTGGCCATTTTCTCAATTATATGTGCAATAAACACTTGGATAC ATTCTGCCAATTTGTCCACAATGGCTATCAATACTCTTTTACTACTACAAGATCTGACAGTTGC CTTACTTGTTTTTCTAAAGAAAGAAGACGGTCTACCGCTTCCTTGTATGGAAGCAGGGTGATTT CCGGGAGTTGTTTGTCCAAGATGGACGTGTAGTCCTTCTCTGCTTTTAAAGGATCTTCTCTAGA CATGTTGAGTGGCGAAACTTTGTGGTGATTTCTTGAAAAGCGCGATATTTGAAGCCAAATTTCA ACACAAGAAACATGAGTAGGACACGCCTTTTTTATTATTAAAGATTCTAAATAGTTAATAAAG GCAAATACAATTGATATTAGTTATGGTGGAAATTGGTACCGATGGGAAGTTGAAAGTAATTACA AAAAGAGTACCCGCGGATTTGATTTGGGCCAATCATGGCCAAGTACCCCTGTCAAATTATCATT AATTCACATTCATTTTGTGGGGAAAAAATTGTATGTGGGGACATTATTCAAGTATAAATACCAA TTGAAATAGCAGGAAATCATTTTTCAATATGTTTGTCACTAATAAAATTGATAGTAGTGAAGCA CCACGTCCTAGCGAGTTGATTTCCAACGAAAGAGCTGCATTTCCGGCATTC GGCGAAACTTTG TGGTGATTTCTTGAAAAGCGCGATATTTGAAGCCAAATTTCAACACAAGAAACATGAGTAGGA CACGCCTTTTTTATTATTAAAGATTCTAAATAGTTAATAAAGGCAAATACAATTGATATTAGTTA TGGTGGAAATTGGTACCGATGGGAAGTTGAAAGTAATTACAAAAAGAGTACCCGCGGATTTG **ATTTGGGCCAATCATGGCCAAGTACCCCTGTCAAATTATCATTAATTCACAT**ACCTGGACAAATC *GTTAAACGGCTACCTTTTAAATATAGAAATATAAACCCCACTATGGAATTTGAATAACTAATAACC* ATGACTTTCACGTAGAAATGTCCCCCAAAAAAAAGTCGATCTCATTAAATTCAGCAACACCCTCTTT TAAAATACAAACCACTAGGGTGTGCAATTCCATGTAACAAATTGAAATTTAAATTGAAATTTGCAAC AAACTTGAACACTTTGGTCTAAACCTTGTCTATTTATTCTATATAATTCTATTATAAAATTTCCATAC ACGCACACCTTATCATTGCAGTGAAAAATTTTTCAAGGACGCTCATCTTAAATATCTGAAAAATATA AATTACAGCAATCCGCCCCTTTGAAAATTTTTTTCCCTCTCCATACTTGTTCTTTTTTGTTTTAAAGTC AATTAATAATTCATAGGATCCATGATCTGTTCATTCTTTAGACTATTGACCATTGTAACTTTGGT TATTGCTGCTCCTACCACTTAGTTCCTCCAACTGAAGATCCTTTCTATACTGCACCAAAGGGCT **TCGAATCAGCAGAGTTAGGTACTGTTTTGGCTTATAGAAACACTCCAGCTCCAATCAGAAGTAT** TTATTTTGAAGTTAATATCAAAAACTCATGGCAATTGTTAGTCAGGTCTTCTGATTCATTTGGTA <u>ATCAAGTTGCTCAAGATTCTGCATATCTTGATTGTTCACCATCATATTCCTTCATGAATGGAGGT</u> <u>GGTCTTTCTACTATTAACAATCAAATTGAGACTGTTTTAATTCAAACAGCATTAGACCAAGGTT</u> <u>ATTATGTTGTTTCTCCAGATTATGAAGGATTGAAATCGGCTTTCACCGGTGGTATTCAAGCTGGT</u> <u>CATGGTACATTGGATTCCATTAGAGGTGCTTTATCCAGTAGTAACATCACTGGTGTTAAAAAGG</u> <u>ACGCAGATACTATTCTTTGGGGTTATTCTGGAGGTTCTTTAGCTAGTGGATGGGCTGCAGCTTTA</u> <u>CAACCAACTTATGCACCAGAATTGGCTTCCAACTTACTTGGTGTTGCTTTAGGTGGATGGGTTA</u> CCAATATTACTGCTACTATAACAAGTGTTAGTGGTACCATATTCTCTGGATTGGGTGCTATGGGA ATGGCTGGTTTAAGTAATGAGTACACCGATTTATACGGTTACCTTAAGACTGCTATGCCAGCAG ATAAATATGAAGAATTCACTAAAGCTTATTCAATATGTGCTGCTGAAGCTCTTATTGAATATAAT AACCGACATATTCCATCATTCGTAACAATACATTGGGGTTTAATTGCTGGTCAGATGCCAGAAAT TCCTGTTTTCGTTTACCATGGAACTCTCGACCAGATCGTACCATATGATCAAGCTGAAAGGGTT

TATGATATTTGGTGTGATGCTGGTATTAAATCTTTTGAATTTGCTACTGATTTAACTGCTGGTCAT **CCAAATGGTGAAAACCTTATTGTTGAAAACAACAGCGTCATCAGTAAAGCTAATTCTACTAGA** <u>AGTGAACATCATCACCATCACCACTAGGTCGACCTAGCCGTGGAACATAAATTATAAGTTTT</u> GGCTTCAATTGACTGTGTAATTGTAGTATATAATTGTAGTTGGTTTGATCAATGATTGAAAG **GCGCGATTAGATTAATGTTTTTATTACATAAACGATATTACGATAT** AAAACTCCGAAATTATTTTAAAGATTTCCAGCCAATTGGAAAAAGATCCGATTCTTCAGAGCT CTTTCGGAGAATATGATATGCTGACAACAACAGCGGGAATTGACGGCTTTGAGAATAGATA GACTCACTAATTACCGAGAATTAGAATCTATAGATGATTTTTTCACTCGATTAAATCTTATCACC ATTTATGATCCCAGTTTAGGAATTCGAATCTCAATCAATTTAGGCTTGTTTTTAAACTGTATTAA AGGTAATGGAACTGCTAGTCAGGTGGAATATTGGTGTAATCGCAAGGAGGCACTGATTTTAAA GCAAATTTATGGATGTTTTGCCATGACAGAACTAGGACATGGTTCTAATGTACCACGGACTAAA ATTCATCAGTTTCTTGAAGGCAGCCAGAAAAACTCCGAAATTATTTTAAAGATTTCCAGCCAAT TGGAAAAAGATCCGATTCTTCAGAGCTCTTTCGGAGAATATGATATGCTGACAACACAGC GGGAATTGACGGCTTTGAGAATAGATAGACTCACTAATTACCGAGAATTAGAATCTATAGATG ATTTTTTCACTCGATTAAATCTTATCACCATTTATGATCCCAGTTTAGGAATTCGAATCTCAATCA ATTTAGGCTTGTTTTTAAACTGTATTAAAGGTAATGGAACTGCTAGTCAGGTGGAATATTGGTGT AATCGCAAGGAGGCACTGATTTTAAAGCAAATTTATGGATGTTTTGCCATGACAGAACTAGGA **CATGGTTCTAATGTA**

Figure S7. Integration of CaLIP2 overexpression cassette at sgAOX2 via NHEJ. The blue box indicates the 5' repetitive sequence and the yellow box indicates the 3' repetitive sequence. The red box is a PAM sequence and gray box is a recognition site for DNA cleavage by CRISPR-Cas9. Underlined sequences indicate *Ca*LIP2 gene sequence. *TEF1* promoter is an italic character before *CaLIP2* sequence and *CYC1* terminator sequences located downstream of *CaLIP2* with bold character.

Figure S8. Effect of Cas9 expression on the growth of *C. aaseri* SH14. *C. aaseri* SH14 harboring a plasmid free of Cas9 (Cas9-) and a plasmid with Cas9 (Cas9+).