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Abstract: Microorganisms related to plant roots are vital for plant growth and health and considered
to be the second genome of the plant. When the plant is attacked by plant pathogens, the diversity
and community structure of plant-associated microbes might be changed. The goal of this study is to
characterize differences in root-associated endophytic actinobacterial community composition and
antifungal activity between Fusarium wilt diseased and healthy cucumber and screen actinobacteria for
potential biological control of Fusarium wilt of cucumber. In the present research, three healthy plants
(also termed “islands”) and three obviously diseased plants (naturally infected by F. oxysporum f. sp.
cucumerinum) nearby the islands collected from the cucumber continuous cropping greenhouse were
chosen as samples. Results of culture-independent and culture-dependent analysis demonstrated
that actinomycetes in the healthy roots were significantly more abundant than those of diseased roots.
Moreover, there were seven strains with antifungal activity against F. oxysporum f. sp. cucumerinum in
healthy cucumber roots, but only one strain in diseased cucumber roots. Out of these eight strains, the
isolate HAAG3-15 was found to be best as it had the strongest antifungal activity against F. oxysporum
f. sp. cucumerinum, and also exhibited broad-spectrum antifungal activity. Thus, strain HAAG3-15
was selected for studying its biocontrol efficacy under greenhouse conditions. The results suggested
that the disease incidence and disease severity indices of cucumber Fusarium wilt greatly decreased
(p < 0.05) while the height and shoot fresh weight of cucumber significantly increased (p < 0.05)
after inoculating strain HAAG3-15. On the basis of morphological characteristics, physiological
and biochemical properties and 100% 16S ribosomal RNA (rRNA) gene sequence similarity with
Streptomyces sporoclivatus NBRC 100767T, the isolate was assigned to the genus Streptomyces. Moreover,
azalomycin B was isolated and identified as the bioactive compound of strain HAAG3-15 based on
analysis of spectra using a bioactivity-guided method. The stronger antifungal activity against F.
oxysporum f. sp. cucumerinum, the obvious effect on disease prevention and growth promotion on
cucumber seedlings in the greenhouse assay, and the excellent broad-spectrum antifungal activities
suggest that strain HAAG3-15 could be developed as a potential biocontrol agent against F. oxysporum
f. sp. cucumerinum used in organic agriculture. These results suggested that the healthy root nearby
the infected plant is a good source for isolating biocontrol and plant growth-promoting endophytes.
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1. Introduction

Cucumber (Cucumis sativus L.), belonging to the family Cucurbitaceae [1], is a very important
vegetable which possesses remarkable economic and dietary value. It has been around for over three
thousand years as a monoecious annual cultivable plant [2,3]. In addition, cucumber is well known for
its softness and succulence and contains a variety of nutrients, such as potassium, copper, manganese,
phosphorus, pantothenic acid, dietary fibers, and vitamins (A, C, K, and B6) [4].

However, cucumber is susceptible to many pathogens and pests [5]. Cucumber Fusarium wilt,
induced by the pathogen Fusarium oxysporum f. sp. cucumerinum, is a typical soil-borne fungal disease
and also one of the most important cucumber diseases in worldwide [6,7]. The disease could reduce
~10% to 30% of cucumber production and cause quality degradation, which results in serious economic
losses [8,9]. Fusarium wilt of cucumber disease may appear throughout the whole growth period of
cucumber plant, and the disease incidence at early stages is more serious [10,11]. The symptoms of the
disease are vascular and root wilt which eventually cause plant death [11,12]. Chemical control agents
are implicated in ecological, environmental, and human health problems, and pathogens can develop
resistance to them [13]. Traditional ways of crop rotation and seeding grafting could be applicable for
controlling Fusarium wilt; however, these methods are high-cost and laborious [14]. Moreover, soil
fumigation is also an efficient approach to control the extension of soil-borne disease, but this strategy
is labor-consuming and inconvenient, which limits its application [9].

Up to now, agricultural scientists paid much attention to an efficient, environmentally friendly,
and sustainable method, biocontrol, which is used for protecting plants against soil-borne diseases [15]. A
number of antagonistic microbes were investigated and studied to control various plant pathogens, such as
Pseudomonas spp., Bacillus spp., Streptomyces spp., Trichoderma spp., and Paenibacillus spp [13,16–22]. Kareem
et al. reported that Trichoderma longibrachiatum NGJ167 could be used to control Fusarium wilt of
cucumber [13], Bacillus subtilis 9407 was recorded as a biocontrol agent against bacterial fruit blotch of
melon [20], and Pseudomonas aeruginosa BRp3 could reportedly be applied in controlling bacterial leaf
blight of rice [22]. Streptomyces genus is one of the most efficient groups, with the capacity of preventing
plant fungal diseases [17,19,21,23,24]. S. exfoliates FT05W and S. cyaneus ZEA17 were documented
as biocontrol agents against lettuce drop caused by Sclerotinia sclerotiorum [19], S. griseochromogenes
and S. lydicus WYEC108 were reported as biocontrol agents against the rice blast fungus, Magnaporthe
oryzae (Pyricularia oryzae) [21], and S. albospinus CT205 was found to have biocontrol potential against
cucumber Fusarium wilt [24]. Streptomyces with efficient rhizosphere and/or the inner regions of plant
tissue colonization could prevent fungal pathogens and promote plant growth by inoculating spore
suspensions on seeds or seedlings [19,25–27]. The genus Streptomyes is known for its capacity of
producing abundant secondary metabolites with bioactivities against plant pathogens [28]. Thus, the
isolation of Streptomyces with antibacterial activity is recognized as a crucial strategy in the prevention
and control of plant diseases and development of agriculture, as well as ecosystem safety.

Endophytes which can reside within the plants through parasitic, symbiotic, or mutualistic
modes without inducing apparent infections or symptoms of disease for the whole or part of their life
history [29,30] represent a portion of the microbes associated with plant. The phylum Actinobacteria
was reported as the major portion of endophytic microbes, while Streptomyces was reported as the
main content of endophytic actinomycetes in most plants [31–42]. It was also reported that many
endophytic actinobacteria could control plant pathogens, improve plant stress resistance, and promote
plant growth [43–46]. Therefore, the application of endophytic biotcontrol agents is the current research
hotspot [47] and could provide biocontrol strategies in future.
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Microorganisms related to plant roots are vital for plant growth and health and considered to
be the second genome of the plant. When the plant is attacked by plant-pathogenic microorganisms,
the diversity and community structure of plant-associated microbes may be changed [48,49]. The goal
of this study is to characterize differences in root-associated endophytic actinobacterial community
composition and antifungal activity between Fusarium wilt diseased and healthy cucumber, as well as
to screen actinobacteria for potential biological control of Fusarium wilt of cucumber. In our present
research, three healthy plants (also termed “islands”) [50] and three obviously diseased plants nearby
the islands collected from a cucumber continuous cropping greenhouse were chosen as samples for
culture-independent and culture-dependent analysis. A preliminary study of antifungal activities of
these strains against F. oxysporum f. sp. cucumerinum was performed and compared. Strain HAAG3-15
with the strongest antifungal activity was selected for investigating its biocontrol effect on potted plants.
Furthermore, the bioactive constituent with antifungal activity of strain HAAG3-15 was isolated and
the chemical identity was determined. This would be of high importance for the source of antagonistic
strains and biocontrol of cucumber Fusarium wilt, as well as other plant fungal diseases.

2. Materials and Methods

2.1. Sampling of Healthy and Diseased Plants

In June 2017, three healthy cucumber plants (also termed “islands”) and three obviously diseased
cucumber plants (infected by F. oxysporum f. sp. cucumerinum) nearby the islands collected from the
cucumber continuous cropping greenhouse (320 m2, plastic film) of Northeast Agricultural University,
Heilongjiang province, northeast China (45◦41′ north (N), 126◦37′ east (E)) were chosen as samples.
Each group included one healthy plant and one obviously diseased plant nearby the island. These
three groups were named H1-D1, H2-D2, and H3-D3. All cucumber plants surveyed in the current
study were in the initial flowering stage of cucumber.

2.2. DNA Extraction, Sequencing, and Data Analysis

The loose soil attached to the cucumber roots was firstly removed by gentle shaking. Then,
the roots were washed in water with an ultrasonic step (160 W, 15 min) to thoroughly clean off

surface soils and adherent epiphytes. Then, the total DNA was isolated from the roots using the
Cetyltrimethylammonium Ammonium Bromide (CTAB) method. The purity of DNA was checked using
1% agarose gels, and DNA concentration was determined with a NanoPhotometer spectrophotometer
(Implen, München, Germany). The V3–V4 regions of 16S ribosomal RNA (rRNA) genes of bacterial
DNA were amplified using the primer pair 341F (forward; 5′–CCTAYGGGRBGCASCAG–3′) and
806R (reverse; 5′–GGACTACNNGGGTATCTAAT–3′) with the barcode and sequenced on an Ion
S5TM XL platform at Beijing Novogene Technology Co. Ltd. (Beijing, China), generating 600 bp
single-end reads. The raw data were filtered (removing low-quality reads less than 17) according to
the Cutadapt (V1.9.1, http://cutadapt.readthedocs.io/en/stable/) [51] quality control process. The reads
were compared with Silva database (https://www.arb-silva.de/) [52] using the UCHIME algorithm
(http://www.drive5.com/usearch/manual/uchime_algo.html) [53], and then the chimera sequences [54]
were removed to obtain clean data. The Uparse software (v7.0.1001, http://drive5.com/uparse/) [55]
was used for sequences analysis. All sequences were clustered into operational taxonomic units
(OTUs) on the basis of a sequence similarity of ≥97%, and the representative sequence was annotated
with taxonomic information based on the Silva Database (https://www.arb-silva.de/) [52] using the
Mothur algorithm. Determination of the difference in dominant species among different samples
(groups) and multiple sequence alignment were carried out using the MUSCLE software (Version
3.8.31, http://www.drive5.com/muscle/) [56]. Observed species and Chao 1 were calculated with QIIME
(Version1.9.1, http://qiime.org), and principal component analysis (PCA) was used for analyzing the
ordinations of community patterns.

http://cutadapt.readthedocs.io/en/stable/
https://www.arb-silva.de/
http://www.drive5.com/usearch/manual/uchime_algo.html
http://drive5.com/uparse/
https://www.arb-silva.de/
http://www.drive5.com/muscle/
http://qiime.org
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2.3. Isolation and Maintenance of Endophytic Actinomycetes

The cucumber root samples were air dried for 24 h at room temperature and weighed. The roots
were cut into pieces of 5–10 mm in length and then subjected to a seven-step surface sterilization
procedure [57]. The samples were then ground with a sterile mortar and pestle, employing 1 mL
of 0.5 M phosphate buffer saline (pH 7.0) per 100 mg tissue. Tissue particles were allowed to settle
down at 4 ◦C for 20–30 min. The suspensions of each sample were all spread on plates of humic
acid–vitamin agar [58], Gause’s synthetic agar No. 1 [59], dulcitol–proline agar [57], cellulose–proline
agar [57], and arginine–alanine–granulose agar [57], supplemented with cycloheximide (50 mg·L−1)
and nalidixic acid (20 mg·L−1). Endophytic strains were incubated at 28 ◦C until single colonies were
observed. Single actinomycete colonies growing on the plates were isolated and purified on oatmeal
agar (International Streptomyces Project medium 3, ISP 3) [60]. The isolates were prepared on ISP 3
medium and kept at −80 ◦C (under 30% glycerol) for long-term storage and at 4 ◦C as source cultures.

2.4. Screening the Isolates with Antifungal Activity

To screen antagonistic actinomycetes, the antifungal activity of these isolates was determined
against the pathogen F. oxysporum f. sp. cucumerinum. These isolates were streaked on ISP 3 medium
and cultivated for seven days (five repetitions). The pathogenic fungus (F. oxysporum f. sp. cucumerinum)
was cultured on potato dextrose agar (PDA) for one week [61]. Mycelia discs (6 mm diameter) of each
pathogen were picked up and put in the center of different plates which contained freshly prepared
PDA medium, and the strains were point-inoculated at the margin areas which were 3 cm away from
the central pathogen colony using an inoculating needle, and then cultured in an incubator at 28 ◦C for
seven days. All the experiments above were repeated three times. The inhibition of fungal growth on
each plate was calculated as described below [62]. The antifungal activity of antagonistic strains against
other nine pathogenic fungi (Corynespora cassiicola, Setosphaeriaturcica turcicaf, Colletotrichum orbiculare,
Alternaria solani, Helminthosporium maydis, Sphacelotheca reiliana, Sclerotinia sclerotiorum, Phytophthora
sojae, Rhizoctonia solani) was also determined as described in Equation (1).

Inhibition of fungal mycelial growth (%) =
A− B

A
× 100, (1)

where A is the mycelial growth of fungal pathogen in the absence of antagonists, and B is the mycelial
growth of fungal pathogen in the presence of antagonists.

2.5. Morphological and Physiological Characterization

Gram staining was performed using a standard method. Morphological characteristics of strain
HAAG3-15 were observed by light microscopy (Nikon ECLIPSE E200, Nikon Corporation, Tokyo,
Japan) and scanning electron microscopy (Hitachi SU8010, Hitachi Co., Tokyo, Japan) using cultures
grown on ISP 3 medium at 28 ◦C for three weeks; samples for scanning electron microscopy were
prepared as described by Jin et al. [63].

2.6. Genomic and Phylogenetic Analysis

For DNA extraction, strain HAAG3-15 was cultured in ISP 2 medium at 28 ◦C for four days, and
then the cultures were centrifuged to harvest the cells. Genomic DNA extraction was carried out using
a TIANamp Bacteria DNA Kit (TIANGEN Biotech, Co., Ltd., Beijing, China). PCR amplification of
the 16S rRNA gene was performed using a standard procedure [64]. PCR products were purified and
cloned into the vector pMD19-T (Takara Bio Inc., Dalian, China) and sequenced using an Applied
Biosystems DNA sequencer (model 3730XL, Applied Biosystems Inc., Foster City, CA, USA). The
almost full-length 16S rRNA gene sequence of strain HAAG3-15 (1519 bp) was obtained and submitted
to the EzBioCloud server (https://www.ezbiocloud.net/) for comparison with type strains [65], retrieved
using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi;), and then submitted to the GenBank

https://www.ezbiocloud.net/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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database. The phylogenetic tree was built based on the 16S rRNA gene sequences of strain HAAG3-15
and related reference species. Sequences were multiply aligned in Molecular Evolutionary Genetics
Analysis (MEGA) software version MEGA7.0 using Clustal W algorithm and manually modified if
necessary. The phylogenetic tree was constructed using the neighbor-joining [66] algorithm with
MEGA [67]. A bootstrap method with 1000 replicates was used to evaluate the stability of the topology
of the phylogenetic tree [68]. Kimura’s two-parameter model was used for generating a distance
matrix [69]. All positions in the dataset containing gaps and missing data were deleted (complete
deletion option).

2.7. Greenhouse Biocontrol Assay Using HAAG3-15

The capacity of strain HAAG3-15 to control cucumber Fusarium wilt and promote the growth of
cucumbers (Jinyan four varieties) was evaluated using a pot experiment with four treatments (F, F + S,
N, and S) under greenhouse conditions. The soil used in the present study was steam-sterilized three
times (121 ◦C, 30 min). In the treatment F, the spore suspension of F. oxysporum f. sp. cucumerinum
(2 mL, 4–5 × 104 colony-forming units (CFU)·mL−1) was irrigated in the soil while cucumber was
transplanted. In the treatment F + S, the spore suspension of isolate HAAG3-15 (2 mL, 4–5 × 106

CFU·mL−1), together with that of F. oxysporum (2 mL, 4–5 × 104 CFU·mL−1), was irrigated in the soil
while the cucumber was transplanted. In the treatment N, no microbial suspension was added to
the soil. For the treatment S, the spore suspension of isolate HAAG 3-15 (2 mL, 4–5 × 106 CFU·mL−1)
was irrigated in the soil when the cucumber was transplanted. For each treatment, 30 two-week old
cucumber seedlings were used and cultivated in plastic pots (15 cm diameter, one cucumber seedling
per pot). This study was performed under greenhouse conditions with average temperature of 25 ◦C,
relative humidity of about 60%, and 12 h of illumination (11.8 W/m2) per day. The cucumber seedlings
were watered every two days and no fertilizers were used. Fifteen cucumber seedlings randomly
harvested from the pots of each treatment were used to measure their shoot fresh weights and heights
after cultivating after four weeks. The disease symptoms of all cucumber seedlings per treatment
were investigated in this study. Severity of disease symptoms was recorded using an index ranging
from 0 (healthy plant) to 4 (dead plant). The plant disease index (DI) was calculated according to the
following formula: DI = [

∑
(Ni × i)/ (N × 4)] × 100, where i means a 0–4 disease level, and Ni means

the plant number of reaction i [70].

2.8. Isolation and Characterization of the Antifungal Compound

The antifungal compound was separated based on the antifungal (F. oxysporum f. sp. cucumerinum)
activity-guided method from the extraction. Strain HAAG3-15 was inoculated into 250-mL Erlenmeyer
flasks filled with 50 mL of sterile tryptic soy broth (seed medium, TSB, Beijing AOBOXING BIO-TECH
CO., LTD., Beijing, China) and cultured for two days at 28 ◦C. Then, the seed culture (12.5 mL) was
transferred into 1000-mL Erlenmeyer flasks containing 250 mL of production medium (soybean flour
20 g, peptone 2 g, glucose 20 g, soluble starch 5 g, yeast extract 2 g, NaCl 4 g, K2HPO4 3H2O 0.5 g,
MgSO4 7H2O 0.5 g, CaCO3 2 g, and distilled water 1 L; pH 7.2–7.4) and incubated at 28 ◦C for seven
days on a rotary shaker (250 rpm). Next, 50-L cultures were obtained and filtered, and 30 L of mycelial
cake was harvested. Then, the mycelial cake was washed with 3 L of distilled water and extracted with
3 L of methyl alcohol. The supernatant and wash water were subjected to a Diaion HP-20 resin column
(500 mm × 100 mm inner diameter (i.d.)) eluting with 95% EtOH (5 L). The MeOH extract and the
EtOH eluents were evaporated under reduced pressure to 1 L at 50 ◦C, and the resulting concentrate
was extracted three times using EtOAc (5 L) and then concentrated to yield a residue (22 g) in the
same conditions. The crude extract was resolved by a silica gel (100–200 mesh) column eluted with a
stepwise gradient of CHCl3/MeOH mixtures with growing polarity (100:0–50:50, v/v) to obtain three
fractions (Fr. 1–3) based on the Thin-Layer Chromatography (TLC) profiles, performed with a solvent
system of CHCl3/MeOH (9:1). Fr. 2 showed antifungal activity and was further purified by a Sephadex
LH-20 gel column eluted with CHCl3/MeOH (1:1, v/v), giving two fractions Fr. 2-1 and Fr. 2-2, referring
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to the TLC profiles. Fr. 2-1 showed antifungal activity and was further separated by semi-preparative
HPLC eluting with a CH3CN–H2O mixture (48:52, v/v) using a reversed-phase column (Zorbax SB-C18,
5 mm, 250 × 9.4 mm inner diameter) to obtain compound 1 (tR 27.0 min, 12 mg). The eluates were
detected by a photodiode array detector at 254 nm with a flow rate of 1.5 mL/min at 25 ◦C.

Spectroscopic analysis was used to determine the structure of the antifungal compound. 1H and
13C NMR spectra were measured with a Bruker DRX-600 (600 MHz for 1H and 150 MHz for 13C)
spectrometer (Bruker, Rheinstetten, Germany). Electrospray ionization (ESI) MS data were obtained
using an Agilent G6230 Q-TOF mass instrument (Agilent Corp., Santa Clara, CA, USA).

2.9. Statistical Analysis

The data were analyzed using analysis of variance (ANOVA) followed by Duncan’s multiple-range
test (p ≤ 0.05) using statistical software SPSS version 17.0 (SPSS Inc., Chicago, IL, USA). The results
were expressed as means ± SD.

3. Results

3.1. Culture-Independent Communities

In the current study, a total of 300,923 high-quality reads classified as 8708 OTUs from the
microbiome in cucumber root were determined. The raw sequencing reads were deposited to NCBI
SRA (National Center for Biotechnology Information Short Read Archive) for this project under
accession numbers SRR10589211–SRR10589216. The predominant bacterial phyla of healthy and
diseased cucumber roots were all Proteobacteria, Actinobacteria, and Bacteroidetes, but the relative
abundance of phylum Actinobacteria in the healthy samples was more significant (p < 0.05) than in
diseased samples (Figure 1). Including Streptomyces, the relative abundance of genera in Actinobacteria
(top 30) in the healthy samples was greater than in diseased samples (Figure S1, Supplementary
Materials), except for Sporichthya (Figure S1, Supplementary Materials). The bacteria α-diversity
Chao 1 index of the healthy root was significantly higher than that of the diseased root (Figure 2).
Principal component analysis (PCA) suggested a clear difference between the bacterial community
(Analysis of similarities (ANOSIM) for bacteria, p = 0.1) of healthy and diseased cucumber roots
(Figure 3). The principal component analysis (PCA) explained 34% and 18% of the variation in the
bacterial communities.
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3.2. Isolation of Endophytic Actinomycetes

A total of 263 endophytic actinomycetes colonies were isolated from healthy and diseased
cucumber roots. Out of this number, 50 (58.1%), 66 (75.8%), and 57 (63.3%) isolates originated from the
roots of healthy cucumber in Group 1 (H1-D1), Group 2 (H2-D2), and Group 3 (H3-D3), respectively,
whereas 36 (41.9%), 21 (24.2%), and 33 (36.7%) isolates originated from the roots of diseased cucumber
in all three groups. The colony-forming units (CFU) per gram of root varied widely among healthy
and diseased plants, while also indicating that endophytic actinomycetes in healthy cucumber roots
were more significantly (p < 0.05) abundant than in diseased cucumber roots (Figure 4).
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3.3. In Vitro Antagonistic Activity Assays

There were eight strains showing antagonism to F. oxysporum f. sp. cucumerinum. Among these
eight antagonistic strains, seven strains (HGS1-1, HGS2-18, HGS3-17, HAAG3-4, HAAG3-8, HCPA2-26,
and HAAG3-15) were isolated from healthy cucumber roots, while only one strain (DCPA1-15) was
isolated from diseased cucumber roots. Strain HAAG3-15 isolated from the root of healthy cucumber
showed 71% inhibition of mycelial growth (Figure S2, Supplementary Materials), whereas the other
seven strains only exhibited 17% to 45% inhibition. In addition, strain HAAG3-15 also exhibited stronger
antifungal activities against other nine pathogenic fungi (Corynespora cassiicola, Setosphaeriaturcica turcicaf,
Colletotrichum orbiculare, Alternaria solani, Helminthosporium maydis, Sphacelotheca reiliana, Sclerotinia
sclerotiorum, Phytophthora sojae, and Rhizoctonia solani) than other antagonistic strains (Figure 5).
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3.4. Characterization and Identification of the Isolate HAAG3-15

The morphological characteristics of strain HAAG3-15 showed that it belonged to the genus
Streptomyces [71]. The strain formed well-developed, branched substrate hyphae and aerial mycelium
that differentiated into straight or flexuous spore chains consisting of cylindrical spores (0.55–0.81 µm
× 0.75–1.22 µm), and the spore surface was rough (Figure 6) after cultivation for three weeks. The
strain exhibited good growth on all tested media. Diffusible pigments were not observed on any of the
media used in this study for strain HAAG3-15. The isolate was observed to grow in a pH range of
6.0–8.0 (optimum pH 7.0) and 10–40 ◦C (optimum 28 ◦C), as well as in the presence of 0%–2% NaCl
(w/v, optimally 0%).

The almost-full length 16S rRNA gene sequence (1519 bp) of strain HAAG3-15 was deposited
as MN726931 in the GenBank/EMBL/DDBJ (European Molecular Biology Laboratory/DNA Data
Bank of Japan) databases. Based on EzBioCloud analysis, strain HAAG3-15 belongs to the genus
Streptomyces and is most closely related to Streptomyces sporoclivatus NBRC 100767T (100% identity) and
S. antimycoticus NBRC 12839T (100%). Phylogenetic analysis based on 16S rRNA gene sequences with
the neighbor-joining tree suggested that the strain clustered within the genus Streptomyces and formed
a stable subclade with S. sporoclivatus NBRC 100767T and S. antimycoticus NBRC 12839T (Figure 7).
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3.5. Greenhouse Biocontrol Assay of Strain HAAG3-15

In the experiment under greenhouse conditions, the disease index and incidence, shoot fresh
weight, and height of cucumber seedlings were measured upon transplanting after four weeks; the
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average values were calculated, and the results are presenting in Table 1. After two weeks of the
inoculation of F. oxysporum f. sp. cucumerinum, some visual external wilt symptoms (yellowing of
leaves and stems) of cucumber seedlings were exhibited in both F (inoculated only F. oxysporum f.
sp. cucumerinum) and F + S (inoculated both HAAG3-15 and F. oxysporum f. sp. cucumerinum), and
the typical symptom of chlorosis emerged and spread from older leaves to younger leaves. With the
application of strain HAAG3-15, the treatment F + S could significantly reduce the disease severity of
F. oxysporum f. sp. cucumerinum on cucumber seedlings after transplanting at four weeks (Figure 8).
For F + S treatment, only 10 (30%) infected plantlets showed typical symptoms of the disease with a
disease index of just 12 because of the inoculation of strain HAAG3-15, while 27 (90%) infected plantlets
had a disease index of 45 in the F treatment. In addition, the other two treatments N (inoculated no
microorganism) and S (inoculated only HAAG3-15) exhibited no symptoms of disease and still stayed
healthy (Figure not shown). Moreover, the application of strain HAAG3-15 could also significantly
increase the shoot fresh weight and height of cucumber (p < 0.05); the average shoot fresh weight
and height of cucumber (4.62 g, 12.55 cm) in treatment S (inoculated only HAAG3-15) were greater
than those in treatment N (no microorganism; 4.06 g, 11.76 cm), which clearly indicated that strain
HAAG3-15 could promote the growth of cucumber seedlings. The employment of strain HAAG3-15
could also markedly reduce the impact of F. oxysporum f. sp. cucumerinum on cucumber shoot fresh
weight and height (p < 0.05). For treatment F (inoculated only F. oxysporum f. sp. cucumerinum), the
average shoot fresh weight and height were 3.16 g and 10.32 cm, respectively, which were lower than
those for treatment F + S (inoculated both HAAG3-15 and F. oxysporum f. sp. cucumerinum; 3.95 g,
11.58 cm).

Table 1. Height, shoot fresh weight, disease index (DI), and number of infected plantlets with four
treatments in greenhouse biocontrol assay.

Treatments Height (cm) Shoot Fresh
Weight (g) Disease Index Infected Plantlets

F 10.32 ± 0.52 c 3.16 ± 0.36 c 45 ± 3.8 a 27(90%)
F + S 11.58 ± 0.63 b 3.95 ± 0.18 b 12 ± 2.2 b 10(30%)

N 11.76 ± 0.46 b 4.06 ± 0.27 b 0 0
S 12.55 ± 0.32 a 4.62 ± 0.15 a 0 0

Average shoot fresh weight and height of 15 plantlets for each treatment (mean ± SD). Different letters in the same
column indicate significant differences (p < 0.05). Cucumber plants grown in soil containing F, the spore suspension
of F. oxysporum f. sp. cucumerinum (2 mL of 4–5 × 104 CFU/mL); F + S, the spore suspension of F. oxysporum f.
sp. cucumerinum (2 mL of 4–5 × 104 CFU/mL) and the spore suspension of strain HAAG3-15 (2 mL of 4–5 × 106

CFU/mL); N, no microorganism (2 mL of sterile tap water); and S, the spore suspension of HAAG3-15 (2 mL of 4–5
× 106 CFU/mL).
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3.6. Structure Elucidation of the Antifungal Compound

The antifungal compound was separated based on the antifungal activity-guided method from
the extraction of fermentation broth of strain HAAG3-15, and compound 1 was obtained as its active
constituent. Then, compound 1 was identified as Azalomycin B (Figure 9) based on the spectral data
(Figures S3–S5, Supplementary Materials) and literature values [72].Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 18 
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The antifungal activities of compound 1 against F. oxysporum f. sp. Cucumerinum, Corynespora
cassiicola, Setosphaeriaturcica turcicaf, Colletotrichum orbiculare, Alternaria solani, Helminthosporium
maydis, Sphacelotheca reiliana, Sclerotinia sclerotiorum, Phytophthora sojae, and Rhizoctonia solani
were determined in vitro. The compound showed significant antifungal activity against F. oxysporum f.
sp. cucumerinum and also exhibited certain antifungal activities against the nine other fungi. Therefore,
Azalomycin B was identified as the main antifungal component produced by strain HAAG3-15.

4. Discussion

Microorganisms related to plant roots are vital for plant growth and health, and they are considered
to be the second genome of the plant. When plants are attacked by pathogens, the diversity and
community structure of plant-associated microbes may be changed [48,49,73]. Here we studied the
differences in root-associated endophytic actinobacterial community composition and antifungal
activity between Fusarium wilt diseased and healthy cucumber under natural greenhouse field
conditions in China using culture-independent and culture-dependent analysis, and we screened
actinomycetes for potential biological control of Fusarium wilt of cucumber. Microbiome biodiversity is
known as a driver of plant health. Abundant bacterial flora predetermines the future plant health [49,74].
In this study, culture-independent analysis suggested that the healthy cucumber roots had higher
actinobacteria richness and abundance than the diseased plants. This result was similar to the previous
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study showing that tomato plant resistance to infection with Ralstonia solanacearum depended on more
abundance and diversity of rhizospheric bacteria than diseased plants [49]. Moreover, the relative
abundance of phylum Actinobacteria in the healthy samples was more significant than in diseased
samples. It is known that Actinobacteria can produce various metabolites with important potential
application in the agriculture, food, and pharmaceutical industries [75,76], such as antibiotics, enzymes,
enzyme inhibitors, vitamins, and so on. The reduction of the relative abundance of Actinobacteria may
have had a positive effect on the Fusarium oxysporum f. sp. cucumerinum growth as a result of weakened
pathogen suppression via antibiosis.

In addition, culture-dependent analysis was also performed using five isolation media to isolate
strains from the cucumber roots. In total, 173 endophytic actinomycetes colonies were isolated from
the healthy cucumber roots, and 90 endophytic actinomycetes colonies originated from the diseased
cucumber roots (nearby the healthy cucumber collected from the cucumber continuous cropping
greenhouse), which indicated that the culturable endophytic actinomycetes in the healthy cucumber
roots were more abundant than in the diseased cucumber roots (Figure 4). The result was in agreement
with the culture-independent analysis. To obtain actinobacteria with potential biological control
of Fusarium wilt of cucumber, all strains were selected for testing its antifungal activity against F.
oxysporum f. sp. cucumerinum. Results showed that there were seven strains with antifungal activity
against F. oxysporum f. sp. cucumerinum in healthy cucumber roots, but only one strain in diseased
cucumber roots with weak antifungal activity. In previous studies, several biocontrol and plant
growth-promoting endophytes were isolated from infected plants [57,77,78] or healthy plants [79–81].
Our results seem to be different from previous observations, and the healthy cucumber root nearby the
diseased plant contained more abundant microbes, as well as more actinomycetes with antifungal
activities. Among the eight antagonistic strains, isolate HAAG3-15 in healthy cucumber root was
found to be best as it had the strongest antifungal activity against F. oxysporum f. sp. cucumerinum
and also exhibited broad-spectrum antifungal activity. Moreover, biocontrol of cucumber Fusarium
wilt showed that strain HAAG3-15 had an obvious effect in terms of disease prevention and growth
promotion on cucumber seedlings in greenhouse assay.

It was reported that biocontrol of the Fusarium wilt pathogens illustrated the use of suppressive
soils and antagonistic bacteria to inhibit the propagation of germination and penetration growth by
the pathogen [82]. However, a rapid decline in the size of populations of active cells to ineffective
levels was achieved following introduction into soil, due to the hostility of the soil environment to
incoming microbes [83]. However, endophytes are not subject to competition from soil microbes,
and they colonize in the plant tissue. They have the ability to penetrate plant cells, stimulating the
plant defense response and producing antifungal metabolites in situ. Strain HAAG3-15 was screened
from the cucumber root, belonging to the group of endophytic actinomycetes, which would not affect
the structure of the actinomycetes in the root of cucumber. If the endophytic actinomycetes were
introduced into the cucumber seedlings at the breeding stage, they would become the principal parts
of the microbial flora in the cucumber plant at the time of transplanting and could protect their host
plant from F. oxysporum f. sp. cucumerinum. This is a promising prospect for biological control of
Fusarium wilt of cucumber. It provides a new method for the prevention and cure of F. oxysporum f. sp.
cucumerinum in agricultural production. Therefore, the endophytic strain HAAG3-15 as a biological
control agent against Fusarium wilt of cucumber has great potential application in organic agriculture.

In addition, we also screened and identified antifungal components from strain HAAG3-15 and
a bioactive compound, Azalomycin B, was obtained. Azalomycin, as a broad-spectrum antibiotic,
is widely applicable [84–88]. Previous studies showed that Azalomycin has a good inhibitory effect on
Gram-positive bacteria, parasites, and fungi, and the application prospect of Azalomycin in agricultural
production was also presented [35,89–91]. Azalomycin B isolated in the current study also showed
significant antifungal activity against F. oxysporum f. sp. cucumerinum, as also previously reported.
Further research is needed to confirm the efficacy of the active compound against cucumber Fusarium
wilt under greenhouse conditions.
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Above all, the result of the present study indicated that a pathogen-prevalent environment,
such as for healthy roots nearby infected plants, is also a good source for isolating biocontrol and plant
growth-promoting endophytes, and the endophytic actinomycete strain HAAG3-15 has potential as a
biocontrol agent against F. oxysporum f. sp. cucumerinum.

5. Conclusions

In conclusion, healthy cucumber roots had higher actinobacteria richness and abundance than
diseased cucumber roots based on culture-independent and culture-dependent analysis. This suggested
that the healthy root nearby the infected plant is a good source for isolating biocontrol and plant
growth-promoting actinobacteria endophytes. In addition, strain HAAG3-15 showed stronger
antifungal activity against F. oxysporum f. sp. cucumerinum than seven other strains, with an
obvious effect in terms of disease prevention and growth promotion on cucumber seedlings in the
greenhouse assay. Its excellent broad-spectrum antifungal activities suggest that it could be a potential
candidate for the development of a potential biocontrol agent against F. oxysporum f. sp. cucumerinum
used in organic agriculture.
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