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Abstract: Increasing carbapenem resistance rates worldwide underscored the urgent need of novel
antimicrobials. Ceftazidime–avibactam and aztreonam–avibactam combinations are developed
to combat carbapenem resistance, but biological and geographic variations must be considered
for antibiotic susceptibility patterns varied. Thus, we sought to assess the susceptibilities
of ceftazidime–avibactam and aztreonam–avibactam against 660 carbapenem-nonsusceptible
Enterobacteriaceae isolates (472 Klebsiella pneumoniae and 188 Escherichia coli) collected during an earlier
Taiwan surveillance study. Agar dilution method was used to determine ceftazidime–avibactam
and aztreonam–avibactam susceptibility. Metallo-carbapenemase’s contribution to resistance were
investigated with EDTA addition. The in vivo efficacies were evaluated using a Caenorhabditis elegans
model. High susceptibility rates were observed for ceftazidime–avibactam and aztreonam–avibactam
against the 472 carbapenem-nonsusceptible K. pneumoniae (CnsKP) (85.2% and 95.3%, respectively)
and 188 carbapenem-nonsusceptible E. coli (CnsEC) isolates (91.5% and 94.1%, respectively).
For non-metallo-carbapenemase producers, the susceptibility rates for ceftazidime–avibactam
were 93.6% for CnsKP and 97.7% for CnsEC, whereas only 7.1% CnsKP and 11.1% CnsEC
in metallo-carbapenemase producers were susceptible to ceftazidime–avibactam. Of all isolates,
95.3% CnsKP and 94.1% CnsEC were susceptible to aztreonam–avibactam. In C. elegans model,
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ceftazidime–avibactam and aztreonam–avibactam revealed effective against a blaKPC-producing
K. pneumoniae isolate in vivo. Our results propose a positive therapeutic approach for both
combinations against carbapenem-nonsusceptible Enterobacteriaceae in Taiwan.

Keywords: CR Enterobacteriaceae; combination therapy; molecular epidemiology of
antimicrobial resistance

1. Introduction

Due to the rapid dissemination of resistant genes and the over-prescription and overconsumption
of carbapenems, health care professionals all over the world are facing challenges associated
with carbapenem-resistant Enterobacteriaceae (CRE) infections, with treatments costing billions
of dollars [1]. Carbapenem resistance mechanisms are associated with the production of transmittable
carbapenemases, the loss of porins in combination with blaAmpC β-lactamase overexpression, and active
efflux pumps [2]. Global epidemiological studies in the Asia–Pacific region, the Indian subcontinent,
Europe, North America, and Latin America indicate carbapenem resistance rates of up to 58.6%
in Enterobacteriaceae, with significantly higher rates in Europe and India [3]. In Taiwan, 10.5% (71/673)
K. pneumoniae bloodstream isolates collected in 2017 were not susceptible to at least one carbapenem [4].

Ceftazidime-avibactam, a β-lactam-plus-β-lactamase inhibitor combination that received US FDA
approval in 2015, has been described as having anti-CRE efficacy, except for metallo-beta-lactamase
producers [5]. Another CRE infection treatment option that is currently in phase III clinical
trials is the combination of aztreonam and avibactam (NCT03580044 and NCT03329092) [6].
However, local antibiotic susceptibility patterns are important when prescribing these new agents
empirically and before the metallo-beta-lactamase producers were identified [7]. In a SIDERO-WT-2014
study, different resistance rates in North America (3.3%) and Europe (28.1%) were observed
for ceftazidime–avibactam in meropenem-nonsusceptible Enterobacteriaceae [7]. In another
SIDERO-WT-2014 study, the authors reported that the KPC-type enzymes were the dominant
carbapenemase carriage in both North America and Europe, but metallo-carbapenemases (NDM, VIM,
or IMP) were mainly found in European isolates [8]. From their results of antimicrobial susceptibility
testing, ceftazidime-avibactam was noted with poor activities against metallo-carbapenemase producers.
For the present research we assessed the in vitro and in vivo efficacies of ceftazidime-avibactam and
aztreonam-avibactam against 660 carbapenem-nonsusceptible Enterobacteriaceae isolates collected as
part of a nationwide surveillance project in Taiwan. Bioinformatic analyses were performed to clarify
our results and to identify factors affecting susceptibility.

2. Materials and Methods

2.1. Bacterial Isolate Collection

The collection of 660 carbapenem-nonsusceptible Enterobacteriaceae isolates, including
472 nonduplicated carbapenem-nonsusceptible K. pneumoniae (CnsKP) isolates in 2014 (472/660, 71.5%)
and 188 nonduplicated carbapenem-nonsusceptible E. coli (CnsEC) isolates in 2012–2015 (188/660,
18.5%), was completed as part of a national surveillance study involving 16 Taiwanese hospitals [9,10].
The primary isolation source was urine (n = 251, 38.0%), followed by sputum/endotracheal aspirates
(n = 129, 19.6%), blood (n = 56, 8.5%), wounds/pus (n = 61, 9.2%), stool/rectal swabs (n = 35, 5.3%),
bile (n = 33, 5.0%), ascites (n = 26, 3.9%), and abscesses (n = 13, 2.0%). Sources for the other 56 isolates
(8.5%) included percutaneous transhepatic cholangiography and drainage (PCTD), central venous
pressure (CVP) tips, gas sampling lines, and milk. Carbapenem nonsusceptibility was defined as
intermediate resistance or resistance to at least one carbapenem in accordance with Clinical and
Laboratory Standards Institute (CLSI) guidelines [11].
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2.2. Antimicrobial Susceptibility Testing

Broth microdilution (Sensititre, Trek Diagnostic Systems, Cleveland, OH, USA) was
used to determine the susceptibilities of 18 antimicrobial agents: ampicillin, cefazolin,
cefoxitin, cefotaxime, ceftazidime, ceftriaxone, cefepime, imipenem, doripenem, meropenem,
ertapenem, aztreonam, piperacillin–tazobactam, levofloxacin, ciprofloxacin, amikacin, gentamicin,
and trimethoprim/sulfamethoxazole. Results are reported according to CLSI-established minimum
inhibitory concentration (MIC) breakpoints [11].

Standard agar dilution tests were used to measure the MICs of β-lactam/β-lactamase inhibitor
combinations. Avibactam (AVI) was assessed at a concentration of 4 mg/L in combination with
2-fold dilutions of ceftazidime (CAZ) or aztreonam (AZT) [11]. CAZ and AZT monotherapy MIC
values were also determined using the agar dilution method. In all, 23 isolates carrying various
metallo-carbapenemases were used to estimate MIC values with or without EDTA at 320 mg/L [12].

2.3. β-. Lactamase and Carbapenemase Gene Detection

PCR was performed to determine the presence of extended-spectrum β-lactamase (ESBL) genes
(blaCTX-M-G1, blaCTX-M-G2, and blaCTX-M-G9), carbapenemase genes (blaKPC, blaNDM, blaIMP, blaNMC,
blaSME, blaVIM, blaSPM-1, blaGIM-1, blaSIM-1, blaIMI, blaGES, and blaOXA-48), and plasmid-mediated blaAmpC

genes (blaDHA and blaCMY) [13,14]. All detection activity involved respective gene controls.

2.4. In Vivo Caenorhabditis elegans Study

C. elegans strain N2 was used to evaluate the treatment effects of CAZ-AVI and AZT-AVI
combinations against the KPC-producing K. pneumoniae clinical isolate CRE-1462, a member of
sequence type 11, the most prevalent in Taiwan [10]. Nematodes were maintained at 20 ◦C on growth
medium agar plates with the OP50 non-toxic E. coli laboratory strain. Protocols are described in detail
in an earlier report [15]. Briefly, 700–1000 growth-synchronized L4 worms were infected with CRE-1462
for 3 days, and 40 infected worms were transferred onto nematode growth medium (NGM) agar
with either a placebo, β-lactam alone (CAZ or AZT), or a β-lactam/β-lactamase inhibitor combination
(CAZ-AVI or AZT-AVI). Antibiotic concentrations were 8 mg/L for CAZ and 4 mg/L for AZT, alone or
in combination. Avibactam was examined at a fixed concentration of 4 mg/L in combination with
individual antibiotics. Nematode survival was monitored daily; surviving worms were transferred
onto new plates and treated at the same concentrations. Assays were performed in triplicate.

2.5. Statistical Analyses

Antimicrobial susceptibility test and gene detection results were visualized as ggplot2 package
heatmaps using RStudio (version 1.1.453). The log2-transformed MIC values were used for statistical
analyses using GraphPad Prism Version 7.0 software (San Diego, CA, USA) with paired t-tests.
Log-rank (Mantel–Cox) tests in the same software package were used to create Kaplan–Meier survival
test curves.

3. Results

3.1. Enterobacteriaceae Isolates

Our antimicrobial susceptibility test results revealed high antibiotic-resistance rates
in 660 carbapenem-nonsusceptible Enterobacteriaceae isolates (472 CnsKP and 188 CnsEC). The list of
antibiotics and their resistance rates includes ampicillin (660/660, 100%), cefazolin (659/660, 99.8%),
ceftriaxone (658/660, 99.7%), ceftazidime (654/660, 99.1%), ertapenem (648/660, 98.2%), cefotaxime
(646/660, 97.9%), cefoxitin (645/660, 97.7%), piperacillin–tazobactam (632/660, 95.8%), aztreonam
(619/660, 93.8%), ciprofloxacin (586/660, 88.8%), levofloxacin (556/660, 84.2%), cefepime (547/660,
82.9%), meropenem (517/660, 78.3%), imipenem (516/660, 78.2%), trimethoprim/sulfamethoxazole
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(511/660, 77.4%), and doripenem (493/660, 74.7%) (Figure 1a). A moderate level of resistance was found
in gentamicin (379/660, 57%). Amikacin exhibited surprisingly strong antibacterial activity (139/660,
21.1% resistance).
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Figure 1. (a) Antimicrobial susceptibility profile and (b) gene detection heatmap for 660
carbapenem-nonsusceptible Enterobacteriaceae isolates. Abbreviations: AMK, amikacin; GEN,
gentamicin; SXT, trimethoprim/sulfamethoxazole; IMP, imipenem; DOR, doripenem; MEM, meropenem;
FEP, cefepime; LEV, levofloxacin; CIP, ciprofloxacin; ATM, aztreonam; TZP, piperacillin–tazobactam;
ETP, ertapenem; FTX, cefotaxime; CAZ, ceftazidime; FOX, cefoxitin; FRX, ceftriaxone; CFZ, cefazolin;
AMP, ampicillin. Indicated are negative and positive PCR detection results for each gene.

Detection results for blaESBL and blaAmpC indicate that 92 isolates carried blaCTX-M-G1 (92/660,
13.9%), 250 carried blaCTX-M-G9 (250/660, 37.9%), 165 blaCMY (165/660, 25.0%), and 222 blaDHA (222/660,
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33.6%) (Figure 1b). The most common carbapenemase gene was blaKPC, (123/660, 18.6%), followed by
blaOXA-48 (13/660, 2.0%), blaIMP (10/660, 1.5%), blaVIM (8/660, 1.2%), and blaNDM (5/660, 0.8%).

3.2. In Vitro β-lactam with β-lactamase Inhibitor Activity

According to our in vitro results, ceftazidime with avibactam and aztreonam with avibactam
were significantly more powerful than their respective monotherapies (Table 1). Significant in vitro
effects of ceftazidime–avibactam and aztreonam–avibactam were also noted in class A and D
carbapenemase-producing K. pneumoniae isolates, but not in class B. The mean log2 MIC differences
and their 95% confidence intervals (95% CIs) of ceftazidime–avibactam against K. pneumoniae isolates
with Class A and Class D carbapenemases were −5.2 (−5.4, −5.0; p < 0.0001) and −4.8 (−5.7, −3.9;
p < 0.0001), respectively; those of aztreonam–avibactam against K. pneumoniae isolates with Class
A and Class D carbapenemases were revealed as −6.3 (−6.5, −6.2; p < 0.0001) and −6.0 (−7.2, −4.8;
p < 0.0001). Among 14 class B carbapenemase-producing K. pneumoniae isolates, no statistically
significant differences were noted between the MIC values for ceftazidime alone and ceftazidime
combined with avibactam. In contrast, a significant increase (p < 0.0001) in effectiveness was noted
for aztreonam combined with avibactam, with susceptibility of 92.9% (13/14), reductions in both
MIC50 (from >32 to 0.125 mg/L) and MIC90 values (from >32 to 0.5 mg/L), and a decrease in the log2

MIC value (−6.0; 95% CI, −8.2, −3.8; p < 0.0001). Among 188 isolates of carbapenem-resistant E. coli,
similarly significant in vitro effects of ceftazidime–avibactam and aztreonam–avibactam were noticed.
The mean log2 MIC difference and their 95% confidence intervals (95% CIs) of ceftazidime–avibactam
against E. coli isolates with Class A carbapenemases were −5.3 (−8.2, −2.5; p < 0.0001); those of
aztreonam–avibactam against E. coli isolates with Class A carbapenemases were revealed as −6.3
(−6.5, −6.2; p < 0.0001). Among 9 class B carbapenemase-producing E. coli isolates, no difference
in MICs were noted for ceftazidime combined with avibactam (p = 0.2953) compared to ceftazidime
monotherapy. In contrast, a significant decreased MIC (p < 0.0001) and increased susceptibility (11.1%
to 100%) was observed in vitro for aztreonam combined with avibactam compared to aztreonam alone,
with a significant difference in log2 MIC (−8.1; 95% CI, −9.6, −6.6; p < 0.0001).
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Table 1. Minimum inhibitory concentration (MIC) values for ceftazidime–avibactam and aztreonam–avibactam combinations.

Bacterium Group MIC
Antimicrobial Agent and p Value a

CAZ CAZ-AVI Mean log2 MIC
Change (95% CI) p b AZT AZT-AVI Mean log2 MIC

Change (95% CI) p b

Klebsiella
pneumoniae

Total
(n = 472)

Range 1 ~ >64 <0.06 ~ >64
−5.3

(−5.5, −5.2) <0.0001

0.125 ~ >32 <0.06 ~ >32
−6.0

(−6.1, −5.8) <0.0001
MIC50 >64 2 >32 0.5
MIC90 >64 8 >32 2

% susceptible 0.4% (2/472) 91.5% (432/472) 7.4% (35/472) 95.3% (450/472)

Class A
carbapenemase

(n = 121)

Range 8 ~ >64 0.25 ~ >64
−5.2

(−5.4, −5.0) <0.0001

16 ~ >32 0.125 ~ 8
−6.3

(−6.5, −6.2) <0.0001
MIC50 >64 2 >32 1
MIC90 >64 8 >32 2

% susceptible 0% (0/121) 95.0% (115/121) 0% (0/121) 99.2% (120/121)

Class B
carbapenemase

(n = 14)

Range 32 ~ >64 1 ~ >64
−0.6

(−1.4, 0.3) 0.1788

0.125 ~ >32 <0.06 ~ >32
−6.0

(−8.2, −3.8) <0.0001
MIC50 >64 >64 >32 0.125
MIC90 >64 >64 >32 0.5

% susceptible 0% (0/14) 7.1% (1/14) 21.4% (3/14) 92.9% (13/14)

Class D
carbapenemase

(n = 10)

Range 8 ~ 64 0.25 ~ 2
−4.8

(−5.7, −3.9) <0.0001

1 ~ >32 0.125 ~ 2
−6.0

(−7.2, −4.8) <0.0001
MIC50 16 1 32 0.25
MIC90 64 2 >32 2

% susceptible 0% (0/10) 100% (10/10) 10% (1/10) 100% (10/10)

Non-carbapenemase
producer
(n = 329)

Range 1 ~ >64 <0.06 ~ >64
−5.6

(−5.8, −5.4) <0.0001

0.25 ~ >32 <0.06 ~ >32
−5.8

(−6.0, −5.6) <0.0001
MIC50 >64 1 >32 0.5
MIC90 >64 8 >32 4

% susceptible 0.6% (2/329) 93.6% (308/329) 9.4% (31/329) 93.9% (309/329)

Escherichia
coli

Total
(n = 188)

Range 0.125 ~ >64 <0.06 ~ >64
−6.6

(−7.0, −6.3) <0.0001

<0.06 ~ >32 <0.06 ~ 32
−6.3

(−6.6, −6.0) <0.0001
MIC50 >64 0.5 >32 0.5
MIC90 >64 4 >32 4

% susceptible 2.1% (4/188) 93.6% (176/188) 3.2% (6/188) 94.1% (177/188)

Class A
carbapenemase

(n = 3)

Range 8 ~ 32 0.125 ~ 2
−5.3

(−8.2, −2.5) 0.0153

32 ~ >32 <0.06 ~ 0.125
−9.0

(−9.2, −8.9) <0.0001
MIC50 8 0.125 32 <0.06
MIC90 32 2 >32 0.125

% susceptible 0% (0/3) 100% (3/3) 0% (0/3) 100% (3/3)

Class B
carbapenemase

(n = 9)

Range 32 ~ >64 <0.06 ~ >64
−1.1

(−3.4, 1.2) 0.2953

2 ~ >32 <0.06 ~ 2
−8.1

(−9.6, −6.6) <0.0001
MIC50 >64 >64 32 <0.125
MIC90 >64 >64 >32 2

% susceptible 0% (0/9) 11.1% (1/9) 11.1% (1/9) 100% (9/9)
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Table 1. Cont.

Bacterium Group MIC
Antimicrobial Agent and p Value a

CAZ CAZ-AVI Mean log2 MIC
Change (95% CI) p b AZT AZT-AVI Mean log2 MIC

Change (95% CI) p b

Class D
carbapenemase

(n = 2)

Range >64 0.25 ~ 4

− −

>32 0.125 ~ 4

− −
MIC50 >64 0.25 >32 0.125
MIC90 >64 4 >32 4

% susceptible 0% (0/2) 100% (2/2) 0% (0/2) 100% (2/2)

Non-carbapenemase
producer
(n = 174)

Range 0.125 ~ >64 <0.06 ~ 16
−6.9

(−7.2, −6.7) <0.0001

<0.06 ~ >32 <0.06 ~ 32
−6.2

(−6.5, 5.9) <0.0001
MIC50 >64 0.5 >32 0.5
MIC90 >64 2 >32 4

% susceptible 2.3% (4/174) 97.7% (170/174) 2.9% (5/174) 93.7% (163/174)

Note: Clinical and Laboratory Standards Institute (CLSI) interpretive criteria for single-agent aztreonam was used to interpret the susceptibility of aztreonam–avibactam combination. a

Abbreviations: CAZ, ceftazidime; CAZ-AVI, ceftazidime–avibactam; AZT, aztreonam; AZT-AVI, aztreonam–avibactam. b p values were analyzed via the MIC data.
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Figure 2 shows box-plot MIC distribution data for four regimens: ceftazidime, ceftazidime
with avibactam, aztreonam, and aztreonam with avibactam. Compared to their monotherapies,
the combined therapies resulted in significant improvements in antibacterial activity in 660
carbapenem-nonsusceptible Enterobacteriaceae clinical isolates (p > 0.0001 for both). For ceftazidime
alone, a large proportion of isolates possessed MIC values above the CLSI resistance breakpoint
(Figure 2, red dotted line), while the combination of ceftazidime with avibactam triggered a statistically
significant decrease (p < 0.0001) in MIC distribution, with more than 75% of all isolates showing MIC
values below the breakpoint. A similar result was found for aztreonam with avibactam (p < 0.0001).
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Figure 2. MIC distribution box plots for the four regimens tested in this study. Red dotted line
indicates resistance breakpoints for each agent according to CLSI guidelines. From top to bottom,
horizontal lines indicate maximum, third quartile (Q3, 75%), medium (50%), first quartile (Q1, 25%),
and minimum MIC values. Abbreviations: CAZ, ceftazidime; CAZ-AVI, ceftazidime with avibactam;
AZT, aztreonam; AZT-AVI, aztreonam with avibactam. ****, p < 0.0001.

Cumulative MIC susceptibility curves are shown in Figure 3. Among the CnsKP isolates,
ceftazidime and aztreonam susceptibility percentages were 0.4% (2/472) and 7.4% (35/472), respectively
(Figure 3a,b). Leftward shifts were noted in 85.2% (402/472) of the same isolates following treatment
with the ceftazidime–avibactam combination, and in 95.3% (450/472) following treatment with
the aztreonam–avibactam combination (Figure 3a,b). Among the 188 CnsEC isolates, susceptibility
values for ceftazidime and aztreonam monotherapies were 2.1% (4/188) and 3.2% (6/188), respectively
(Figure 3c,d). Ceftazidime and aztreonam susceptibility values decreased to 91.5% (172/188) and 94.1%
(177/188) when combined with avibactam, also respectively (Figure 3c,d). Combined, our data suggest
that avibactam restored the antibacterial efficacies of ceftazidime and aztreonam.
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3.3. Combination Therapy Efficacy Against Metallo-Carbapenemase Producers

Low antibacterial activity for the combination of ceftazidime with avibactam was observed
in 23 class B metallo-carbapenemase producers (Table 1). The heatmap shown as Figure 4 presents
MIC values for all 23, along with their species and carbapenemase classifications. Among them,
blaIMP and blaVIM were found in 9 and 5 CnsKP isolates, respectively, and blaIMP, blaVIM and blaNDM

were found in 1, 3, and 5 CnsEC isolates, also respectively (Figure 4). Similar MIC patterns were
observed for ceftazidime alone and ceftazidime with avibactam, indicating weak effectiveness against
metallo-carbapenemase producers. In contrast, strong in vitro activity against the same isolates was
observed for the combination of aztreonam with avibactam.
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EDTA was added to agar at various concentrations for each regimen to assess
metallo-carbapenemase contributions to the efficacies of the three combination therapies. A statistically
significant difference was observed between ceftazidime and ceftazidime with avibactam in the presence
of EDTA (p < 0.0001), but not in its absence (Figure 5a). We found that EDTA inhibited
metallo-carbapenemase and recovered the strength of ceftazidime with avibactam in vitro. The presence
of blaESBL genes in the 23 metallo-carbapenemase producers might explain the reduction in activity
observed in ceftazidime alone. Avibactam was capable of restoring the antibacterial efficacy of
aztreonam in either the presence or absence of EDTA, with significant decreases in MIC values
(both p < 0.0001) (Figure 5b). It did not have the same effect when added to ceftazidime (Figure 5a).
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Figure 5. MIC distributions of (a) ceftazidime (hollow circles) and (b) aztreonam (hollow circles) and
their respective combination therapies (filled circles) following the addition of EDTA (triangles).
Abbreviations: CAZ, ceftazidime; CAZ-AVI, ceftazidime with avibactam; AZT, aztreonam; AZT-AVI,
aztreonam with avibactam. ns, no statistical significance; ****, p < 0.0001.
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3.4. In Vivo C. Elegans Study

A C. elegans model was used to evaluate the in vivo efficacies of the two combination
therapies against a randomly selected carbapenem-resistant K. pneumoniae isolate (CRE-1462) carrying
the blaKPC gene, the most common carbapenemase gene in Taiwan. Compared to CRE-1462-infected
nematodes subjected to ceftazidime monotherapy, the median survival time of nematodes treated
with the ceftazidime–avibactam combination increased significantly (p < 0.0001) (Figure 6a). A strong
treatment effect was also noted for the aztreonam with avibactam group (p < 0.0001), with a significant
right-shift curve compared to the single-agent therapy group (Figure 6b).
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Median survival time for infected nematodes either treated with ceftazidime monotherapy or
untreated was two days (Table 2). Treatment with the ceftazidime–avibactam combination extended
median survival to 4 days, with a significant 0.472 hazard ratio (HR) reduction (95% confidence interval
(CI) 0.295 to 0.756) (p < 0.0001). Compared to the aztreonam monotherapy group, median time for
the combined aztreonam–avibactam group increased from 2 to 4 days (HR 0.420; 95% CI 0.260 to
0.679) (p < 0.0001). In sum, our data indicate that both combination therapies were capable of rescuing
the C. elegans model infected with a carbapenem-resistant K. pneumoniae isolate.

Table 2. In vivo C. elegans statistical data.

Treatment Median Survival
Time (Days)

p Value
Hazard Ratio

Ratio Lower 95% Upper 95%

untreated control 2 − − − −

ceftazidime 2 − 1 − −

ceftazidime–avibactam 4 <0.0001 0.472 0.295 0.756
aztreonam 2 − 1 − −

aztreonam–avibactam 4 <0.0001 0.420 0.260 0.679

Note: All experiments were performed in triplicate.

4. Discussion

There are currently many reports of carbapenem-resistant Enterobacteriaceae (CRE) worldwide,
with limited clinical therapeutic options due to multidrug resistance [2,16–18]. In one international
study of 267 metallo-carbapenemase Enterobacteriaceae isolates, resistance rates to ceftazidime,
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meropenem, piperacillin-tazobactam and levofloxacin ranged from 71.2% to 98.5%, compared
to 10.9% for tigecycline and 12.2% for colistin [19]. In an earlier study conducted in Shanghai,
109 carbapenem-resistant K. pneumoniae isolates were found to be highly resistant (85.3–98.2%) to
13 of 18 tested antimicrobials; in that study, colistin expressed 96.3% susceptibility [20]. In another
report from China, high resistance rates (92.7–100%) were observed for 11 of 17 antimicrobial agents
tested with 41 carbapenem-resistant K. pneumoniae isolates [21]. An epidemiological investigation
in Taiwan found that over 70% of CnsEC isolates were resistant to 9 antimicrobials, with less than 10%
resistant to colistin, amikacin, or tigecycline [9]. In the present study we determined high resistance
rates (77.4–100%) in 13 antimicrobials, with robust antibacterial activity only observed for amikacin
(139/660 isolates, 19.1%). Despite the combined evidence for amikacin, colistin, or tigecycline as
alternative therapies for CRE infections (Figure 1a), increasing resistance rates indicate an urgent need
for novel antimicrobials.

Avibactam, a first-in-class serine β-lactamase inhibitor [22], is part of the ceftazidime–avibactam
combination approved by the FDA in 2015 [5]. One research team reported MIC values ranging
from 0.12 to >64 for ceftazidime–avibactam against 30 meropenem-nonsusceptible Enterobacteriaceae
samples collected in North America, with a low resistance rate of 3.3% (1/30) [7]. In comparison,
a moderate (28.1%) resistance rate was reported in a European study involving 139 isolates (MIC values
from <0.06 to >64), and Kazmierczak et al., reported MIC values of 0.12 to >64 mg/L (including
an MIC50 of 1 mg/L and MIC90 of >64 mg/L) for ceftazidime-avibactam against 151 meropenem-resistant
Enterobacteriaceae isolates collected in North America and Europe (24.5% resistance rate; 37/151) [8].
In our study we noted significant improvement in the distribution of ceftazidime–avibactam MIC
values against carbapenem-nonsusceptible Enterobacteriaceae compared to ceftazidime monotherapy
(p < 0.0001) (Table 1, Figure 2), with high susceptibilities noted in both CnsEC (91.5%, 172/188) and
CnsKP (85.2%, 402/472) (Figure 3a,c).

The aztreonam–avibactam combination is currently undergoing phase III clinical trials as
an option for treating carbapenem-resistant Enterobacteriaceae infections [23]. In a study involving
Gram-negative pathogens collected in 2012 and 2013 from 190 medical centers in 39 countries, 577 of
23,516 Enterobacteriaceae isolates were identified as meropenem-nonsusceptible (aztreonam MIC50

and MIC90 values both >128 mg/L) [24]. In that study, avibactam effectively restored aztreonam
efficacy and reduced MIC50 and MIC90 values to 0.25 mg/L and 1 mg/L, respectively. A separate
global study of aztreonam–avibactam antimicrobial activity involved 1498 meropenem-nonsusceptible
Enterobacteriaceae clinical isolates collected in 40 countries in 2017 [19]. MIC50 and MIC90 values
for the aztreonam monotherapy were both >128 mg/L. Aztreonam–avibactam results included
an MIC50 of 0.25 mg/L and MIC90 of 1 mg/L (99.2% susceptibility, 1486/1498). In a study involving
177 carbapenemase-producing Enterobacteriaceae isolates collected in Singapore and the US [25],
MIC50 and MIC90 values for aztreonam alone against different carbapenemase classes were 128–512
mg/L and >512 mg/L, respectively. For the combination of aztreonam and avibactam they ranged from
0.12 to 0.25 mg/L and from 0.5 to 1 mg/L, also respectively. We found that avibactam significantly
restored aztreonam activity (p < 0.0001) (Table 1 and Figure 2), with high levels of CnsEC (94.1%) and
CnsKP (95.3%) susceptibility (Figure 3b,d).

Based on evidence showing β-lactamases (both blaAmpC and carbapenemases) as contributing
to carbapenem resistance [2], β-lactamase inhibitors such as avibactam and relebactam have been
examined as candidates for treating carbapenem-resistant Gram-negative bacilli [5]. Avibactam and
relebactam belong to a class of bi-cyclic diazabicyclooctane β-lactamase inhibitors that only act against
serine β-lactamases [22,26]. Specifically, avibactam is active against class A, C, and D β-lactamases [27],
and relebactam mostly inhibits class A and C and a small number of class D β-lactamases [28].
Aztreonam, which is active against metallo-β-lactamase- (MBL-) producing bacteria, is subject to
hydrolyzation by class A or D β-lactamases [23]. The combination of aztreonam with avibactam (a class
A or D β-lactamase inhibitor) expresses antimicrobial activity against bacteria that carry MBL with
class A or D β-lactamases [29].
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In a previous study, 177 carbapenemase-producing Gram-negative bacilli isolates (116 class
A, 47 class B, and 14 class D) were examined to determine ceftazidime–avibactam and
aztreonam–avibactam susceptibilities [25]. Both combinations were found to be effective against all
class A (108 blaKPC, 5 blaIMI and 3 blaSME) and class D carbapenemase isolates, with susceptibilities
ranging from 93% to 100%. In comparison, low susceptibility values were noted for all 47 class B
carbapenemase isolates (32 blaNDM, 11 blaIMP, and 4 blaVIM) treated with ceftazidime–avibactam
(0–9%). High susceptibility values were observed following aztreonam–avibactam treatment
(94–100%). In summary, we found that the ceftazidime–avibactam combination was generally
ineffective against class B carbapenemase-producing isolates, while the aztreonam–avibactam
combination exhibited robust efficacy in all carbapenemase-producing isolate classes (Table 1; Figure 4).
Ceftazidime–avibactam activity was restored by the addition of EDTA, further evidence of the MBL
effect (Figure 5).

Several research teams have described the efficacy of the ceftazidime–avibactam combination
in vivo [30–32], but little is known about the combination of aztreonam with avibactam. In one
study involving mice infected with carbapenemase-producing K. pneumoniae, 100% of those treated
with ceftazidime–avibactam survived, and 70% treated with a placebo died within 4 days [30].
In a retrospective clinical study, the 30-day mortality rate for 104 patients infected with blaKPC-carrying
K. pneumoniae decreased significantly following treatment with ceftazidime–avibactam (p = 0.005, 36.5%
vs. 55.8% for other therapies) [31]. For our study we infected a C. elegans model in vivo with a randomly
selected CRE-1462 blaKPC-containing K. pneumoniae clinical isolate and measured the effects of treatment
with either ceftazidime–avibactam or aztreonam–avibactam. Significant right-shifts in survival curves
were observed in both treatment groups (both p < 0.0001) (Figure 5), with extended median survival
times of 2–4 days (Table 2). In addition to suggesting the in vivo efficacy of ceftazidime–avibactam,
our data also indicate in vivo aztreonam–avibactam efficacy against a blaKPC-producing K. pneumoniae
clinical isolate.

5. Conclusions

Our data indicate therapeutic effectiveness for ceftazidime–avibactam and aztreonam–avibactam
combinations against carbapenem-nonsusceptible Enterobacteriaceae, with respective susceptibilities
of 87.0% (574/660) and 95.0% (627/660). The aztreonam–avibactam combination in particular seems to
exert a powerful antibacterial effect against metallo-carbapenemase-producing Enterobacteriaceae,
but further clinical research is required for confirmation.
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