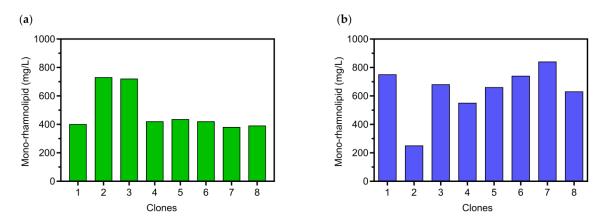
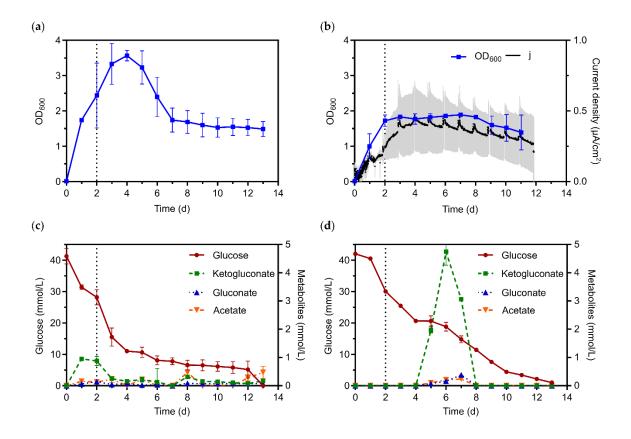
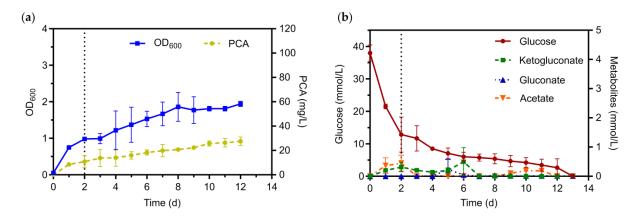
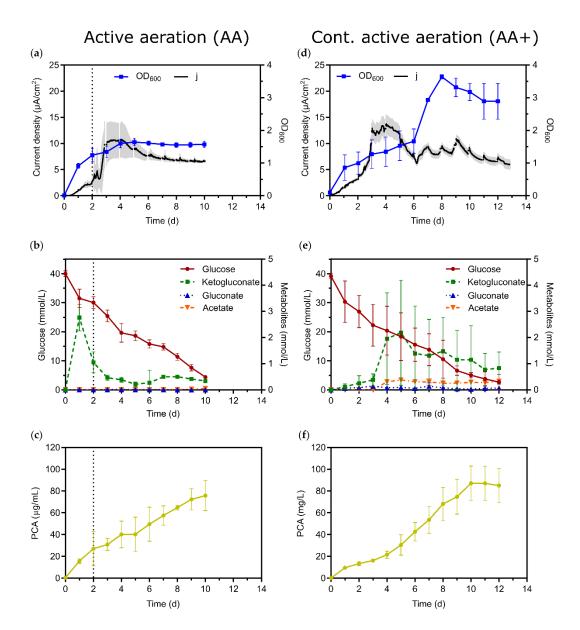

Supplementary Materials

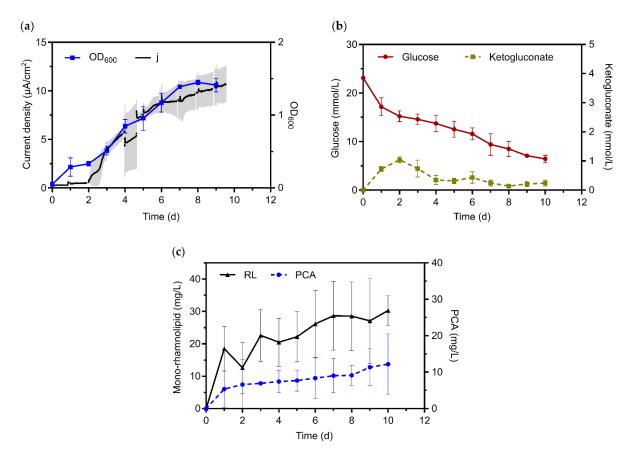

Coupling an electroactive *Pseudomonas putida* KT2440 with bioelectrochemical rhamnolipid production

Theresia D. Askitosari^{1‡}, Carola Berger^{2‡}, Till Tiso¹, Falk Harnisch³, Lars M. Blank¹ and Miriam A. Rosenbaum^{2,4*}


- [#] These authors contributed equally.
- ¹ Institute of Applied Microbiology iAMB, Aachen Biology and Biotechnology ABBt, RWTH Aachen University, 52074 Aachen, Germany.
- ² Department of Environmental Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, 07745 Jena, Germany.
- ³ Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany
- ⁴ Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany.
- * Correspondence: miriam.rosenbaum@leibniz-hki.de; Tel.: +49-3641-532-1120


Figure S1: Constructed vectors expressing genes for mono-rhamnolipid- and phenazine synthesis. (a) pJNN.*rhlAB*, expressing the *rhlA* and *rhlB* genes from *P. aeruginosa* PAO1; (b) pJNN.*rhlAB.phzMS*, expressing the *rhlA*, *rhlB*, *phzM*, and *phzS* genes from *P. aeruginosa* PAO1. Both plasmids also contain the following elements: the gentamycin resistance cassette (gmR) for *Pseudomonas*, the ampicillin resistance cassette for *E.coli* (bla), the terminator (Tn-1), the origin of replication (*ori*RO1600 for *Pseudomonas* and *oriCoIE1* for *E.coli*), and the salycilate-induced promoter (*pnagAa/nagR*).


Figure S2: Heterologous rhamnolipid production of eight independent *P.putida* KT2440 clones cultivated in a micro-cultivation platform in LB media for 24 hours. (a) *P. putida* RL (carrying the pJNN.*rhlAB* plasmid); (b) *P. putida* RL-MS (carrying the pJNN.*rhlAB.phzMS* plasmid).


Figure S3: *P. putida* RL cultivation in 500-ml benchtop bioelectrochemical systems at open circuit ((**a**) & (**c**)) and with ((**b**) & (**d**)) an applied potential of 0.2 V (vs. Ag/AgCl). The reactors were actively aerated for the first 48 h with 30 mL/min followed by passive aeration of the headspace through open vent filters (dotted vertical line) (n=3). Rhamnolipids could not be detected.

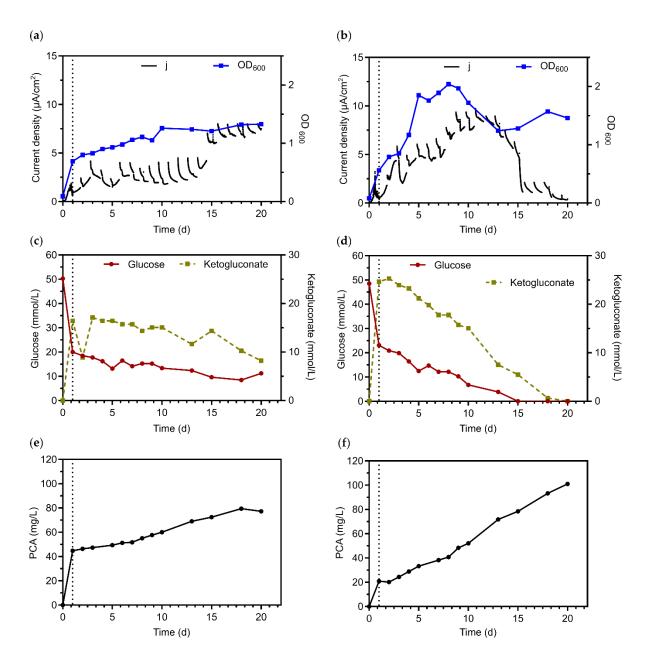

Figure S4: *P. putida* RL-PCA cultivation in 500-ml benchtop bioelectrochemical systems at open circuit potential. The reactors were actively aerated for the first 48 h with 30 mL/min followed by passive aeration of the headspace through open vent filters (dotted vertical line) (n=3). Rhamnolipids could not be detected.

Figure S5: *P. putida* RL-PCA cultivations in 500-ml benchtop bioelectrochemical systems at an applied potential of 0.2 V (vs. Ag/AgCl). (**a**)-(**c**): The reactors were actively aerated for the first 48 h with 30 mL/min followed by passive aeration of the headspace through open vent filters (dotted vertical line) (n=3). (**d**)-(**e**) The reactors were actively aerated throughout the entire experiment at a flow rate of 50 mL/min (n=3). Rhamnolipids could not be detected.

Figure S6: Repetition of passively aerated 500-ml benchtop bioelectrochemical systems of *P. putida* RL-PCA at an applied potential of 0.2 V (n=3), showing data for cell density (OD₆₀₀) and current production (**a**), glucose consumption and 2-ketogluconate production (**b**), formation of PCA and rhamnolipids (RL) (**c**).

Figure S7: Duplicate bioelectrochemical systems 1-L electrobioreactor of *P. putida* RL-PCA at an applied potential of 0.2 V, showing data for cell density (OD₆₀₀) and current production ((**a**) & (**b**)), glucose consumption and 2-ketogluconate production ((**c**) & (**d**)), as well as formation of PCA ((**e**) & (**f**)). The reactors were actively aerated at 0.8 L/min for the first 24 h of the experiment and afterwards operated under passive aeration (dotted line). Rhamnolipids could not be detected.

No	Primer	Sequence 5'	Function
1	rhlAB-f	GTACCGAATTCCTCGAGTGGG	amplifying the <i>rhlAB</i> genes from PAO1,
		CTCAACCTGGGAACTG	containing a Xba1 restriction site with
2	<i>rhlAB-</i> r	CCGACGTCGCATGCTCCTCAC	overlapping regions for Gibson assembly to the
		CGCTACACAGGAAATTC	pJNN plasmid backbone
3	rhlAB.MS-f	GTCTTTTTTCGGCCGCGTACCA	amplifying the <i>rhlAB</i> genes from PAO1, containing a
		GGAGGAGAGATG	Xba1 restriction site with overlapping regions for
4	<i>rhlAB.MS-</i> r	CTGGATCTGGCCTAGGACTCT	Gibson assembly to the pJNN.MS plasmid backbone
		AGAATTCAGGACGC	
5	CP.rhlAB-f	AGATGCGGCGCGAAAGTCTG	amplifying part of the <i>rhlA</i> gene up to the
6	CP. <i>rhlAB</i> -r	CGCGCCTGCTCGTATTCGCC	nagR/pNagAa promoter region of the pJNN plasmid
			backbone (colony PCR verification)
7	CP.M+S.rhlAB-f	CTAGGCCAGATCCAGCGG	amplifying part of the <i>rhlA</i> gene up to the
8	CP.M+S.rhlAB-r	GCGGCCGAAAAAAGACCCGC	nagR/pNagAa promoter region of the pJNN.MS
			plasmid backbone (colony PCR verification)
9	Seq_rhlA	TGGCCGAACATTTCAACGTG	sequencing of the <i>rhlA</i> gene
10	Seq_rhlB	CTGTTCGACGGCAGTATCCC	sequencing the <i>rhlB</i> gene

Table S1: Primers used for tailoring heterologous rhamnolipid-producing *P. putida* with phenazine production.