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Abstract: Glutamate decarboxylase (l-glutamate-1-carboxylase, GAD; EC 4.1.1.15) is a pyridoxal-5’-
phosphate-dependent enzyme that catalyzes the irreversible α-decarboxylation of l-glutamic acid to
γ-aminobutyric acid (GABA) and CO2. The enzyme is widely distributed in eukaryotes as well as
prokaryotes, where it—together with its reaction product GABA—fulfils very different physiological
functions. The occurrence of gad genes encoding GAD has been shown for many microorganisms,
and GABA-producing lactic acid bacteria (LAB) have been a focus of research during recent years.
A wide range of traditional foods produced by fermentation based on LAB offer the potential of
providing new functional food products enriched with GABA that may offer certain health-benefits.
Different GAD enzymes and genes from several strains of LAB have been isolated and characterized
recently. GABA-producing LAB, the biochemical properties of their GAD enzymes, and possible
applications are reviewed here.

Keywords: γ-aminobutyric acid production; lactic acid bacteria; glutamate decarboxylase; fermented
foods; gad genes

1. Introduction

Lactic acid bacteria (LAB) are Gram-positive, acid-tolerant, non-spore forming bacteria,
with a morphology of either cocci or rods that share common physiological and metabolic characteristics.
Even though many genera of bacteria produce lactic acid as their primary or secondary metabolic
end-product, the term ‘lactic acid bacteria’ is conventionally reserved for genera in the order
Lactobacillales, which includes Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Streptococcus,
in addition to Carnobacterium, Enterococcus, Oenococcus, Tetragenococcus, Vagococcus, and Weisella.
LAB are important for a wide range of fermented foods and are widely used as starter cultures in
traditional and industrial food fermentations [1].

Lactic acid formed during the fermentation of carbohydrates as one of the main metabolic
products can affect the physiological activities of LAB. Under acidic conditions, several LAB have
developed different acid-resistance systems to maintain cell viability. These systems include,
for example, the F0F1-ATPase system or cation/proton antiporter/symporter systems such as
K+-ATPase, which contribute to pH homeostasis in the cytosol by the translocation of protons [2].
In addition, glutamate or arginine-dependent systems, which require the presence of glutamate and
arginine, respectively, as substrates, contribute to the acid resistance of LAB. The first enzyme in
the arginine-dependent system is arginine deiminase, which degrades arginine to citrulline and NH3.
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Citrulline is then further converted to ornithine and exported from the cell by an ornithine/arginine
antiporter. While the arginine-dependent system is based on the production of an intracellular alkaline
compound, the glutamate-dependent system consumes an intracellular proton by combining it with
internalized glutamate to γ-aminobutyric acid (GABA), and then exchanging this product for another
glutamate substrate. Thereby, an extracellular amino acid is converted to an extracellular compound
at the expense of an intracellular proton, which results in an increase in the intracellular pH value.
This conversion of glutamate to GABA is catalyzed by glutamate decarboxylase (GAD), and the reaction
requires pyridoxal-5′-phosphate (PLP) as a cofactor (Figure 1). A wide range of LAB possess the ability
to produce GAD, and the biochemical properties have been studied from a number LAB sources,
namely Lactobacillus spp., Lactococcus spp., and Streptococcus spp. [2,3]. Typically, the gad operon is
located on the chromosomes of LAB species, with its organization varying among different species and
strains [4–6]. Thus, GAD is important for acid resistance of LAB, but also for the formation of GABA
in LAB-fermented food. GABA is the most abundant inhibitory neurotransmitter in the brain [7,8].
It has various physiological functions and is of interest as an antidepressant [9], for the induction of
hypotension [10,11] and because of its cholesterol-lowering effect [12]. For example, studies by Inoue et
al. and Mathieu-Pouliot et al. showed that GABA-enriched dairy products could significantly decrease
the systolic blood pressure in mildly hypertensive men [10,13]. Furthermore, it was shown that GABA
could prevent obesity by ameliorating oxidative stress in high-fat diet fed mice [14], and that it can
effectively prevent diabetic conditions by acting as an insulin secretagogue [15,16]. Due to these
properties, GABA or GABA-rich products are of interest as a food supplement or functional food.Microorganisms 2020, 8, x FOR PEER REVIEW 3 of 25 
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food raw materials. They efficiently and rapidly convert sugars into lactic acid as their main metabolic 
product (or one of their main products), and thus contribute to the preservation of these fermented 
foods. Many of these raw materials or foods contain glutamate in significant amounts, which can be 
utilized by LAB to increase their tolerance against acidic conditions. Hence, a number of GABA-
producing LAB have been isolated from a wide range of fermented foods including cheese, kimchi, 
paocai, fermented Thai sausage nham, or various fermented Asian fish products [2,13,25,26,30] (Table 
1). 

Table 1. Diversity of glutamate to γ-aminobutyric acid (GABA)-converting lactic acid bacteria (LAB), 
isolation sources, GABA production, and fermentation conditions. GABA concentrations as found in 
food products fermented with this strain are given. 
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L. brevis HY1 Kimchi 30 °C, 48 h 18.76 mM [27] 

L. brevis NCL912 Paocai 
pH 5.0, 32 °C, 36 h 

Fed-batch 
fermentation  

149.05 mM [28] 

L. helveticus NDO1 Koumiss pH 3.5, 30 °C, 30 h 0.16 g/L [29] 
L. brevis BJ20 Fermented jotgal 30 °C, 24 h 2.465 mg/L [25] 

L. paracasei 15C Raw milk cheese 
pH 5.5, 30 °C, 48 h, 

anaerobe 
14.8 mg/kg [30] 

L. rhamnosus 21D-B Raw milk cheese 
pH 5.5, 30 °C, 48 h, 
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11.3 mg/kg [30] 

S. thermophilus 84C Raw milk cheese 
pH 5.5, 30 °C, 48 h, 

anaerobe 
80 mg/kg [30] 

L. plantarum DM5 Marcha Sikkim pH 6.4, 30 °C, 30 h NR [31] 
L. brevis L-32 Kimchi 30 °C, 24 h 38 g/L [32] 

L. buchneri WPZ001 
Chinese 

fermented 
sausage 

30 °C, 72 h 129 g/L [33] 

L. lactis Kimchi pH 5.5, 30 °C, 20 h 6.41 g/L [34] 

Figure 1. Decarboxylation of l-glutamate to GABA catalyzed by glutamate decarboxylase. PLP:
pyridoxal- 5′-phosphate.

GABA is primarily produced via different biotechnological approaches using either isolated GAD
in a biocatalytic approach or various microbial strains [17], rather than through chemical synthesis
due to the corrosive nature of the reactant compound [18]. GABA is currently commercialized as
a nutritional supplement, however, interest in GABA-enriched food, in which GABA is formed in situ
via fermentation using appropriate microorganisms, has increased lately in parallel to a general interest
in functional foods. As GABA is formed as a by-product of food fermentations, LAB, which play
an eminent role in the fermentation of a wide range of different products, are of particular importance
when talking about GABA-enriched food. Hence, it is not surprising that strains isolated from various
fermented food sources had first been shown to have the ability to produce GABA, for example,
Lactobacillus namurensis NH2 and Pediococcus pentosaceus NH8 from nham [19], Lactobacillus paracasei
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NFRI 7415 from Japanese fermented fish [20], L. paracasei PF6, Lactococcus lactis PU1 and Lactobacillus
brevis PM17 from cheese [21], L. brevis CGMCC 1306 from unpasteurized milk [22], L. brevis GABA100
from kimchi [23,24], L. brevis BJ20 from fermented sea tangle [25], Lactobacillus futsaii CS3 from Thai
fermented shrimp [26] and L. brevis 119-2 and L. brevis 119-6 from tsuda kabu [12]. Recently, many studies
have focused on the identification of novel GABA-producing LAB and investigated the biochemical
properties of GAD from different strains in more detail [12,14,15,27–29].

Here, we outline the presence of gad genes in LAB as important and efficient GABA-producing
organisms together with a phylogenetic analysis, we summarize the biochemical data available for GAD
from different LAB, and finally, we give an outlook on potential applications of GAD in the manufacture
of bio-based chemicals.

2. Biodiversity of Glutamate to γ-Aminobutyric Acid (GABA)-Producing Lactic Acid Bacteria

LAB are among the most important organisms when it comes to the fermentation of various food
raw materials. They efficiently and rapidly convert sugars into lactic acid as their main metabolic
product (or one of their main products), and thus contribute to the preservation of these fermented foods.
Many of these raw materials or foods contain glutamate in significant amounts, which can be utilized
by LAB to increase their tolerance against acidic conditions. Hence, a number of GABA-producing LAB
have been isolated from a wide range of fermented foods including cheese, kimchi, paocai, fermented
Thai sausage nham, or various fermented Asian fish products [2,13,25,26,30] (Table 1).

Table 1. Diversity of glutamate to γ-aminobutyric acid (GABA)-converting lactic acid bacteria (LAB),
isolation sources, GABA production, and fermentation conditions. GABA concentrations as found in
food products fermented with this strain are given.

LAB Species and
Strain Sources Fermentation

Conditions GABA Production References

L. brevis HY1 Kimchi 30 ◦C, 48 h 18.76 mM [27]

L. brevis NCL912 Paocai
pH 5.0, 32 ◦C, 36 h

Fed-batch
fermentation

149.05 mM [28]

L. helveticus NDO1 Koumiss pH 3.5, 30 ◦C, 30 h 0.16 g/L [29]
L. brevis BJ20 Fermented jotgal 30 ◦C, 24 h 2.465 mg/L [25]

L. paracasei 15C Raw milk cheese pH 5.5, 30 ◦C, 48 h,
anaerobe 14.8 mg/kg [30]

L. rhamnosus 21D-B Raw milk cheese pH 5.5, 30 ◦C, 48 h,
anaerobe 11.3 mg/kg [30]

S. thermophilus 84C Raw milk cheese pH 5.5, 30 ◦C, 48 h,
anaerobe 80 mg/kg [30]

L. plantarum DM5 Marcha Sikkim pH 6.4, 30 ◦C, 30 h NR [31]
L. brevis L-32 Kimchi 30 ◦C, 24 h 38 g/L [32]

L. buchneri WPZ001 Chinese fermented
sausage 30 ◦C, 72 h 129 g/L [33]

L. lactis Kimchi pH 5.5, 30 ◦C, 20 h 6.41 g/L [34]
L. otakiensis Pico cheese 30 ◦C, 48 h 659 mg/L [35]

S. thermophilus Y2 Yoghurt pH 4.5, 40 ◦C, 100 h 7.98 g/L [36]
L. buchneri MS Kimchi pH 5.0, 30 ◦C, 36 h 251 mM [37]
E. faecium JK29 Kimchi 30 ◦C, 72 h 14.86 mM [38]
L. brevis 877G Kimchi 30 ◦C, 24 h 18.94 mM [39]

L. plantarum IFK 10 fermented soybean pH 6.5, 37 ◦C, 48 h 2.68 g/L [40]
Weissella hellenica ika-kurozukuri 30 ◦C, 96 h 7.69 g/L [41]

L. brevis K203 Kimchi pH 5.25, 37 ◦C, 48 h 44.4 g/L [42]
L. futsaii CS3 Kung-som 37 ◦C, 108 h 25 g/L [26]
L. paracasei
NFR7415 Fermented fish 30 ◦C, 144 h 302 mM [20]

L. plantarum C48 Cheese 30 ◦C, 48 h 16 mg/kg [21]
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Table 1. Cont.

LAB Species and
Strain Sources Fermentation

Conditions GABA Production References

L. paracasei PF6 Cheese 30 ◦C, 48 h 99.9 mg/kg [21]
L. brevis PM17 Cheese 30 ◦C, 48 h 15 mg/kg [21]
L. lactis PU1 Cheese 30 ◦C, 72 h 36 mg/kg [21]

L. delbrueckii subsp.
bulgaricus PR1 Cheese 42 ◦C, 48 h 63 mg/kg [21]

L. lactis subsp. lactis Cheese starter 30 ◦C, 48 h 27.1 mg/L [3]
L. brevis CECT 8183 Goat cheese pH 4.7, 30 ◦C, 48 h 0.96 mM [16]
L. brevis CECT 8182 Sheep cheese pH 4.7, 30 ◦C, 48 h 0.94 mM [16]
L. brevis CECT 8182 Goat cheese pH 4.7, 30 ◦C, 48 h 0.99 mM [16]
L. lactis CECT 8184 Goat cheese pH 4.7, 30 ◦C, 48 h 0.93 mM [16]
L. namurensis NH2 Nham 30 ◦C, 24 h 9.06 g/L [17]
P. pentosaceus HN8 Nham 30 ◦C, 24 h 7.34 g/L [17]

L. plantarum paork kampeus pH 6.5, 37 ◦C, 72 h 20 mM [1]

NR: Not reported.

Lactobacillus spp. are the most predominant species that have been described as GABA-producing
organisms including, for example, L. brevis, L. paracasei, L. bulgaricus, L. buchneri, L. plantarum,
L. helveticus, or L. futsaii [21,30–33,42,43]. Among these, L. brevis, a heterofermentative LAB, is one of
the best-studied organisms [43] and is known for forming high levels of GABA under appropriate
conditions (Table 1). Traditionally, fermented food samples containing GABA are used to screen
for and isolate GABA-producing LAB, and it is not surprising that food samples with high GABA
content may result in the isolation of promising strains showing good GABA-forming properties.
Furthermore, the adjustment of the pH medium to an acidic condition (pH 4.5–5.5) could improve
GABA production since GABA biosynthesis is closely related to the pH. Typical fermented foods
used for isolating GABA-producing LAB are kimchi, where in one study, 68 out of 230 LAB isolates
showed the ability to convert glutamate to GABA [44]; Thai fermented fish plaa-som [45], or other
fermented vegetable (kimchi) [46]; fermented shrimp paste [47]; cheese [16] or milk products as well
as various fermented meat or fish products including sausages or traditional fermented Cambodian
food, mainly based on fish, where six out of 68 LAB isolates showed a significant GABA-producing
ability [1]. These screening/isolation strategies often resulted in the identification of strains capable of
efficiently converting glutamate or in the discovery of novel, not-yet-identified producers of GABA,
which show promise as starter cultures for various fermented foods enriched in GABA. For example,
the novel GABA producer Lactobacillus zymae, which can grow on up to 10% NaCl and is able to utilize
D-arabitol as a carbon source, was isolated from kimchi [46]. Recently, Sanchart et al. isolated the novel
GABA-forming strain L. futsaii CS3 with probiotic properties from fermented shrimp (Kung-som) [26,47].
This isolate was able to convert 25 mg/mL of monosodium glutamate to GABA with a yield of more
than 99% within 72 h. These studies (Table 1) showed that the genera Lactobacillus and Lactococcus are
the predominant GABA-producing LAB, but also other genera such as Enterococcus were studied in
this respect. A novel GABA-producing Enterococcus avium strain was isolated from Korean traditional
fermented anchovy and shrimp (jeotgal) and was shown to produce 18.47 mg/mL GABA within 48 h in
a medium containing glutamate as the substrate. A recent study looking at LAB isolated from traditional
Japanese fermented fish products (kaburazushi, narezushi, konkazuke, and ishiru) showed that out of 53
randomly picked LAB isolates, 10 showed the ability to transform considerable amounts of glutamate
into GABA, and identified Weissella hellenica as a novel GABA producer [41]. Thus, these new genera
expand the list of GABA-producing bacteria, which can open up new and different applications in
the food industry. This may lead to a wider application and flexibility of starter cultures in the food
industry [9]. Production of GABA by different LAB together with fermentation conditions, yields,
and productivities has recently been reviewed in detail [15,43,48].
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3. Occurrence and Organization of Glutamic Acid Decarboxylase (GAD) Genes

The conversion of glutamate to γ-aminobutyric acid is catalyzed by glutamate decarboxylase
(glutamic acid decarboxylase, GAD, systematic name l-glutamate 1-carboxy-lyase (4-aminobutanoate-
forming), EC 4.1.1.15), which catalyzes the irreversible α-decarboxylation of glutamate [5,48].
GAD employs pyridoxal-5′-phosphate as its cofactor, and is found in numerous microorganisms
such as bacteria [3], fungi [49], and yeasts [50]; furthermore, GAD is found in plants [51], insects,
and vertebrates [52]. GAD is an intracellular enzyme that is utilized by LAB to encounter acidic
stress by decreasing the proton concentration in the cytoplasm in the presence of l-glutamate
(Figure 2) [2,6,53,54]. This system, the so-called glutamate-dependent acid-resistance system (GDAR),
provides protection under the acidic condition, and therefore the ability of LAB to perceive and cope
with acid stress is crucial for successful colonization of the gastrointestinal tract (GIT) and survival
under acidic environments such as in fermented food. The GDAR system consists of two homologous
inducible glutamate decarboxylases, GadA and GadB, and the glutamate/γ-aminobutyrate antiporter
GadC [20,48]. The corresponding genes (i.e., gadA, gadB, and gadC) are expressed upon entry into
the stationary phase when cells are growing in rich media independently of pH, and are further
induced upon hypoosmotic and hyperosmotic stress, or in the log-phase of growth in minimal medium
containing glucose at a pH of 5.5 [53,55]. Siragusa et al. demonstrated that three strains with a GDAR
system, L. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, were able to survive and synthesize GABA
under simulated gastrointestinal conditions [21]. Recently, cell numbers of the GABA-producing strain
L. futsaii CS3 were shown to be only decreased by 1.5 log cycles under simulated gastrointestinal
conditions, indicating that the GDAR system contributes to resistance to the conditions in the GIT and
that GABA-producing LAB thus have the potential as functional probiotic starter cultures [47].Microorganisms 2020, 8, x FOR PEER REVIEW 6 of 25 
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Figure 2. Schematic representation of the glutamate-dependent acid-resistance system. Glutamate
(net charge 0) is taken up by the l-glutamate/GABA antiporter GadC, while concurrently GABA is
exported by GadC as indicated by the arrows. Subsequently, GadA/B catalyze the decarboxylation of
glutamate by consuming an intracellular proton (H+) at each cycle and generate the proton motive
force by GABA export (net charge +1).

GAD systems and the organization of the gad operons among LAB species are highly variable [56,57].
Numerous studies reported that some LAB species such as Streptococcus thermophilus [5], L. brevis [6,7],
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or L. lactis [3] have one or two gad genes (i.e., gadA, gadB), together with the antiporter (gadC).
Interestingly, E. avium 352 carries three gad genes [58]. Typically, L. brevis contains two GAD-encoding
genes, gadA and gadB, which when expressed yield GAD enzymes that share approximately 50% amino
acid sequence similarity [6]. In contrast, the gadB gene is absent in strain L. brevis CD0817 [59] and
the amino acid sequence identities of GadA and GadC from L. brevis CD0817 against other L. brevis
strains are 91% and 90%, respectively. The transcriptional regulator gene gadR plays a crucial role in
GABA production and acid resistance in L. brevis. Gong et al. reported that deletion of gadR in L. brevis
ATCC 367 resulted in lower expression of both the gadB and gadC gene, a concurrent reduction in
GABA synthesis, and an increased sensitivity to acidic conditions [6]. Expression levels of gadR are
varied among different LAB strains. The gadR gene was expressed 13–155-fold higher than gadCB
in L. brevis NCL912 during the cultivation period [60]. In contrast, expression of gadR in L. brevis
CGMCC1306 was observed to be much lower compared to gadCB. The role of GadA and GadB in
L. brevis CGMCC1306 was investigated by disruption of the genes gadA, gadB, and gadC, resulting in
complete elimination of GABA formation and increased sensitivity to acidic conditions, suggesting
that both GAD proteins and the antiporter are essential for GABA production and acid resistance [61].

A genomic survey was conducted by Wu et al. to gain insight on the distribution of the gad operon
and genes encoding glutamate decarboxylase in LAB [7]. Most strains of L. brevis (14 strains) as well as
some strains of L. reuteri (six strains), L. buchneri (two strains), L. oris (three strains), L. lactis (29 strains),
and L. garvieae (five strains) were shown to have an intact gad operon. The majority of these strains
were shown to contain either gadA or gadB, whereas gadC is only present in the genomes of certain
strains and noticeably lacking in L. plantarum, suggesting that the characteristic of GABA production
is strain-dependent. Similar results were obtained by Yunes et al., who showed that L. fermentum
(9 strains), L. plantarum (30 strains), and L. brevis (3 strains) typically contain gadB genes. In addition,
no antiporter gene was observed next to gadB in L. plantarum 90sk, and the expression of gadB was
increased in the early stationary phase and at low pH (3.5–5) [62]. The gadB gene from S. thermophilus
encoding 459 amino acids has been investigated. The transposase genes Tn1216 (5′ and 3′) and Tn1546
are located downstream and upstream of hydrolase genes flanking the gadB/gadC operon as a result
from horizontal gene transfer. This sequence implies that the order of gadB and gadC in S. thermophilus
ST110 is similar to S. thermophilus Y2 [63], but in a different order from that reported for L. lactis [64],
L. brevis [60], and L. plantarum [62].

The L. reuteri 100-23 genome was investigated by Su et al. for its gad operon [65]. This genome
contains gadB and two genes for the antiporter (gadC1 and gadC2) as well as the glutaminase-encoding
gene gls3, indicating that glutamine serves as a substrate for the synthesis of GABA. The organization of
the gad operon is in a different order for other species of LAB (L. lactis and L. plantarum) as glutaminase
(gls3) is in between the antiporters gadC1 and gadC2, while gadB is accompanied by gadC1 [65]. The full
length of gad genes has been cloned and sequenced for several species and strains of LAB. Li et al.
cloned gadA from L. brevis NCL912, and the whole gene fragment (4615 bp) including gadR, gadC, gadA,
and gts (glutamyl t-RNA synthetase) was successfully amplified. Their work suggested that the high
GABA production capacity of L. brevis NCL912 may be linked to the gadA locus, forming a gadCA
operon complex that ensures the coordinated expression of GAD and the antiporter [60]. A core
fragment of the gad gene from L. brevis OPK3 was cloned and successfully expressed in Escherichia coli.
The nucleotide sequence revealed that the open reading frame of the gad gene consisted of 1401 bases
encoding 467 amino acid residues. The sequence showed 83%, 71%, and 60% homology to GAD from
L. plantarum, L. lactis, and Listeria monocytogenes, respectively [66].

A phylogenetic tree constructed from available GAD sequences in the NCBI protein database
showed that amino acid sequences of GAD are highly conserved within the same species (Figure 3),
and that GAD is widely distributed in a number of LAB including L. brevis, L. buchneri, L. delbrueckii
subsp. bulgaricus, L. fermentum, L. futsaii, L. paracasei, L. parakefiri, L. paraplantarum, L. plantarum,
L. plantarum subsp. argentoratensis, L. reuteri, L. sakei, L. lactis, and S. thermophilus. All of these LAB
are commonly found in fermented foods and some of these are commonly used as starter cultures in
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food industries. In addition, GAD is also found in other lactobacilli including L. acidifarinae, L. aviaries,
L. coleohominis, L. farraginis, L. japonicas, L. koreensis, L. nuruki, L. oris, L. rossiae, L. rennini, or L. suebicus
(Figure 3). These organisms have not been studied for their capacity to synthesize GABA nor have
their GAD system been studied, and hence they could be of interest with respect to GABA production
and GABA-enriched food.Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 25 
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Figure 3. Phylogenetic analysis of glutamate decarboxylase from different species of LAB.
The phylogenetic tree was calculated based on the amino acid sequences of glutamic acid decarboxylase
(GAD) (maximum-likelihood method). The phylogenetic analysis was performed after the alignment
of GAD sequences using MUSCLE in the MEGA X software.
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4. Glutamate Decarboxylase

Glutamate decarboxylase is an intracellular enzyme that is found ubiquitously in eukaryotes
and prokaryotes. GAD exhibits different physiological roles, especially in vertebrates and plants,
and its presence is highly variable among organisms [52]. GAD is a PLP-dependent enzyme and as
such belongs to the PLP-dependent enzyme superfamily. This superfamily comprises seven different
folds [67] with GAD from LAB showing the type-I fold of PLP-dependent enzymes [68]. A number
of important catalytic reactions including α- and β-eliminations, decarboxylation, transamination,
racemization, and aldol cleavage are catalyzed by various members of this superfamily of enzymes [69].
GAD activity relies on the binding of its co-factor PLP, and belongs to group II of PLP-dependent
decarboxylases [70]. In GAD from L. brevis CGMCC 1306, the active site entrance is located at the re-face
of the cofactor PLP. PLP is covalently attached to a lysine (K279) via an imine linkage (Figure 4),
referred to as an internal aldimine [68,71]. This lysine is strictly conserved in group II PLP-dependent
decarboxylases. The corresponding lysine in E. coli GAD is at position 276, and when mutating this
residue, the variant has less flexibility and affinity to both its substrate and the cofactor [72]. In addition
to this covalent attachment, PLP is positioned in the active site via a number of H bonds between
the phosphate group of PLP and surrounding amino acids, while the pyridine ring of PLP forms
hydrophobic interactions with side chains of various amino acids in the active site [68].
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Figure 4. Overall secondary structure of the glutamate decarboxylase monomer from L. brevis (PDB code
5GP4). (A) Chain A is represented as an orange cartoon, and its prosthetic group PLP is represented as
sticks colored by atom type, with carbons shown in magenta. (B) Position of the Y308-E312 flexible
loop shown in green. The conserved Y308 is represented as sticks, colored by atom types, with carbons
being green. All images were made using the PyMOL Molecular Graphics System, v. 2.3.0. for Linux.

Molecular docking of the substrate glutamate into the active-site of the holo-form of L. brevis GAD
showed several noncovalent interactions including hydrogen bonds between the O2, the O3 and the O4
atoms of the substrate L-Glu to various parts of the GAD polypeptide chain. Furthermore, electrostatic
interactions between the negatively charged oxygen atom of the α-carboxyl and the γ-carboxyl
group of L-Glu and the positively charged nitrogen atom of residue R422 as well as H278 and K279
(Figure 5), respectively, were proposed [68]. The flexible loop residue Tyr308-Glu312 in L. brevis GAD
is located near the substrate-binding site (Figure 4). This loop is important for the catalytic reaction,
and the conserved residue Tyr308 plays a crucial role in decarboxylation of L-Glu. Thr 215 and Asp246
are the two catalytic residues in L. brevis GAD (Figure 5), which are also highly conserved and promote
decarboxylation of L-Glu [68,71,73].
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glutamate is decarboxylated, a subsequent alternative transamination of the quinonoid intermediate 
of the reaction can occur, and succinic semialdehyde (SSA) and pyridoxamine-5′-phosphate (PMP) 
are formed. The latter will immediately be released from the enzyme, resulting in inactive apoGAD 
(Figure 6), which can be regenerated to the active GAD–PLP complex when free pyridoxal-5′-
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phosphate; SSA; succinic semialdehyde (modified from [76]). 

Figure 5. Active site of glutamate decarboxylase from L. brevis (PDB code 5GP4). The conserved
catalytic residues T215 and D246 are shown in sticks, colored by atom type, with carbons shown in
green, nitrogen in blue, and oxygen in red. The prosthetic group PLP is represented as sticks colored by
atom type with carbons in magenta. The residues R422, H278, and K279, proposed to be involved in
electrostatic interactions with the substrate glutamate [68], are represented as sticks colored by atom
type. The rest of the chain is shown as a transparent orange cartoon. K279 is also involved in forming
the imine linkage to PLP. The image was made using the PyMOL Molecular Graphics System, v. 2.3.0.
for Linux.

During catalysis, a transamination reaction occurs, and PLP, which is covalently attached to a Lys
in the active site of GAD in its resting state, now becomes covalently bonded to the substrate glutamate,
forming a Schiff base or what is referred to as an external aldimine. This Schiff base can then be
transformed to a quinonoid intermediate [67,74]. In a small fraction of catalytic cycles, when glutamate is
decarboxylated, a subsequent alternative transamination of the quinonoid intermediate of the reaction
can occur, and succinic semialdehyde (SSA) and pyridoxamine-5′-phosphate (PMP) are formed.
The latter will immediately be released from the enzyme, resulting in inactive apoGAD (Figure 6),
which can be regenerated to the active GAD–PLP complex when free pyridoxal-5′-phosphate is
present, thus completing a cycle of inactivation and activation. However, when free PLP is not present,
GAD will be inactivated as a function of time and substrate concentration [62,67–69,74–77].
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Figure 6. The interconversion of holo- and apoGAD. The primary reaction results in the formation of
GABA and holoGAD remains intact and active. holoGAD reacting with PLP will activate a secondary
reaction resulting in the formation of apoGAD. E, apoGAD; E-PLP, holoGAD; Pi, inorganic phosphate;
EQ, quinonoid intermediate; PMP, pyridoxamine phosphate; PLP, pyridoxal-5′-phosphate; SSA; succinic
semialdehyde (modified from [76]).
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5. Biochemical Insights into Glutamate Decarboxylase from Lactic Acid Bacteria

GAD from LAB typically consists of identical subunits with molecular masses ranging from 54 to
62 kDa and is formed in its mature holo-form, even when produced heterologously. The oligomerization,
typically resulting in the formation of a homodimer, is crucial for activity of the Lactobacillus spp.
enzymes. Some ambiguity about the active form of GAD isolated from different isolates of L. brevis
and its quaternary structure exists in the scientific literature. Hiraga et al. reported that treatment
with high concentrations of ammonium sulfate resulted in an active tetrameric form with the enzyme
from L. brevis IFO12005 GAD [78]. The presence of ammonium sulfate apparently stabilized GAD
from this source as the purified enzyme was found to be rather unstable, and the dimeric form
showed no activity. Moreover, the presence of ammonium sulfate apparently did not affect the overall
conformation but had effects on the active site of the protein. Studies by Yu et al. showed that GAD
from L. brevis CGMCC 1306 is active as a monomer, while GAD from other LAB are generally active as
dimers [71]. Subsequent structural studies on this enzyme revealed, however, that GAD from L. brevis
CGMCC 1306 is active as a dimer (Figure 7), even though elucidation of the crystal structure resulted
in a distorted asymmetric trimer. The authors concluded that this observed trimer only resulted from
the crystallographic packing and not the biological form [68].
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Figure 7. Structure of homodimeric glutamate decarboxylase from L. brevis CGMCC 1306 (PDB code:
5GP4). (A): overall secondary structure with chains A and B represented as orange and cyan cartoons,
respectively. The prosthetic group PLP is represented as sticks, colored by atom type, with carbons
shown in magenta or blue. (B). Surface of GAD with chains A and B of the crystal structure represented
as orange and cyan surfaces, respectively. Images were made using the PyMOL Molecular Graphics
System, v. 2.3.0. for Linux.

As above-mentioned, a number of LAB carry two GAD-encoding genes, gadA and gadB. Frequently,
studies have focused on the purification and characterization of GadB (e.g., from L. plantarum [79],
L. sakei [80], L. brevis [78], Enterococcus raffinosus [75], and L. paracasei [18]), since the expression levels
of recombinant GadB are typically higher than those for GadA [55]. A recent study by Wu et al.
showed that the gadA transcript was highly upregulated (55-fold) in strain L. brevis NPS-QW-145 at
the stationary phase of growth [7]. Subsequently, both GadA and GadB were recombinantly produced
and characterized. GadA showed a pH profile of activity near the neutral region, with the optimal
activity found in the range of pH 5.5–6.6, in contrast to GadB, which is more active under acidic
conditions (3.0–5.5). Presence of both of these two enzymes, GadA and GadB, in the L. brevis genome
will give the organism a significant advantage to produce GABA over a broad range of pH (3.0–6.0),
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and thus to more efficient maintenance of pH homeostasis. These findings suggest that extending
the activity of GadA to the near-neutral pH region offers a novel genetic diversity of gad genes from
LABs [7].

A number of GAD have been expressed and characterized from a variety of LABs. In general,
the N- and C-terminal regions of GAD from different sources show significant differences, and this
might affect recombinant GABA production. As shown in a sequence alignment (Figure 8), the sequence
HVD(A/S)A(S/F)GG was highly conserved among LAB GAD, and a lysine residue (Lys279 in L. brevis
GAD) played a crucial role in the PLP binding site. Table 2 summarizes the biochemical properties of
GAD from different strains [18,42,81,82]. Typically, the pH optima of GAD are found between 4.0 and
5.0. GAD from L. zymae, E. avium M5, S. salivarius subsp. thermophilus Y2, and L. paracasei NFRI 7415
have an optimum activity of above 40 ◦C, which does not coincide with the optimal temperature for
growth of these strains [46,72,82,83]. Different ions can affect the stability and activity of GAD from
different sources (Table 2). GAD from E. avium M5 is activated in the presence of CaCl2 and MnCl2 but
the activity is decreased by CuSO4 and AgNO3 [82]; comparable results were also obtained for GAD
from other LAB sources, L. zymae [46] and L. sakei A156 [80].

Since GAD is mainly active under acidic conditions, several engineering approaches have been
employed to broaden its activity, especially at the near-neutral pH region. To this end, Shi et al.
applied both directed evolution and site-directed mutagenesis at the β-hairpin region and C-terminal
end of L. brevis GAD [84]. By using a plate-based screening assay employing a pH indicator
as assay principle, they could identify several variants and positions that improved activity at
pH 6.0. Furthermore, they selected three residues (Tyr308, Glu312, Thr315) in the β-hairpin region
for site-directed mutagenesis based on homology modeling, since these residues exhibit different
interactions with surrounding amino acids in the model at different pH values. By combining various
positive mutations, they could increase the catalytic efficiency of GAD from L. brevis 13.1- and 43.2-fold
at pH 4.6 and 6.0, respectively, when compared to the wild-type enzyme [84]. The role of the C-terminus
for the pH dependence of catalysis of L. plantarum GAD was investigated by Shin et al. employing
mutagenesis [79]. Deletions of three and eleven residues in the C-terminal region Ile454-Thr468 of
this enzyme increased activity in the pH range of 5 to 7, with the ∆11 variant showing significantly
better results, increasing the catalytic efficiency of the variant at pH 5.0 and 7.0 by a factor of 1.26
and 28.5, respectively. The authors concluded that the C-terminal region is involved in decreasing
the activity of L. plantarum GAD at higher pH values by closing up the catalytic site as a result of
pH-induced conformational changes [79]. In a similar way, a C-terminally truncated variant of L. brevis
GAD, in which the terminal 14 amino acids had been removed by site-directed mutagenesis, showed
improved activity at higher, around neutral pH values [85]. These studies point to the importance of
the C-terminus of GAD for improved accessibility of the active site and increased activity, especially
at higher pH values, and thus the C-terminal loop is an essential target for enzyme engineering for
GABA production at fluctuated pH conditions [79,85].
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parakefiri   57 ADQNLATFCTTEMEPQADKLMLSALNTNAIDKSEYPKTAAMENYCVSFLAHLWGVPDGQK 
buchneri     58 ANQNLATFCTTQMEPEADKLMTDALNTNAIDKSEYPKTAAMENYCVSMLAHLWGIPKGKK 
plantarum    61 SRLNLATFCQTYMEPEAVELMKDTLAKNAIDKSEYPRTAEIENRCVNIIANLWHAPDDE- 
futsaii      58 SRLNLATFCQTYMEPEAVELMKDTLAKNAIDKSEYPRTAEIENRCVNIIANLWHAPDDE- 
lactis       56 ARLNLATFCQTYMEPEAVKLMSQTLEKNAIDKSEYPRTTEIENRCVNMIADLWNASEKE- 
reuteri      58 ARENLATFCQTYMEPKATQIMAETMQKNAIDKSEYPRTAELENRCVNIIAKLWHGQKDE- 
fermentum    12 ARLNLATFCQTYMEPEAVKLMSETFDKNAIDKSEYPRTAEIENRCVNIIADLWHAPKDE- 
consensus    61 arlNLATFCqTyMEPeAvklM dtlnkNAIDKSEYPrTaeiENrCVniiAhLWhapdde  
 
brevis      120 IYDDFIGTSTVGSSEGCMLGGLALLHSWKHRAKAAGFDIEDLHSHKPNLVIMSGYQVVWE 
parakefiri  117 MYKDFIGTSTVGSSEGCMLGGLSLLLGWKHRAKDAGFDIDDLHTHKPNLVIMSGYQVVWE 
buchneri    118 MYKDFIGTSTVGSSEGCMLGGLSLLLSWKHRAEKAGFDTKDLHHHLPNLVIMSGYQVVWE 
plantarum   120 ---HFTGTSTIGSSEACMLGGLAMKFAWRKRAQAAGLDL---NAHRPNLVISAGYQVCWE 
futsaii     117 ---HFTGTSTIGSSEACMLGGLAMKFAWRKRAQAAGLDL---NAHRPNLVISAGYQVCWE 
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reuteri     231 EEYNKT-TDYKVYIHVDAASGGFYAPFMEPDIKWDFQLKNVVSINASGHKYGLVYPGIGW 
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consensus   241 seYNkt   lpvyIHVDaAsGG yaPFvep l WDFrLkNVvSINaSGHKYGlVYPGiGW 
 

Figure 8. Cont.



Microorganisms 2020, 8, 1923 13 of 24

Microorganisms 2020, 8, x FOR PEER REVIEW 14 of 25 

 

 
Figure 8. Comparison of amino acid sequences of GAD from L. brevis, L. parakefiri, L. buchneri, L. 
plantarum, L. futsaii, L. lactis, L. reuteri, and L. fermentum. The accession numbers of these sequences 
are GAW73186.1, ERK43696.1, KRL34909.1, AEB72391.1, OYT00901.1, ESS01667.1, BBA26472.1, and 
OSP86418.1, respectively. The alignment of amino acids was generated using the Clustal Omega 
software. The boxed sequence indicates residues HVD(A/S)A(S/F)GG; this sequence is highly 
conserved in PLP-dependent decarboxylases [48,55]. Furthermore, the residues 
SINA/V/TSGHKYGM/LVYPGI/V/LGWI/VV/LW/R/K/V are part of the PLP-binding domain [26]. 

Table 2. Biochemical properties of glutamate decarboxylase from various LAB. 

Source 

Molecular 
Mass of 
Subunit 

(kDa) 

Optimal 
pH 

Optimal 
Temperature 

Effect of 
Metal Ions 
(Increased 
Activity) 

Effect of Metal Ions 
(Decreased Activity) 

Km 
(Mm) 

Vmax References 

L. zymae 53 4.5 41 
NH4+, Ca2+, 
Mg2+, Mn2+, 

Na+ 
Co2+, Cu2+, Ag+ 1.7 

0.01 
mM/min 

[46] 

L. paracasei 
NFRI 7415 57 5 50 NH4+, Ca2+ EDTA, Na+  5 NR [18] 

L. sakei A156 54.4 5 55 Mn2+, Co2+, 
Ca2+, Zn2+ 

NH4+, Mg2+, Ag+ 0.045 0.011 
mM/min 

[80] 

brevis      299 IVWRHNTADILPAEMRFQVPYLGKTVDSIAINFSHSGAHISAQYYNFIRFGLSGYKTIMQ 
parakefiri  296 IVWKKNNYDYLPKEMRFQVPYLGKTVDSIAINFSHSGAHIVAQYYNFIRFGVNGFKAIMN 
buchneri    297 IVWRNNSEDLLPKEMRFSVPYLGSSVDSIAINFSHSGAHIVGQYYNFVRFGYKGYEAIMN 
plantarum   294 VVWRDR--QFLPPELVFKVSYLGGELPTMAINFSHSAAQLIGQYYNFIRFGMDGYREIQT 
futsaii     291 VVWRDR--QFLPPELVFKVSYLGGELPTMAINFSHSAAQLIGQYYNFIRFGMDGYREIQT 
lactis      288 VLWRDK--KYLPEELIFKVSYLGGELPTMAINFSHSASQLIGQYYNFVRYGFDGYKAIHE 
reuteri     290 VLWRDK--KFLPDKLIFKVSYLGGELPTMAINFSRSASQIIGQYYNFVRFGFEGYKKIQK 
fermentum   244 VLWCDQ--KCVPEKLIFRVSYLGGEMPTMAINFSRGASQIIGQYYNFIRYGFEGYHDIHK 
consensus   301 vvWrd    ylP elvFkVsYLGgelptmAINFShsaaqiigQYYNFiRfG dGyk I  
 
brevis      359 NVRKVSLKLTAALKTYGIFDILVDGSQLPINCWKLADDAPVGWTLYDLESELAKYGWQVP 
parakefiri  356 NVRKVSLKLTDELKQFGIFEIVNDGSQLPINCWKLADDANVGWTLYDLESELTKHGWQVP 
buchneri    357 NVRKVSLRITEELKKFGIFEILNDGSQLPINCWKLADDAKVDWTLYDLEGELAKYGWQVP 
plantarum   352 KTHDVARYLAAALDKVGEFKMINNGHQLPLICYQLAPREDREWTLYDLSDRLLMNGWQVP 
futsaii     349 KTHDVARYLAAALDKVGEFKMINNGHQLPLICYQLAPREDREWTLYDLSDRLLMNGWQVP 
lactis      346 RTHKVAMFLAKEIEKTGMFEIMNDGSQLPIVCYKLKEDSNRGWNLYDLADRLLMKGWQVP 
reuteri     348 RTHDVAVYLATEIQKMGMFEMVNDGSQIPIVCYKLKDLTAQDWSLYDLADRLRMQGWQVP 
fermentum   302 RTHDVAVYLAQEIEKLGLFEIVNDGSRLPIVCYRHKEDQDHEWTLYDLADRLAMKGWQVP 
consensus   361 kth Valyla eldkvGiFeilndGsqlPiiCykladd  rdWtLYDL drL m GWQVP 
 
 
brevis      419 AYPLPKNRDDVTISRIVVRPSMTMTIADDFLDDLKLAIDGLNHTFGVTTTVDQDN----K 
parakefiri  416 AYPLPKNRDDTTISRIVVRPSMTMTIADDFIDDLHLAINDLNKEHPASQNIS-----VDQ 
buchneri    417 AYPLPKNREDTTISRIVVRPSMTMTILDDFMEDLKMAIHNLNKEHGNNELEYNIPSAADA 
plantarum   412 TYPLPANLEQQVIQRIVVRADFGMNMAHDFMDDLTKAVHDLNHAHIVYHHDAAPK----K 
futsaii     409 TYPLPANLEQQVIQRIVVRADFGMNMAHDFMDDLTKAVHDLNHAHIVYHHDAAPK----K 
lactis      406 AYPLPKNLENEIIQRLVIRADFGMNMAFNYVQDMQEAIEALNKAHILYHEEPENK----T 
reuteri     408 AYPLPKNLDTIEVQRIVCRADFGMSRAHEFIDDMKRDIKALNNSTLVGHKTTELK----K 
fermentum   362 AYPLPKDLDQIEVQRIVVRADFGMGMAHDFVEDMKDAIKELNGAHLVFHEKSSLK----K 
consensus   421 aYPLPknldq  iqRiVvRadfgMtmahdfldDlk aihdLNhahivyh e   k    k 
 
 
brevis      475 TTVRS---- 
parakefiri  471 NTVQHRVTK 
buchneri    477 TTVSNK--- 
plantarum   468 YGFTH---- 
futsaii     465 YGFTH---- 
lactis      462 YGFTH---- 
reuteri     464 YGFTH---- 
fermentum   418 YGFTH---- 
consensus   481 ygfth    

Figure 8. Comparison of amino acid sequences of GAD from L. brevis, L. parakefiri, L. buchneri, L.
plantarum, L. futsaii, L. lactis, L. reuteri, and L. fermentum. The accession numbers of these sequences
are GAW73186.1, ERK43696.1, KRL34909.1, AEB72391.1, OYT00901.1, ESS01667.1, BBA26472.1,
and OSP86418.1, respectively. The alignment of amino acids was generated using the Clustal Omega
software. The boxed sequence indicates residues HVD(A/S)A(S/F)GG; this sequence is highly conserved
in PLP-dependent decarboxylases [48,55]. Furthermore, the residues SINA/V/TSGHKYGM/LVYPGI/V/

LGWI/VV/LW/R/K/V are part of the PLP-binding domain [26].
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Table 2. Biochemical properties of glutamate decarboxylase from various LAB.

Source
Molecular

Mass of
Subunit (kDa)

Optimal pH Optimal
Temperature

Effect of Metal Ions
(Increased Activity)

Effect of Metal Ions
(Decreased Activity) Km (Mm) Vmax References

L. zymae 53 4.5 41 NH4
+, Ca2+, Mg2+,

Mn2+, Na+ Co2+, Cu2+, Ag+ 1.7 0.01 mM/min [46]

L. paracasei
NFRI 7415 57 5 50 NH4

+, Ca2+ EDTA, Na+ 5 NR [18]

L. sakei A156 54.4 5 55 Mn2+, Co2+, Ca2+,
Zn2+ NH4

+, Mg2+, Ag+ 0.045 0.011 mM/min [80]

L. brevis
CGMCC 1306 53 4.8 48 NR NR 10.26 8.86 U/mg [22]

S. salivarius
subsp.

thermophilus Y2
46.9 4 55 Ba2+

Fe2+, Zn2+, Cu2+,
Mn 2+, Na+, Ag+,

Co2+, Li+, K+
2.3 NR [83]

Enterococcus
avium M5 53 4.5 55 Ca2+, Mg2+, Mn2+,

Zn2+ Cu2+, Ag+ 3.26 0.012 mM/min [82]

E. raffinosus
TCCC11660 55 4.6 45 Mo6+, Mg2+ Fe2+, Zn2+, Cu2+,

Co2+ 5.26 3.45 µM/min [75]

Lactococcus lactis NR 4.7 NR NR NR 0.51 NR [3]

L. brevis 877G 50 5.2 45 Ca2+, Mg2+, Mn2+,
Na+ Ag+, Zn2+, Cu2+, K+ 3.6 0.06 mM/min [81]

NR; Not reported.
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6. Improvement of GAD Activities and GABA Production

GABA biosynthesis can be achieved by using whole cell reactions, recombinant bacteria,
and purified GAD (Table 3). gad genes from various sources of LAB have been overexpressed
in different hosts including E. coli [86], L. sakei [87], L. plantarum [88], Corynebacterium glutamicum [89],
and Bacillus subtilis [90]. Utilization of whole cells for the biocatalytic conversion of glutamate to GABA
has some drawbacks including the conversion of GABA to succinic semialdehyde by the enzyme
GABA transaminase (GABA-T), which is often found in bacteria and might decrease GABA yields
during cultivation. To prolong and thereby increase GABA production, continuous cultivation [91],
fed-batch fermentation [92] as well as immobilized cell technology [93–95] have been employed. All of
these approaches effectively increased GABA productivity by improving cell viability resulting in
extended periods of cultivation.

GABA biosynthesis and production could be enhanced by optimizing fermentation conditions,
with attention given to different factors including the carbon source, concentration of added glutamate,
pH regulation, incubation temperature, nitrogen sources, cofactor, and feeding time [34,94]. A study
by Lim et al. showed that under optimized conditions, L. brevis HYE1 produced 18.8 mM of GABA.
Monosodium glutamate (MSG) or l-glutamate are the main substrate for the production of GABA using
either appropriate GAD-containing cells or pure GAD [27]. LAB with GAD activity may furthermore
require the supplementation of PLP to the medium to enhance GABA production. The addition
of 0.5% MSG increased GABA production by E. faecium JK29, which reached 14.9 mM after 48 h
of cultivation [38]. A concentration of 6% MSG and the addition of 0.02 mM PLP were found to
be optimal conditions for L. brevis K203 for GABA production [42]. This strategy of increasing
glutamate supplementation could not be used for all strains though; when l-glutamate was added at
concentrations of 10 to 20 g/L to the growth medium of S. thermophilus, GABA production could not be
enhanced. It was suggested that this strain is not able to tolerate high glutamate concentrations [36].
High glutamate concentrations increase the osmotic pressure in the cells, and this stress can disturb
the bacterial metabolism [39]. Fermentation time and temperature are also key factors for GABA
production. Villegas et al. investigated GABA formation by L. brevis CRL 1942, and found that 48 h of
fermentation at 30 ◦C employing 270 mM of MSG resulted in a maximum GABA production of 255 mM
in MRS medium, indicating that the GABA production occurs in a time-dependent manner [96].

Metabolic pathway engineering has been performed to achieve enhanced GABA production.
The key points here are the direct modulation of GABA metabolic pathways. A whole-cell biocatalyst
based on E. coli cells expressing the gadB gene from L. lactis was used as the starting point of this
engineering approach. An engineered strain was constructed by (i) introducing mutations into this
GadB to shift its decarboxylation activity toward a neutral pH; (ii) by modifying the glutamate/GABA
antiporter GadC to facilitate transport at neutral pH; (iii) by enhancing the expression of soluble GadB
through overexpression of the GroESL molecular chaperones; and (iv) by inhibiting the degradation of
GABA through inactivation of gadA and gadB from the E. coli genome. This engineered strain achieved
a productivity of 44.04 g/L of GABA per h with an almost quantitative conversion of 3 M glutamate [97].

Several mutational approaches such as directed evolution and site-specific mutagenesis are
considered as powerful tools for optimizing or improving enzyme properties. Several researchers
have applied these approaches to improve GAD activity [84,97–101] and were applied in whole-cell
biocatalysts. In order to improve GAD activity over an expanded pH range, recombinant C. glutamicum
cells were obtained by expressing L. brevis Lb85 GadB variants. These variants were constructed by
combining directed evolution and site-specific mutagenesis of GadB to improve activity at higher pH
values (see above), since C. glutamicum grows best around neutral pH [84]. C. glutamicum is an industrial
producer of glutamate, and by introducing these GadB variants into this organism, GABA could be
produced without the need of exogenous glutamate on a simple glucose-based medium, with yields of
up to 7.13 g/L [84].

Insufficient thermostability is often a common problem associated with industrial enzymes,
and most GAD show low stability even at moderate temperatures. A rational strategy for improving
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thermostability is to identify critical regions or amino acid residues by sequence alignments.
Alternatively, structural information indicating flexible regions can be used, and subsequently,
these regions are strengthened [102]. Identification of the consensus sequences can also improve
the thermostability of proteins [103]. Recently, Zhang et al. developed a parallel strategy to engineer
L. brevis CGMCC 1306 GAD. They compared the sequence and structure of this mesophilic GAD
with homologous thermophilic enzymes to identify amino acid residues that might affect stability.
Two mutant enzymes were obtained and showed higher thermostability with their half-inactivation
temperature 2.3 ◦C and 1.4 ◦C higher than that of the wild-type enzyme. Furthermore, the activity of
the variants was 1.67-fold increased during incubation at 60 ◦C for 20 min. They suggested that this
approach can be an efficient tool to improve the thermostability of GAD [102].

The use of purified GAD seems to be economically more feasible than whole-cell biocatalysis when
aiming at producing pure GABA due to simplified downstream purification of this compound from
less complex reaction mixtures. A number of immobilization techniques have been applied for re-use
of the biocatalyst such as immobilization of GadB in calcium alginate beads that are then employed in
a bioreactor [104], a GAD/cellulose-binding domain fusion protein immobilized onto cellulose [105],
and GAD immobilized to metal affinity gels [106]. The performance of immobilized GAD in a fed-batch
reactor was evaluated, which showed high productivity of GABA as the substrate concentration in
the medium was kept constant by feeding solid glutamate. Moreover, no significant decrease in
enzyme activities was observed during the reaction when the inactivation reaction of PLP to succinic
semialdehyde and pyridoxamine-5′-phosphate during catalysis was avoided by the addition of a small
amount ofα-ketoglutaric acid to the reactor, which regenerated PLP [101]. Sang-Jae Lee et al. performed
immobilization of L. plantarum GAD using silica beads and showed high stability under acidic and
alkaline conditions with improved thermostability [105]. In addition, the immobilized GAD converted
100% of glutamate to GABA [106]. These results suggest that immobilization gives advantageous results
for industrial application when using (partially) purified GAD for GABA production from glutamate.
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Table 3. Various approaches to improve GABA production.

Strain GABA Enhancement Techniques Reaction Conditions GABA
Production References

L. plantarum Taj-apis 362 GAD was expressed in pMG36e vector
Resting cells, reaction mixtures contain 1.32 mM

glutamic acid and 200 mM sodium acetate,
incubated at 37 ◦C for 60 min

1.14 g/L [88]

L. plantarum ATCC 14917 L. sakei expression host MRS supplemented with 1% MSG, incubated at 30
◦C for 48 h, initial pH 6.0 27.36 g/L [87]

S. salivarius ssp, thermophilus Y2 B. subtilis expression host
Resting cells, reaction mixtures contain 0.4 M
sodium glutamate and 0.4 M acetate buffer,

incubated at 37 ◦C for 6 h
5.26 g/L [90]

L. brevis NCL 912 Continuous cultivation method
Fermentation medium with glucose, yeast extract,

soy peptone, MnSO4, Tween 80 and MSG, initial pH
5.0. incubated at 32 ◦C with 150 rpm agitation.

5.11 g/L [91]

L. brevis NCL 912 Fed-batch fermentation
Seed medium containing glucose, soya peptone,

MnSO4, 4H2O, l-glutamate. Incubated at 32 ◦C for
84 h with initial pH 5.0

103.72 g/L [92]

L. brevis RK03
Cell immobilization with hydrogels 2-hydroxyethyl

methacrylate/polyethylene glycol diacrylate
(HEMA/PEGDA)

MRS medium containing 450 mM MSG, incubated
for 84 h at 30 ◦C. 39.7 g/L [93]

L. brevis GABA 057 Cell immobilization with alginate beads +
isomaltooligosaccharide

GYP medium (pH 4.5) containing MSG incubated
for 48 h at 37 ◦C. 23 g/L [94]

L. lactis optimizing fermentative condition (temperature 31.9 ◦C,
pH 7.1, 15 g/L of MSG)

Growth on optimized MRS medium containing
brown rice, germinated soy bean and skim milk. 7.2 g/L [34]

L. brevis CRL 1942 optimizing culture conditions (30 ◦C, 48 h, 270 mM MSG) Growth on optimized MRS medium 26.30 g/L [96]

E. faecium JK29 optimizing MRS medium (0.5% sucrose, 2% yeast extract,
0.5% MSG, pH 7.5, 30 ◦C) Growth on optimized MRS medium 1.53 g/L [38]

L. brevis HYE1 optimizing MRS medium (2.14% maltose, 4.01% tryptone,
2.38% MSG, pH 4.74) Growth on optimized MRS medium 2.21 g/L [27]

L. brevis
modifiying MRS medium containing 6% l-glutamic acid,

4% maltose, 2% yeast extract, 1% NaCl, 1% CaCl2, 2 g
Tween 80, 0.02 mM PLP, pH 5.25, 37 ◦C, 72 h

Growth on optimized MRS medium 44.4 g/L [42]

L. brevis Lb85 directed evolution and mutagenesis
Growth on LBG medium supplemented with

glucose, kanamycin and l-glutamate, incubated at
30 ◦C with 200 rpm agitation.

7.13 g/L [84]

L. lactis FJNUGA01 whole-cell bioconversion with pET28a Resting cells in deionized water with 2 mol/L
glutamate, incubated at 45 ◦C for 6 h 34 g/L [99]

L. plantarum WCFS1 immobilized enzymes to porous silica beads
Enzymatic conversion of 0.5 M MSG, 0.2 mM PLP

and 0.02 µg GAD/µL in sodium acetate buffer
(pH 5.0), incubated at 37 ◦C for 20 min.

41.7 g/L [106]
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7. The Role of Glutamate Decarboxylase in the Manufacturing of Bio-Based Industrial Chemicals

Agricultural waste and waste streams from biofuel production are now being considered as
a low-cost source of glutamate for biotechnological conversion into GABA and production of bio-based
chemicals [107]. These protein-rich materials are mainly bioethanol by-product streams including
dried distiller’s grains with solubles (DDGS) from maize and wheat, or vinasse from sugarcane or
sugar beet, but also plant leaves, oil, or biodiesel by-products and slaughterhouse waste. In the future,
algae could also provide an additional source for biodiesel and thus become a natural low-cost source
of glutamic acid.

The protein-rich fraction of plants can be further split into more- and less-nutritious fractions,
for example, by hydrolyzing the proteins and separating the essential (nutritious) amino acids from
the non-essential (less nutritious) ones. Non-essential amino acids such as glutamic acid and aspartic
acid, which have no significant value in animal feed, can be utilized for preparing functionalized
chemicals. Recently, a by-product from the tuna canning industry, tuna condensate, was shown to
be a useful material for the production of GABA. Tuna condensate contains significant amounts of
glutamine, but relatively little glutamate. Glutamine was first converted to glutamate by a glutaminase
from Candida rugosa, and in a second step, L. futsaii GAD converted glutamate to GABA. Both steps
were catalyzed by immobilized whole cells [108]. Recently, it was shown that supplementation of
arginine to media containing glutamate could enhance GABA production, and that the simultaneous
addition of arginine, malate, and glutamate enabled GABA production already during exponential
growth at relatively high pH (6.5) [109].

The structure of glutamic acid resembles many industrial intermediates, so it can be transformed
into a variety of chemicals using a relatively limited number of steps. Decarboxylation of glutamic
acid to GABA, enzymatically performed by GAD, is an important reaction of the pathway from
glutamic acid to a range of molecules. GABA is, for example, an intermediate for the synthesis of
pyrrolidones. Such an approach can be used to produce N-methyl-2-pyrrolidone (NMP), which is used
as an industrial solvent. Combining the enzymatic decarboxylation of glutamate performed by GAD
with the one-pot cyclization of GABA to 2-pyrrolidone and subsequent methylation will thus yield
NMP [110]. Another interesting material synthesized by ring-opening polymerization of 2-pyrrolidone
is Nylon 4 [111], a four-carbon polyamide suitable for application as an engineering plastic due to
its superior thermal and mechanical properties [112]. Contrary to other nylon polymers, Nylon 4 is
heat-resistant, biodegradable, biocompatible, and compostable [112].

8. Future Trends and Conclusions

The demand for functional foods is increasing and marked by the awareness of consumers in
maintaining health and prevention of degenerative diseases. Therefore, exploration of bioactive
compounds such as GABA are important. The GAD system plays a crucial role in GABA biosynthesis.
A number of studies on cloning, expression, and characterization of both gadA and gadB and the encoded
enzymes GadA and GadB has led to deciphering the role of the gad genes in the GABA metabolic
pathway and its importance for LAB. Since the production of GABA is dependent on the biochemical
properties of GAD, more study on the biochemical properties of GAD are important, especially for
those enzymes derived from LAB isolated from food fermentation processes, as this will facilitate
the optimization of the fermentation process and support the selection of suitable starter cultures
for these processes that will bring more GABA-enriched food to the consumer. Recent structural
information of GAD from LAB will facilitate enzyme-engineering approaches to improve GAD
toward enhanced thermostability or improved activity over a broad range of pH. However, structural
information is currently only limited to GAD from L. brevis, and thus structural studies on GAD from
other GABA-producing LAB are needed in order to understand their catalytic and structural properties
in more depth. The elucidation of molecular mechanisms and roles of GABA production, knowledge
of the regulatory aspects of GABA production, and profound comprehension of GABA-producing cell
physiology will offer the basis and tools to increase GABA yields at genetic and metabolic levels.
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