# Metagenomics-based proficiency test of smoked salmon spiked with a mock community

Claudia Sala<sup>1</sup>, Hanne Mordhorst<sup>2</sup>, Josephine Grützke<sup>3</sup>, Annika Brinkmann<sup>4</sup>, Thomas Petersen<sup>2</sup>, Casper Poulsen<sup>2</sup>, Paul D. Cotter<sup>5</sup>, Fiona Crispie<sup>5</sup>, Richard J. Ellis<sup>6</sup>, Gastone Castellani<sup>7</sup>, Clara Amid<sup>8</sup>, Mikhayil Hakhverdyan<sup>9</sup>, Françoise S. Le Guyader<sup>10</sup>, Gerardo Manfreda<sup>11</sup>, Joel Mossong<sup>12</sup>, Andreas Nitsche<sup>4</sup>, Catherine Ragimbeau<sup>12</sup>, Julien Schaeffer<sup>10</sup>, Joergen Schlundt<sup>13</sup>, Moon Y. F. Tay<sup>13</sup>, Frank M. Aarestrup<sup>2</sup>, Rene Hendriksen<sup>2</sup>, Sünje Johanna Pamp<sup>2</sup>, Alessandra De Cesare<sup>14\*</sup>

\*alesandra.decesare@unibo.it

**Supplementary Figure S1**. Within-DNA workflow log-variance of the detected abundances. Box plots show the distribution of the variances observed in each workflow considering all the mock community microorganisms. Red dots indicate the variance observed for the specific microorganism indicated in the subplot title. For WF12 used for one metagenome, box plots are not shown, and the red dot is drawn on the x-axis to indicate that the variance is not defined. For each microorganism, we used the average of the variances observed in all workflows with at least two samples as estimation of the variance of the same microorganism in WF12 including one sample only.











Supplementary Figure S2. Box plots of the DESeq2 normalized read counts (detected abundances) obtained in group of samples defined by: a) the categorized pre-processing procedure (i.e., categorized as protocols based on a beating protocol with TissueLyser (BBTL), no-processing (NO\_PP) and other pre-processing protocols (OTHER\_PP); b) the DNA extraction protocol (i.e. DNeasy Power Food Microbial Kit (PowerFood), QIAamp DNA Mini Kit with or without SISPA and QIAamp UCP Pathogen Mini Kit, categorized as QIAamp, or the QIAamp Fast DNA Stool and DNeasy Power Soil, categorized as OTHER-EXD; c) the library preparation strategy (i.e., Nextera<sup>™</sup> XT DNA Library Prep kit and the Nextera<sup>™</sup> DNA Flex Library Preparation kit, categorized as NexteraXT, and the NEBNext<sup>®</sup> Ultra<sup>™</sup> II DNA Library Prep Kit for Illumina<sup>®</sup>, TruSeq<sup>®</sup> DNA Library Prep Kit, GeneRead DNA Library kit other strategies, categorized as OTHER\_L); d) the sequencing platform (i.e., NextSeq500 and the HiSeq2500, categorized as NextSeq500, and the MiniSeq, MiSeq and Ion Torrent S5XL, categorized as OTHER\_SP). Plots for the other steps of the workflow are not shown because no statistically significant difference was observed. For each variable, plots are drawn separately for each mock community microorganism. In the figure, dots represent the values detected in each individual DNA metagenome, and a "\*" symbol is added to the species name (x-axis) if the average abundances of at least two sample groups were statistically significantly different.



**Supplementary Figure S3.** Box plots of the mock community microorganisms' abundances (DESeq2 normalized counts) detected in the <u>DNA</u> workflows. Blue dots indicate the values of the samples included in each workflow. For WF12 including only one sample, the box plot is substituted with a horizontal line that overlaps the blue dot relative to that sample. Each subplot refers to one of the mock community microorganisms, as indicated in the title. Viruses were not included in this analysis.



**Supplementary Table S1**. Relative abundance of the microorganisms of the mock community: expected values and relative abundance quantified in the DNA metagenomic datasets.

| Species                          | Expected | M06   | M07   | M08   | M10   | M11   | M13   | M15   | M16   | M18   |
|----------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bacteroides fragilis             | 0.065    | 0.164 | 0.131 | 0.530 | 0.121 | 0.696 | 0.739 | 0.178 | 0.182 | 0.176 |
| Bovine alphaherpesvirus 1        | 0.081    | 0.002 | 0.002 | 0.000 | 0.003 | 0.000 | 0.000 | 0.002 | 0.002 | 0.002 |
| Cryptosporidium parvum           | 0.002    | 0.001 | 0.004 | 0.004 | 0.005 | 0.016 | 0.118 | 0.003 | 0.004 | 0.003 |
| Escherichia coli                 | 0.064    | 0.275 | 0.182 | 0.153 | 0.226 | 0.063 | 0.053 | 0.259 | 0.217 | 0.237 |
| Fusobacterium nucleatum          | 0.027    | 0.009 | 0.116 | 0.004 | 0.098 | 0.004 | 0.012 | 0.019 | 0.057 | 0.058 |
| Propionibacterium freudenreichii | 0.331    | 0.136 | 0.216 | 0.043 | 0.147 | 0.042 | 0.004 | 0.213 | 0.213 | 0.138 |
| Saccharomyces cerevisiae         | 0.015    | 0.001 | 0.001 | 0.003 | 0.001 | 0.015 | 0.015 | 0.001 | 0.004 | 0.003 |
| Salmonella enterica              | 0.062    | 0.360 | 0.220 | 0.055 | 0.265 | 0.050 | 0.025 | 0.250 | 0.205 | 0.240 |
| Staphylococcus aureus            | 0.352    | 0.053 | 0.128 | 0.207 | 0.134 | 0.113 | 0.034 | 0.076 | 0.117 | 0.144 |
| Species                          | Expected | M24   | M26   | M27   | M29   | M30   | M31   | M32   | M36   | M38   |
| Bacteroides fragilis             | 0.065    | 0.187 | 0.130 | 0.115 | 0.165 | 0.144 | 0.174 | 0.173 | 0.084 | 0.173 |
| Bovine alphaherpesvirus 1        | 0.081    | 0.001 | 0.003 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| Cryptosporidium parvum           | 0.002    | 0.007 | 0.002 | 0.003 | 0.004 | 0.003 | 0.002 | 0.003 | 0.003 | 0.004 |
| Escherichia coli                 | 0.064    | 0.145 | 0.197 | 0.186 | 0.228 | 0.176 | 0.163 | 0.188 | 0.105 | 0.141 |
| Fusobacterium nucleatum          | 0.027    | 0.087 | 0.161 | 0.183 | 0.161 | 0.039 | 0.024 | 0.021 | 0.058 | 0.061 |
| Propionibacterium freudenreichii | 0.331    | 0.195 | 0.128 | 0.039 | 0.045 | 0.401 | 0.411 | 0.372 | 0.358 | 0.382 |
| Saccharomyces cerevisiae         | 0.015    | 0.026 | 0.001 | 0.004 | 0.002 | 0.000 | 0.000 | 0.000 | 0.008 | 0.004 |
| Salmonella enterica              | 0.062    | 0.137 | 0.215 | 0.196 | 0.205 | 0.142 | 0.162 | 0.151 | 0.142 | 0.120 |
| Staphylococcus aureus            | 0.352    | 0.215 | 0.163 | 0.275 | 0.190 | 0.094 | 0.064 | 0.091 | 0.240 | 0.114 |

**Supplementary Table S2**. Read counts of the microorganisms of the mock community in the tested metagenomes. The target nucleic acid is specified under the metagenomic dataset label.

|                                  | M06    | M07     | M08     | M10    | M11   | M13   | M15    | M16    | M18    | M24    | M26    | M27   | M29    | M30    |
|----------------------------------|--------|---------|---------|--------|-------|-------|--------|--------|--------|--------|--------|-------|--------|--------|
| Таха                             | (DNA)  | (DNA)   | (DNA)   | (DNA)  | (DNA) | (DNA) | (DNA)  | (DNA)  | (DNA)  | (DNA)  | (DNA)  | (DNA) | (DNA)  | (DNA)  |
| Cryptosporidium parvum           | 1234   | 1591    | 77      | 1796   | 62    | 1250  | 1915   | 2130   | 1890   | 10049  | 3250   | 695   | 1654   | 5920   |
| Saccharomyces cerevisiae         | 578    | 249     | 67      | 383    | 55    | 154   | 501    | 1842   | 2037   | 35282  | 797    | 828   | 777    | 811    |
| Border disease virus             | 0      | 0       | 0       | 0      | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0      | 0      |
| Bovine alphaherpesvirus 1        | 1750   | 733     | 0       | 1274   | 0     | 0     | 1286   | 826    | 1695   | 733    | 3490   | 25    | 233    | 1543   |
| Bovine viral diarrhea virus 1    | 0      | 0       | 0       | 0      | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 0      | 0      |
| Bacteroides fragilis             | 143880 | 48336   | 10824   | 46933  | 2620  | 7835  | 113068 | 90402  | 119796 | 257443 | 173162 | 23552 | 70950  | 320353 |
| Escherichia coli                 | 240680 | 67403   | 3129    | 87984  | 237   | 558   | 164242 | 107810 | 161271 | 199039 | 262927 | 38177 | 98103  | 390957 |
| Fusobacterium nucleatum          | 7539   | 42944   | 88      | 38038  | 15    | 129   | 11836  | 28162  | 39282  | 119134 | 215042 | 37549 | 69097  | 86149  |
| Propionibacterium freudenreichii | 118847 | 79848   | 889     | 57298  | 157   | 45    | 135097 | 105545 | 93813  | 268228 | 171049 | 7911  | 19395  | 889004 |
| Salmonella enterica              | 315430 | 81094   | 1127    | 103041 | 190   | 269   | 158809 | 101602 | 163738 | 188021 | 286082 | 40171 | 88319  | 314740 |
| Staphylococcus aureus            | 45996  | 47189   | 4239    | 52198  | 427   | 360   | 48404  | 57904  | 98186  | 295697 | 216801 | 56512 | 81869  | 208262 |
|                                  | M31    | M32     | M36     | M38    | M12   | M19   | M20    | M23    | M25    | M28    | M33    | M34   | M37    |        |
| Таха                             | (DNA)  | (DNA)   | (DNA)   | (DNA)  | (RNA) | (RNA) | (RNA)  | (RNA)  | (RNA)  | (RNA)  | (RNA)  | (RNA) | (RNA)  |        |
| Cryptosporidium parvum           | 3769   | 8836    | 26023   | 10194  | 148   | 19    | 17     | 77     | 3114   | 3      | 2      | 2     | 2317   |        |
| Saccharomyces cerevisiae         | 401    | 1042    | 79520   | 9919   | 40    | 27    | 41     | 40     | 434    | 115    | 42     | 23    | 437    |        |
| Border disease virus             | 0      | 0       | 0       | 0      | 0     | 0     | 2      | 2      | 4      | 0      | 2      | 0     | 0      |        |
| Bovine alphaherpesvirus 1        | 1042   | 1893    | 7392    | 2250   | 0     | 0     | 0      | 29     | 595    | 0      | 0      | 1     | 950    |        |
| Bovine viral diarrhea virus 1    | 0      | 0       | 0       | 0      | 0     | 0     | 0      | 0      | 0      | 0      | 0      | 0     | 1      |        |
| Bacteroides fragilis             | 326861 | 479968  | 793554  | 403946 | 10647 | 144   | 357    | 2313   | 47747  | 19     | 116    | 59    | 88453  |        |
| Escherichia coli                 | 307329 | 519690  | 989420  | 327497 | 163   | 73    | 157    | 4650   | 60314  | 12     | 1425   | 865   | 124875 |        |
| Fusobacterium nucleatum          | 45016  | 58361   | 543021  | 141582 | 4     | 13    | 44     | 1407   | 67781  | 2      | 152    | 594   | 59999  |        |
| Propionibacterium freudenreichii | 773147 | 1030657 | 3370803 | 890096 | 4     | 443   | 470    | 7310   | 22612  | 8      | 70     | 205   | 40600  |        |
| Salmonella enterica              | 305186 | 417369  | 1339955 | 278870 | 36    | 35    | 47     | 4521   | 67229  | 10     | 171    | 323   | 129018 |        |
| Staphylococcus aureus            | 120615 | 251204  | 2255476 | 265639 | 31    | 72    | 89     | 1542   | 83967  | 34     | 176    | 159   | 64509  |        |

**Supplementary Table S3**. Percentage of metagenomic datasets obtained from DNA and RNA in which each microorganism of the mock community was detected. The detection of each microorganism was defined by the presence of at least 1, 5 or 10 corresponding reads enumerated in MG-RAST.

|                                  | D      | NA (n=18) | RNA (n=9) |        |         |          |
|----------------------------------|--------|-----------|-----------|--------|---------|----------|
|                                  | 1 read | 5 reads   | 10 reads  | 1 read | 5 reads | 10 reads |
| Cryptosporidium parvum           | 100    | 100       | 100       | 100    | 67      | 67       |
| Saccharomyces cerevisiae         | 100    | 100       | 100       | 100    | 100     | 100      |
| Border disease virus             | 0      | 0         | 0         | 44     | 0       | 0        |
| Bovine alphaherpesvirus 1        | 83     | 83        | 83        | 56     | 33      | 33       |
| Bovine viral diarrhea virus 1    | 0      | 0         | 0         | 11     | 0       | 0        |
| Bacteroides fragilis             | 100    | 100       | 100       | 100    | 100     | 100      |
| Escherichia coli                 | 100    | 100       | 100       | 100    | 100     | 100      |
| Fusobacterium nucleatum          | 100    | 100       | 100       | 100    | 78      | 78       |
| Propionibacterium freudenreichii | 100    | 100       | 100       | 100    | 89      | 78       |
| Salmonella enterica              | 100    | 100       | 100       | 100    | 100     | 100      |
| Staphylococcus aureus            | 100    | 100       | 100       | 100    | 100     | 100      |

| Metagenome dataset | Distance from the | Rank  |
|--------------------|-------------------|-------|
| wetagenome uataset | mock community    | Nalik |
| M36                | 0.152             | 1     |
| M38                | 0.275             | 2     |
| M30                | 0.296             | 3     |
| M32                | 0.308             | 4     |
| M24                | 0.332             | 5     |
| M31                | 0.332             | 6     |
| M07                | 0.411             | 7     |
| M16                | 0.425             | 8     |
| M27                | 0.441             | 9     |
| M26                | 0.464             | 10    |
| M18                | 0.473             | 11    |
| M10                | 0.473             | 12    |
| M15                | 0.478             | 13    |
| M29                | 0.520             | 14    |
| M08                | 0.543             | 15    |
| M06                | 0.590             | 16    |
| M11                | 0.646             | 17    |
| M13                | 0.779             | 18    |

**Supplementary Table S4.** Ranking of the DNA metagenomic datasets in relation to their similarity to the expected composition of the mock community considering bacteria only. The distance from the expected mock community composition is measured as Bray-Curtis dissimilarity.

**Supplementary Table S5**. Comparison of the mock community microorganisms' abundances detected in the DNA metagenomic datasets when applying different pre-processing protocols categorized as protocols based on a beating protocol with TissueLyser (BBTL), no-processing (NO\_PP) and other pre-processing protocols (OTHER\_PP). The mean abundance values are shown followed by Fold Changes (FC) and Wald's test adjusted p-value relative to the three pairwise comparisons. Following the DESeq2 notation, the Fold Change reported in the column FC\_BBTL\_vs\_NO\_PP corresponds to the ratio between the mean abundance observed applying the BBTL pre-processing over the mean abundance observed when no pre-processing (NO\_PP) was applied. An analogous interpretation holds for the other columns. The multiple regression model quantifies the effect of the sample pre-processing protocol after adjustment for all the other experimental variables. Values in bold show a statistical significative difference between the compared pre-processing protocols.

|                                     | Norm_Mean  | Norm_Mean  | Norm_Mean  | FC_BBTL_vs_ | Wald_AdjPval_B | FC_BBTL_vs_ | Wald_AdjPval_BBT | FC_NO_PP_v | Wald_AdjPval_NO |
|-------------------------------------|------------|------------|------------|-------------|----------------|-------------|------------------|------------|-----------------|
| Таха                                | BBTL       | NO_PP      | OTHER_PP   | NO_PP       | BTL_vs_NO_PP   | OTHER_PP    | L_vs_OTHER_PP    | s_OTHER_PP | _PP_vs_OTHER_PP |
| Cryptosporidium parvum              | 2376.749   | 3461.322   | 1960.121   | 3.935       | 0.013          | 1.113       | 0.584            | 0.636      | 0.525           |
| Saccharomyces cerevisiae            | 2898.220   | 4919.207   | 634.896    | 2.053       | 0.244          | 2.499       | 0.139            | 1.069      | 0.942           |
| Bacteroides fragilis                | 132184.327 | 108151.568 | 108966.547 | 2.564       | 0.092          | 0.974       | 0.935            | 0.593      | 0.442           |
| Escherichia coli                    | 188982.042 | 128407.978 | 116081.735 | 4.558       | 0.029          | 1.030       | 0.953            | 0.630      | 0.449           |
| Fusobacterium nucleatum             | 48188.256  | 72430.751  | 32016.463  | 37.906      | 0.000          | 13.037      | 0.000            | 0.640      | 0.482           |
| Propionibacterium<br>freudenreichii | 187103.188 | 137529.573 | 223931.232 | 4.955       | 0.024          | 0.983       | 0.969            | 0.539      | 0.330           |
| Salmonella enterica                 | 214575.028 | 132820.474 | 102169.717 | 6.852       | 0.011          | 1.055       | 0.909            | 0.553      | 0.352           |
| Staphylococcus aureus               | 120997.935 | 109495.754 | 73120.386  | 6.136       | 0.013          | 1.142       | 0.706            | 0.647      | 0.482           |

**Supplementary Table S6.** Comparison of the mock community microorganisms' abundances detected in the DNA metagenomic datasets when DNA was extracted by DNeasy Power Food Microbial Kit (PowerFood), QIAamp DNA Mini Kit with or without SISPA and QIAamp UCP Pathogen Mini Kit, categorized as QIAamp, or the QIAamp Fast DNA Stool and DNeasy Power Soil, categorized as OTHER-EXD. The mean abundance values are shown followed by the Fold Changes (FC) and Wald's test adjusted p-value relative to the 3 pairwise comparisons. Following the DESeq2 notation, the Fold Change reported in the column FC\_PowerFood\_vs\_QIAamp corresponds to the ratio between the average abundance observed using the PowerFood extraction kit over the average abundance observed using the QIAamp. An analogous interpretation holds for the other columns. The multiple regression model quantifies the effect of the DNA extraction kit after adjustment for all the other experimental variables. Values in bold show a statistical significative difference between the compared DNA extraction protocols.

|                                     |            |            |            | FC_Power |                    |                |                    |               |                     |
|-------------------------------------|------------|------------|------------|----------|--------------------|----------------|--------------------|---------------|---------------------|
|                                     | Norm_Mean  | Norm_Mean  | Norm_Mean  | Food_vs_ | Wald_AdjPval_Power | FC_PowerFood_v | Wald_AdjPval_Power | FC_QIAamp_vs_ | Wald_AdjPval_       |
| Таха                                | PowerFood  | QIAamp     | OTHER_EXD  | QIAamp   | Food_vs_QIAamp     | s_OTHER_EXD    | Food_vs_OTHER_EXD  | OTHER_EXD     | QIAamp_vs_OTHER_EXD |
| Cryptosporidium parvum              | 3071.792   | 1893.903   | 2955.553   | 0.287    | 0.007              | 0.999          | 1.000              | 0.377         | 0.073               |
| Saccharomyces cerevisiae            | 1219.965   | 1941.518   | 4959.532   | 0.280    | 0.106              | 1.000          | 1.000              | 0.431         | 0.266               |
| Bacteroides fragilis                | 179087.904 | 63221.785  | 139083.167 | 0.218    | 0.006              | 1.001          | 1.000              | 0.217         | 0.018               |
| Escherichia coli                    | 203263.631 | 86459.072  | 176102.712 | 0.102    | 0.002              | 1.000          | 1.000              | 0.142         | 0.012               |
| Fusobacterium nucleatum             | 38775.082  | 56490.547  | 45919.748  | 0.022    | 0.000              | 0.998          | 1.000              | 0.105         | 0.003               |
| Propionibacterium<br>freudenreichii | 358471.807 | 104438.820 | 149983.205 | 0.103    | 0.003              | 1.000          | 1.000              | 0.161         | 0.018               |
| Salmonella enterica                 | 182652.802 | 100729.742 | 189527.723 | 0.072    | 0.000              | 1.000          | 1.000              | 0.098         | 0.004               |
| Staphylococcus aureus               | 103188.485 | 98913.960  | 95610.995  | 0.111    | 0.002              | 1.000          | 1.000              | 0.204         | 0.031               |

Supplementary Table S7. Comparison of the mock community microorganisms' abundances detected in the DNA metagenomic datasets when using the Nextera<sup>™</sup> XT DNA Library Prep kit and the Nextera<sup>™</sup> DNA Flex Library Preparation kit, categorized as NexteraXT, or the NEBNext<sup>®</sup> Ultra<sup>™</sup> II DNA Library Prep Kit for Illumina<sup>®</sup>, TruSeq<sup>®</sup> DNA Library Prep Kit, GeneRead DNA Library kit other strategies, categorized as OTHER\_L. The mean abundance values are shown followed by the Fold Change (FC) and Wald's test adjusted p-value relative to the comparison. Following the DESeq2 notation, the Fold Change reported in the column FC\_ NexteraXT \_vs\_OTHER\_L corresponds to the ratio between the average abundance observed using the NexteraXT library preparation kit over the average abundance observed when using the other library preparation strategies (OTHER\_L). The multiple regression model quantifies the effect of the library preparation strategy after adjustment for all the other experimental variables. Values in bold show a statistical significative difference between the compared library preparation protocols.

|                                  | Norm_Mean  | Norm_Mean  |                         |                                   |
|----------------------------------|------------|------------|-------------------------|-----------------------------------|
| Таха                             | NexteraXT  | OTHER_L    | FC_NexteraXT_vs_OTHER_L | Wald_AdjPval_NexteraXT_vs_OTHER_L |
| Cryptosporidium parvum           | 2537.072   | 2410.622   | 0.153                   | 0.074                             |
| Saccharomyces cerevisiae         | 2187.765   | 4537.718   | 0.216                   | 0.264                             |
| Bacteroides fragilis             | 122118.507 | 88284.009  | 0.123                   | 0.077                             |
| Escherichia coli                 | 147210.832 | 126780.605 | 0.044                   | 0.026                             |
| Fusobacterium nucleatum          | 38748.380  | 98057.612  | 0.004                   | 0.000                             |
| Propionibacterium freudenreichii | 187559.779 | 188129.643 | 0.050                   | 0.031                             |
| Salmonella enterica              | 148099.282 | 148417.111 | 0.021                   | 0.011                             |
| Staphylococcus aureus            | 80154.830  | 194328.879 | 0.031                   | 0.016                             |

**Supplementary Table S8**. Comparison of the mock community microorganisms' abundances detected in the DNA metagenomic datasets when using the NextSeq500 and the HiSeq2500, categorized as NextSeq500, and the MiniSeq, MiSeq and Ion Torrent S5XL, categorized as OTHER\_SP. The mean abundance values are shown followed by the Fold Change (FC) and Wald's test adjusted p-value relative to the comparison. Following the DESeq2 notation, the Fold Change reported in the column FC\_NextSeq 500\_vs\_OTHER\_SP corresponds to the ratio between the average abundance observed using the NextSeq 500 sequencing platform over the average abundance observed when using the other sequencing platforms (OTHER\_SP). The multiple regression model quantifies the effect of the sequencing platform after adjustment for all the other experimental variables. Values in bold show a statistical significative difference between sequencing platforms.

|                                  | Norm_Mean   | Norm_Mean |                            |                                      |
|----------------------------------|-------------|-----------|----------------------------|--------------------------------------|
| Таха                             | NextSeq 500 | OTHER_SP  | FC_NextSeq 500_vs_OTHER_SP | Wald_AdjPval_NextSeq 500_vs_OTHER_SP |
| Cryptosporidium parvum           | 3033.740    | 1169.865  | 3.544                      | 0.007                                |
| Saccharomyces cerevisiae         | 3239.577    | 863.026   | 0.727                      | 0.754                                |
| Bacteroides fragilis             | 143611.890  | 45935.012 | 4.641                      | 0.007                                |
| Escherichia coli                 | 178489.442  | 53628.309 | 12.402                     | 0.001                                |
| Fusobacterium nucleatum          | 50926.123   | 42671.785 | 10.609                     | 0.000                                |
| Propionibacterium freudenreichii | 255544.162  | 11142.301 | 40.573                     | 0.000                                |
| Salmonella enterica              | 185629.332  | 50711.850 | 24.023                     | 0.000                                |
| Staphylococcus aureus            | 113921.617  | 60865.611 | 5.096                      | 0.032                                |

**Supplementary Table S9.** Average abundance of each microorganism of the mock community detected in the spiked samples by the workflows (WF) including DNA as target nucleic acid.

|                                     |            | Workflow label (n samples) |            |            |            |            |           |            |  |  |  |  |
|-------------------------------------|------------|----------------------------|------------|------------|------------|------------|-----------|------------|--|--|--|--|
| Таха                                | WF1 (2)    | WF2 (3)                    | WF4 (2)    | WF6 (3)    | WF7 (2)    | WF8 (2)    | WF11 (3)  | WF12 (1)   |  |  |  |  |
| Cryptosporidium parvum              | 2012.741   | 3584.094                   | 2545.598   | 3422.588   | 3277.164   | 2571.907   | 455.010   | 2088.052   |  |  |  |  |
| Saccharomyces cerevisiae            | 709.401    | 7792.952                   | 2422.499   | 418.276    | 608.589    | 5562.760   | 233.936   | 2487.636   |  |  |  |  |
| Bacteroides fragilis                | 169726.919 | 118653.999                 | 129779.758 | 211960.001 | 92397.922  | 97046.306  | 18708.802 | 70759.415  |  |  |  |  |
| Escherichia coli                    | 269244.414 | 114008.244                 | 164880.122 | 228852.637 | 150007.579 | 132821.591 | 3771.868  | 114698.632 |  |  |  |  |
| Fusobacterium nucleatum             | 12377.085  | 68281.524                  | 41507.202  | 36953.669  | 78654.592  | 90680.481  | 147.453   | 112811.875 |  |  |  |  |
| Propionibacterium<br>freudenreichii | 164772.321 | 140123.794                 | 126226.647 | 513301.914 | 133638.241 | 270310.595 | 1281.716  | 23767.737  |  |  |  |  |
| Salmonella enterica                 | 319602.834 | 102810.983                 | 161841.278 | 196527.150 | 177834.710 | 162280.973 | 1639.061  | 120689.388 |  |  |  |  |
| Staphylococcus aureus               | 61482.767  | 118363.148                 | 94909.789  | 108707.616 | 96194.664  | 206601.249 | 5311.904  | 169784.140 |  |  |  |  |

**Supplementary Table S10**. *t-test* adjusted p-values relative to the pairwise comparisons of the workflows (WF) including DNA as target nucleic acid. Values in bold show a statistical significative difference between workflows. Values in bold show a statistical significative difference between WFs.

| Таха                             | WF1_vs_WF2  | WF1_vs_WF4 | WF1_vs_WF6  | WF1_vs_WF7  | WF1_vs_WF8  | WF1_vs_WF11 | WF1_vs_WF12  |
|----------------------------------|-------------|------------|-------------|-------------|-------------|-------------|--------------|
| Cryptosporidium parvum           | 0.271       | 0.502      | 0.188       | 0.414       | 0.809       | 0.059       | 0.889        |
| Saccharomyces cerevisiae         | 0.271       | 0.227      | 0.207       | 0.671       | 0.807       | 0.108       | 0.326        |
| Bacteroides fragilis             | 0.373       | 0.502      | 0.593       | 0.484       | 0.620       | 0.073       | 0.326        |
| Escherichia coli                 | 0.271       | 0.502      | 0.738       | 0.513       | 0.620       | 0.059       | 0.326        |
| Fusobacterium nucleatum          | 0.143       | 0.227      | 0.134       | 0.090       | 0.187       | 0.032       | 0.087        |
| Propionibacterium freudenreichii | 0.529       | 0.502      | 0.004       | 0.589       | 0.862       | 0.073       | 0.326        |
| Salmonella enterica              | 0.287       | 0.502      | 0.604       | 0.589       | 0.622       | 0.059       | 0.326        |
| Staphylococcus aureus            | 0.271       | 0.444      | 0.182       | 0.379       | 0.620       | 0.108       | 0.326        |
| Таха                             | WF2_vs_WF4  | WF2_vs_WF6 | WF2_vs_WF7  | WF2_vs_WF8  | WF2_vs_WF11 | WF2_vs_WF12 | WF4_vs_WF6   |
| Cryptosporidium parvum           | 0.649       | 0.998      | 0.948       | 0.656       | 0.031       | 0.502       | 0.442        |
| Saccharomyces cerevisiae         | 0.705       | 0.191      | 0.335       | 0.772       | 0.066       | 0.841       | 0.040        |
| Bacteroides fragilis             | 0.649       | 0.103      | 0.335       | 0.656       | 0.077       | 0.502       | 0.003        |
| Escherichia coli                 | 0.270       | 0.103      | 0.335       | 0.656       | 0.066       | 0.966       | 0.143        |
| Fusobacterium nucleatum          | 0.584       | 0.222      | 0.747       | 0.656       | 0.003       | 0.502       | 0.601        |
| Propionibacterium freudenreichii | 0.783       | 0.194      | 0.822       | 0.656       | 0.066       | 0.502       | 0.143        |
| Salmonella enterica              | 0.270       | 0.108      | 0.221       | 0.415       | 0.066       | 0.841       | 0.442        |
| Staphylococcus aureus            | 0.705       | 0.962      | 0.747       | 0.656       | 0.077       | 0.841       | 0.608        |
| Таха                             | WF4_vs_WF7  | WF4_vs_WF8 | WF4_vs_WF11 | WF4_vs_WF12 | WF6_vs_WF7  | WF6_vs_WF8  | WF6_vs_WF11  |
| Cryptosporidium parvum           | 0.734       | 0.989      | 0.061       | 0.699       | 0.913       | 0.538       | 0.041        |
| Saccharomyces cerevisiae         | 0.196       | 0.989      | 0.061       | 0.973       | 0.385       | 0.538       | 0.254        |
| Bacteroides fragilis             | 0.196       | 0.638      | 0.078       | 0.538       | 0.119       | 0.218       | 0.063        |
| Escherichia coli                 | 0.734       | 0.638      | 0.070       | 0.699       | 0.177       | 0.144       | 0.063        |
| Fusobacterium nucleatum          | 0.196       | 0.638      | 0.033       | 0.489       | 0.177       | 0.218       | 0.006        |
| Propionibacterium freudenreichii | 0.896       | 0.989      | 0.077       | 0.538       | 0.177       | 0.538       | 0.063        |
| Salmonella enterica              | 0.734       | 0.989      | 0.061       | 0.699       | 0.573       | 0.538       | 0.063        |
| Staphylococcus aureus            | 0.896       | 0.924      | 0.087       | 0.699       | 0.678       | 0.538       | 0.093        |
| Таха                             | WF6_vs_WF12 | WF7_vs_WF8 | WF7_vs_WF11 | WF7_vs_WF12 | WF8_vs_WF11 | WF8_vs_WF12 | WF11_vs_WF12 |
| Cryptosporidium parvum           | 0.358       | 0.744      | 0.078       | 0.656       | 0.078       | 0.936       | 0.064        |
| Saccharomyces cerevisiae         | 0.330       | 0.744      | 0.126       | 0.656       | 0.370       | 0.936       | 0.104        |
| Bacteroides fragilis             | 0.274       | 0.744      | 0.104       | 0.656       | 0.096       | 0.936       | 0.104        |
| Escherichia coli                 | 0.425       | 0.744      | 0.089       | 0.721       | 0.078       | 0.936       | 0.073        |
| Fusobacterium nucleatum          | 0.184       | 0.744      | 0.019       | 0.656       | 0.007       | 0.936       | 0.004        |
| Propionibacterium freudenreichii | 0.274       | 0.744      | 0.090       | 0.656       | 0.078       | 0.863       | 0.104        |
| Salmonella enterica              | 0.500       | 0.744      | 0.078       | 0.656       | 0.078       | 0.936       | 0.064        |
| Staphylococcus aureus            | 0.545       | 0.744      | 0.104       | 0.656       | 0.078       | 0.936       | 0.084        |

## Detailed workflows applied by the participants

## Workflow 1

**M06**: 1 ml InhibitEX Buffer (Qiagen) was added to the frozen spiked salmon sample, and vortexed for 15 sec. The supernatant was transferred to a Power Bead Tube Garnet 0.70 tube (Oxoid). The beat-beating tube was placed on ice. \*supernatant

**M15**: The frozen spiked salmon sample was transferred to a Power Bead Tube Garnet 0.70 tube (Oxoid) and placed on ice. To collect any remaining sample material in the original tube, 1 ml InhibitEX Buffer (Qiagen) was added to the tube that originally contained the salmon, vortexed for 10 sec, and the buffer transferred to the bead-beating tube as well. The beat-beating tube was placed on ice.

Both samples: The bead beating tubes were vortexed and inserted into the prechilled adapter of a Tissue Lyser II and bead-beating was applied for 3 x 30 sec at 30 Hz. The sample was heated at 95°C for 7 min, vortexed for 15 sec. and centrifuged at full speed for 1 min. Subsequently, the supernatant was transferred to a new 2 ml tube. DNA extraction was performed based on QIAamp Fast DNA stool mini kit (Qiagen) according to manufacturer's instruction but with 30  $\mu$ l proteinase K, 400  $\mu$ l supernatant, 400  $\mu$ l Buffer AL and 400  $\mu$ l ethanol. DNA was eluted into low-DNA bind tubes using 2 x 30  $\mu$ l ATE (see laboratory protocol below). DNA underwent Nextera XT library preparation (Illumina) and the samples were sequenced on an Illumina Nextseq 500.

## Workflow 2

**M24**: DNA was extracted from an aliquot of the spiked smoked salmon (0.25 g) using the DNeasy PowerSoil kit (Qiagen) following the manufacturer's instructions. The DNA was then diluted to 0.2 ng  $\mu$ l<sup>-1</sup> with molecular biology grade water and 1 ng was used as the input to the NexteraXT library preparation kit (Illumina) and processed according to the manufacturer's instructions. The DNA library was then sequenced in paired-end mode with 2 × 151 cycles on the NextSeq 500 sequencing system (Illumina).

M29: The salmon sample was stored at -80°C upon arrival for 1 month before performing the total genomic step. The DNeasy PowerSoil kit (code 12888, DNA extraction Qiagen, Venlo Netherlands) was used according to the supplier's protocol without modification (no enzyme treatment). Briefly, 60 µl of C1 solution was added to the sample and the suspension containing the salmon was then transferred in the bead beating tube. Cell lysis was obtained by mechanical (10 min on vortex) and chemical methods with the different solutions provided in the kit. After applying inhibitor removal solutions, DNA was finally purified by capture on a silica membrane on a spin column and washed with ethanol based solutions as described in the standard protocol. Genomic library for metagenomic sequencing was prepared using the NexteraTM DNA Flex library prep kit (Illumina, San Diego, CA, USA). Sequencing was performed on an Illumina MiniSeq platform using a mid-output kit cartridge (FC-420-1004, Illumina, San Diego, CA, USA) to generate 2×150 bp paired-end reads.

**M38**: The salmon sample was stored at 4°C for <1hr on arrival, then transferred directly to a PowerBead tube from the PowerSoil kit. A 90-µl volume of 50 mg/ml lysozyme (Sigma-Aldrich, Dublin, Ireland) and 50 µl of 100 U/ml mutanolysin (Sigma-Aldrich, Dublin, Ireland) were added, and the sample was incubated at 60°C for 15 min. A 28-µl volume of proteinase K (Sigma-Aldrich, Dublin, Ireland) was added, and the sample was incubated at 60°C for a further 15 min. DNA was then purified from the sample by the standard PowerSoil DNA Isolation kit protocol (Cambio, Cambridge, United Kingdom). Following DNA isolation, the DNA was quantified using the Qubit High Sensitivity Assay (Life sciences); and a library was prepared using the Nextera XT Library prep kit (Illumina) accordingly to manufacturer's instructions. The library was sequenced on the Illumina NextSEq 500 system using a NextSeq MidOutput kit in paired end mode with 2 x 151 cycles using standard sequencing protocols (Illumina).

# Workflow 3

**M33-M34**: Two milliliter of glycine buffer 0.05 M (pH 9) were added to the spiked salmon and homogenized in a potter grinding tube. Then the pH of was decrease to 3 by adding HCL. An equal volume of chloroformbutanol (v/v) was added and mixed by vortexing. After centrifugation the supernatant was treated with Cat-Floc T (Calgon, Ellwood City, PA) and precipitated with polyethylene glycol 6000 (PEG 6000) (Sigma, St. Quentin, France) for 1 h at 4°C and centrifuged for 20 min at 11,000 X g at 4°C. The pellet was resuspended in 2 mL of glycine buffer and filtrated using a cascade of 5, 1.2, and 0.45 mm filter pores (Minisart NML 17594, NML17593, PES16533, and PES16532). The recovered filtrates were incubated for 1 h at 37°C with 2000 Units of OmniCleave EndonucleaseTM (Lucigen corporation) and 100 mL of MgCl2 (100 mM). RNA extraction was performed using NucliSens kit bioMérieux) followed by DNase treatment for 30 min at 37°C with 25 U TURBOTM DNase (Ambion, Thermo Fisher Scientific, France). An additional RNA purification was performed using the RNA Clean & ConcentratorTM-5 kit (Zymo Research, Irvine, CA, United States). RNA extracts were transcribed into cDNA using Superscript II (Invitrogen, France) non-ribosomal hexamers (Endoh et al., 2005). Libraries were prepared using M220 Focused-ultrasonicator (Covaris) to obtained 300 pb fragment and the NEB Next Ultra DNA Library Prep Kit (New England BioLabs, France) according to the manufacturer's instructions.

## Workflow 4

**M16**: The frozen spiked salmon sample was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxoid). To collect any remaining sample material in the original tube, 500  $\mu$ l Solution PF1 (55°C, solution PF1 precipitates when cold) (PowerFood Microbial DNA Isolation kit) was added to the tube that originally contained the salmon, vortexed for 10 sec, and the buffer transferred to the bead-beating tube as well. The beat-beating tube was placed on ice.

**M18**: 500 µl Solution PF1 (55°C) was added to the frozen spiked salmon sample and vortexed for 15 sec. The supernatant was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxoid).

Both samples: The tube was inserted into the preheated (55°C) adapter of Tissue Lyser II and bead-beating was applied for 3 x 30 sec at 30 Hz. The tube was centrifuged at full speed for 1 min. Subsequently, supernatant was transferred to a new 2 ml tube. DNA extraction was performed using MoBio PowerFood Microbial DNA Isolation kit according to manufacturer's instructions using low-DNA microcentrifuge tube when eluting DNA from filter membrane. DNA underwent Nextera XT library preparation (Illumina) and the samples were sequenced on an Illumina Nextseq 500.

# Workflow 5

**M23**: One milliliter of ice-cold buffer AL (Qiagen) was added to the frozen spiked salmon sample, transferred to a Lysing Matrix A tube (MP Biomedicals). The tube was inserted into the prechilled adaptor of Tissue Lyser LT (Qiagen) and bead-beating was applied for 3x30s with 40 oscillations per second. Subsequently, 250  $\mu$ l of the sample were transferred to a new 2 ml tube and mixed by pipetting for 5min with 750  $\mu$ l of TRIzol LS Reagent (Invitrogen). The RNA extraction was continued with the Direct-zol RNA Miniprep Plus kit (Zymo Research) according to the manufacturer's instructions. The cDNA synthesis was performed as described previously (Wylezich et al., 2018) with 2 $\mu$ g RNA input using cDNA-Synthesis System and Roche 400  $\mu$ M Random-Hexamer-Primer (Roche). 100 ng of cDNA was fragmented to 350 bp using ultrasonication with M220 Focused-ultrasonicator (Covaris) and DNA libraries were generated with the TruSeq Nano DNA Library Prep kit (Illumina). DNA libraries were sequenced in paired-end mode with 2 × 151 cycles on the NextSeq 500 sequencing system (Illumina).

# Workflow 6

**M30-32**: The salmon sample were thawed at 4°C for <1hr on arrival, supplemented with and centrifuged at 5000 rpm for 20 min at 4°C. The pellet was then transferred directly to a PowerBead tube from the Power Food kit and processed according to the standard kit protocol. Following DNA isolation, the DNA was quantified using the Eppendorf BioSpectrometer<sup>®</sup> and libraries were prepared using the Nextera XT Library prep kit (Illumina) accordingly to manufacturer's instructions. The libraries were sequenced on the Illumina NextSeq500 system kit (Illumina) in paired end mode with 2 x 150 cycles using standard sequencing protocols (Illumina).

#### Workflow 7

**M07**: 500 µl Solution PF1 (55°C) was added to the frozen spiked salmon sample and vortexed for 15 sec. The supernatant was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxoid).

**M10**: The frozen spiked salmon sample was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxoid). To collect any remaining sample material in the original tube, 500 µl Solution PF1 (55°C, solution PF1 precipitates when cold) (PowerFood Microbial DNA Isolation kit) was added to the tube that originally contained the salmon, vortexed for 10 sec, and the buffer transferred to the bead-beating tube as well. The beat-beating tube was placed on ice.

Both samples: The tube was inserted into the preheated (55°C) adapter of Tissue Lyser II and bead-beating was applied for 3 x 30 sec at 30 Hz. The tube was centrifuged at full speed for 1 min. Subsequently, supernatant was transferred to a new 2 ml tube. DNA extraction was performed using MoBio PowerFood Microbial DNA Isolation kit according to manufacturer's instructions using low-DNA microcentrifuge tube when eluting DNA from filter membrane. DNA underwent Nextera XT library preparation (Illumina) and the samples were sequenced on an Illumina Nextseq 500.

#### Workflow 8

**M26**: One milliliter of ice-cold buffer AL (Qiagen) was added to the frozen spiked salmon sample, transferred to a Lysing Matrix A tube (MP Biomedicals). The tube was inserted into the prechilled adaptor of Tissue Lyser LT (Qiagen) and bead-beating was applied for 3x30s with 40 oscillations per second. Subsequently, 500  $\mu$ l of the sample were transferred to a new 2 ml tube. DNA extraction was performed using the QIAamp DNA Mini Kit according to manufacturer's instructions with 400  $\mu$ l of the sample without the addition of buffer AL. 100 ng of DNA was fragmented to 350 bp using ultrasonication with M220 Focused-ultrasonicator (Covaris) and DNA libraries were generated with the TruSeq Nano DNA Library Prep kit (Illumina). DNA libraries were sequenced in paired-end mode with 2 × 151 cycles on the NextSeq 500 sequencing system (Illumina).

M36: The QIAamp DNA Mini Kit (Qiagen) was used for purification and it was carried out according to the manufacturer's instructions with modification. 720 µl of ALT buffer and 80 µl of proteinase K were added to the screw cap tube that contained the spiked salmon sample and mixed by inverting the tube 30×. The mixture was transferred a screw cap tube that contained equal amount of 1.0mm and 0.1mm sized silicon beads that was filled to the conical base of the screw cap tube. The tube was placed into FastPrep<sup>®</sup>-24 Classic Instrument (MP Biomedicals), for 1 minute, @ 4m/sec. Subsequently, ~800 µl of the supernatant (without salmon) was transferred to a new 2 ml tube and and incubated overnight at 56°C. After overnight incubation, the tube was placed at room temperature for 10 minutes prior to the addition of 8  $\mu$ l of 100 mg/ml RNaseA (Qiagen). The tube was mixed and incubated for 10 minutes at room temperature. 800  $\mu$ l of Buffer AL was added to the sample and mixed by inverting the tube 30× prior to incubation at 70°C for 10 minutes. After centrifugation for 10 minutes at 20,000g, 2 × 760 µl of supernatant was transferred to 2 × 1.5ml Eppendorf DNA LoBind Microcentrifuge Tube (Qiagen) that contained 380 µl of 96–100% molecular grade ethanol and mixed by inverting the tube  $30 \times .580 \mu$ l of supernatant was pipetted into the QIA amp Mini spin column and centrifuged at 6,000g for 1 minute. Flowthrough was discarded and the remaining supernatant was applied to the spin column. The tube was centrifuged at 6,000g for 1 minute and the flowthrough was discarded. The QIAamp Mini spin column was washed twice with 400  $\mu$ l of Buffer AW1 and twice with of 400  $\mu$ l Buffer AW2. After each wash, the column was centrifuged at 20,000g for 2 minutes and flowthrough was discarded. The spin column was placed into a clean 1.5ml Eppendorf tube and 40  $\mu$ l of 60°C distilled water was added. The tube was incubated at room temperature for 5 minutes and then centrifuged at 6,000g for 3 minutes to elute DNA. The DNA concentration was quantified by Qubit® 3.0 Fluorometer (Thermo Fisher Scientific). Library preparation was performed according to Illumina's TruSeq Nano DNA Sample Preparation protocol. The samples were sheared on a Covaris S220 to ~450bp, following the manufacturer's recommendation, and uniquely tagged with Illumina's TruSeq HT DNA dual barcodes to enable library pooling for sequencing. Finished libraries were quantitated using Invitrogen's Picogreen assay and the average library size was determined on a Bioanalyzer 2100 (Agilent) or a Tapestation 4200 (Agilent). Library concentrations were then normalized to 4nM and validated by qPCR on a ViiA-7 real-time thermocycler (Applied Biosystems), using qPCR primers recommended in Illumina's qPCR protocol, and Illumina's PhiX control library as standard. The

libraries were then pooled at 3.5nM in batches of 10 samples and each pool was sequenced in 1 lane on an Illumina HiSeq2500 sequencer in rapid mode at a read-length of 250bp paired-end.

## Workflow 9

**M25**: RNA was extracted from the entire spiked smoked salmon sample using the QIAamp Viral RNA kit as per the manufacturer's instructions. cDNA synthesis was achieved using 8µl extracted RNA as the input into the cDNA-Synthesis System (Roche) combined with 400 µM Random-Hexamer-Primer (Roche) and manufacturer's instructions were followed. The double-stranded cDNA was then diluted to 0.2 ng µl-1 with molecular biology grade water and 1 ng was used as the input to the NexteraXT library preparation kit (Illumina) and processed according to the manufacturer's instructions. The DNA library was then sequenced in paired-end mode with  $2 \times 151$  cycles on the NextSeq 500 sequencing system (Illumina).

## Workflow 10

**M37**: The spiked salmon sample was homogenized in PBS using ceramic beads and then centrifuged at 4,000 g for 10 min. 140  $\mu$ l of the supernatant was collected for extraction with the Qiagen viral RNA mini kit according to the protocol but without addition of carrier RNA. The extracted RNA/DNA was eluted in 60  $\mu$ l of nuclease-free water. 10  $\mu$ l was used fo cDNA synthesis with the superscript IV (Thermo Fisher Scientific) using random hexamers. The reaction was further processed for double stranded cDNA synthesis (NEBNext<sup>®</sup> Ultra II Non-Directional RNA Second Strand Synthesis Module, NEB). The reaction was purified using AMPure XP beads (Beckman Coulter). DNA was quantified using the HS dsDNA Assay Kit with the Qubit (Thermo Fisher Scientific). The library was prepared using the Nextera XT Library prep kit (Illumina) and sequenced on the Illumina MiSeq.

## Workflow 11

**M08**: Spiked salmon sample was homogenized in liquid nitrogen using a ceramic mortar and pestle followed by the gradual addition of 2.5 ml TE buffer. The homogenate was then centrifuged at 4,000 x g for 10 min and the supernatant was carefully collected. The supernatant was filtered on a 0.45-µm disc HPF Millex syringe filter (Millipore, Cork, Ireland) followed by nuclease treatment. Subsequently, 200 µl of the sample was transferred to a new tube and DNA was isolated using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to manufacturer's instructions. Tag labeling and random amplification (SISPA) was performed as described previously (Allander et al., 2005; Blomström et al., 2010). Sequencing libraries were prepared using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA) according to the manufacturer's instructions. Library quantity and quality was validated and monitored by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), normalized by adjusting molar concentration to 4 nM with EB buffer (Qiagen), pooled and further prepared for sequencing according to the manufacturer's instructions (Illumina). Pooled libraries were sequenced using MiSeq Reagent Kit v3 in paired-end mode with 2 x 300 cycles on the Illumina MiSeq platform.

**M11, M13**: Spiked salmon sample was homogenized in liquid nitrogen using a ceramic mortar and pestle followed by the gradual addition of 2.5 ml TE buffer. The homogenate was then centrifuged at 4,000 x g for 10 min and the supernatant was carefully collected. Next, sample was subjected to three cycles of freeze-thaw method (M11: dry ice/100 oC; M13: dry ice/37 oC) and followed by DNA isolation using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according to manufacturer's instructions. Tag labeling and random amplification (SISPA) was performed as described previously (Allander et al., 2005; Blomström et al., 2010). Sequencing libraries were prepared using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA) according to the manufacturer's instructions. Library quantity and quality was validated and monitored by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), normalized by adjusting molar concentration to 4 nM with EB buffer (Qiagen), pooled and further prepared for sequencing according to the manufacturer's instructions (Illumina). Pooled libraries were sequenced using MiSeq Reagent Kit v3 in paired-end mode with 2 x 300 cycles on the Illumina MiSeq platform.

### Workflow 12

**M27**: The DNA-based workflow as applied for processing of sample starts with a disintegration step using the Covaris cryoPREP CP02 as described in Wylezich et al. (2018). The DNA of the disintegrated samples was extracted with the QIAamp Mini DNA Kit (Qiagen) according to manufacturer's instructions. The library preparation starting with fragmentation was done as detailed described in Wylezich et al. (2018).

## Workflow 13

**M19**: The frozen spiked salmon sample was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxiod) and placed on ice. To collect any remaining sample material in the original tube, 1 ml Buffer AL (Qiagen) was added to the tube that originally contained the salmon, vortexed for 10 sec, and the buffer transferred to the bead-beating tube as well. The beat-beating tube was placed on ice.

**M20**: 900 µl Buffer AL (Qiagen) was added to the frozen spiked salmon sample and vortexed for 15 sec. The supernatant was transferred to a Power Bead Tubes Garnet 0.70 tube (Oxoid). The bead-beating tube was placed on ice.

Both samples: The bead beating tube was vortexed and inserted into the prechilled adapter of a Tissue Lyser II and bead-beating was applied for 3 x 30 sec at 30 Hz. The tube was centrifuged at full speed for 1 min at 4°C, and placed on ice. Subsequently, the RNA extraction was performed based on RNeasy Mini kit (Oxoid) with a TRIzol LS (Invitrogen) pre-treatment according to ("Harmonized Step-by-step Protocols" at https://www.compare-europe.eu/Project-organisation/Work-packages/Workpackage-2/Protocols-for-Sample-Processing-for-NGS). The cDNA synthesis was performed with 1µg RNA based on Roche cDNA-Synthesis system and Roche 400 µM Random-Hexamer-Primer (Roche) according to ("Harmonized Step-by-step Protocols" at https://www.compare-europe.eu/Project-organisation/Work-packages/Workpackage-2/Protocols-for-Sample-Processing-for-NGS). DNA underwent Nextera XT library preparation (Illumina) and the samples were sequenced on an Illumina Nextseq 500.

## Workflow 14

**M12**: Spiked salmon sample was homogenized in liquid nitrogen using a ceramic mortar and pestle followed by the gradual addition of 2.5 ml TE buffer. The homogenate was then centrifuged at 4,000 x g for 10 min and the supernatant was carefully collected. The supernatant was filtered on a 0.45-µm disc HPF Millex syringe filter (Millipore, Cork, Ireland) followed by nuclease treatment. Subsequently, 200 µl of the sample was transferred to a new tube and mixed with 600 µl of TRIzol Reagent (Invitrogen, Carlsbad, CA), 160 µl of chloroform followed by RNeasy Mini Kit (Qiagen, Hilden, Germany) RNA isolation according to the manufacturer's instructions. The cDNA synthesis using SuperScript IV (Invitrogen, Carlsbad, CA), Tag labeling and random amplification (SISPA) was performed as described previously (Allander et al., 2005; Blomström et al., 2010). Sequencing libraries were prepared using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA) according to the manufacturer's instructions. Library quantity and quality was validated and monitored by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), normalized by adjusting molar concentration to 4 nM with EB buffer (Qiagen), pooled and further prepared for sequencing according to the manufacturer's instructions (Illumina). Pooled libraries were sequenced using MiSeq Reagent Kit v3 in paired-end mode with 2 x 300 cycles on the Illumina MiSeq platform.

# Workflow 15

**M28**: The RNA-based workflow as exactly applied for processing of sample is detailed in Wylezich et al. (2018) and including sample disintegration using the cryoPREP CP02 device.