Table S1. Complex soil microbiotas accelerate host development.

_				
Experiment	Time to 50% adults (hrs) <i>E. coli</i> ^a	Time to 50% adults (hrs) native microbiota ^b	Difference (hrs)d	^c P-value
1	40.8	34.4	6.4	<0.001
2	39.8	38.5	1.3	0.028
3	43.8	37.4	6.4	0.003

a,b Worms were raised in compost microcosms, or on autoclaved microcosms supplemented with *E. coli* alone (20°C).

^c P-values designate statistical significance between development curves (binomial logistic regression analyses).

^d On average, worm populations reached 50% adult 4.8 hours earlier when raised on complex microbiotas. Experiment 1 data previously shown (Figure 1C)

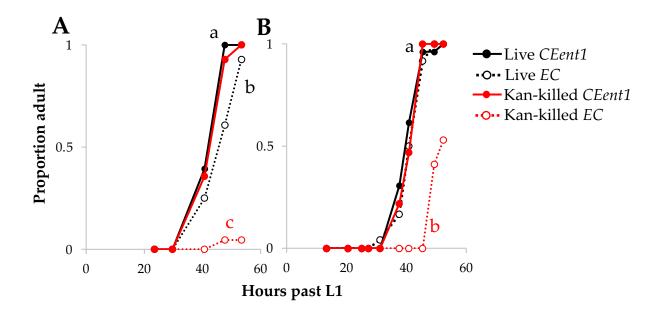



Figure S1. Experimental microcosms in 20 mL glass vials.

Figure S2. Kanamycin treatment of *E. coli* and *Enterobacter hormaecheli CEent1* differentially affects *C. elegans* development. Development rate of wildtype worms raised on designated bacterial strains in two additional experiments (A, B) to the one presented in Fig. 1 (20 °C). Letters adjacent to curves indicate statistically distinct classes (Kaplan-Meier analyses, post-hoc p-value < 0.002).