
Supplementary file

Quantitative microbial risk assessment based on whole genome sequencing data:

case of Listeria monocytogenes

Patrick Murigu Kamau Njage1,∗, Pimlapas Leekitcharoenphon1, Lisbeth Truelstrup

Hansen2, Rene S. Hendriksen1, Marc Aerts3, Christel Faes3, Tine Hald1

1Technical University of Denmark, National Food Institute, Research Group of Genomic Epi-

demiology
2Technical University of Denmark, National Food Institute, Research Group for Microbiology

and Hygiene
3Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University

Katholieke Universiteit Leuven, Belgium

∗panj@food.dtu.dk

1

Contents

1 Finite mixture modeling 3

2 Predictive Modeling 5

3 Example L. monocytogenes quantitative risk assessment 6

4 R code 7

2

1 Finite mixture modeling

Designation of stress response phenotype components

To diagnose if the solution for Ĝ is NPMLE, the gradient functions d(G, p) for the mixing

distribution G were plotted. The first condition stipulates that Ĝ is NPMLE when for all

support points x, the gradient functions d(Ĝ, x) are less than one. Secondly, if Ĝ is NPMLE,

d(Ĝ, x) reaches one at all support points x of Ĝ. The last condition is that Ĝ has support points

within the interval [a, b] such that all the x functions fi(yi|x) have unique modes observable in

the plot of the gradient function (Schlattmann, 2009).

Cold stress response

Checking for parsimony, a homogeneous one-component solution was computed and compare

with the two-component model. The parametric bootstrap approach yielded a p-value of <

0.001 indicating that a two-component model seems to be appropriate for these data on the

basis of the use of the LRS. Testing for a three-component model against the two-component

model yielded a simulated p-value of 0.27 indicating a negligible decrease in the log likelihood.

The two-component model was selected. Figure 1 shows grid point G versus the gradient

function d(G,P) to diagnose the NPMLE. G was NPMLE because d(G,P) ≤ 1 in the µmax

interval [0.73, 1.13]. d(G,P) was also 1 for p in 0.76, 1.01. Finally, the estimate from the model

was unique because the gradient function was not identically one.

Figure (1) Grid point G versus gradient function d(G,P) for microbial growth data under

cold, salt, acid and desiccation stress

3

Salt stress response

The fitted model suggested a three-component approximation with Log-Likelihood at maximum

of 152.56 (Figure ??). To assess parsimony, a two-component solution was computed and

compared with the three-component model. The parametric bootstrap approach yielded a p-

value of 0.012 indicating for these data a three-component model seems to be appropriate on

the basis of the use of the LRS. Figure 1 (Appendix 1) shows grid point G versus the gradient

function d(G,P) to diagnose the NPMLE. G was NPMLE because d(G,P) ≤ 1 in the µmax

interval [0.71, 1.3]. G also reaches approximately one at all support points and has support

points between the minimum and maximum maximum growth rate.

Desiccation stress response

The fitted model suggested a five-component approximation with Log-Likelihood at maximum

of 118.5. There were extremely small weights for the first (0.6%) and last components (0.6%)

which was an initial motivation that a three-component mixture may be considered. Further

assessment was performed by backward selection where four, three and two component solu-

tions were fitted and evaluated. The parametric bootstrap LRS test yielded p-values > 0.05

comparing five against four component mixtures and four against three. However comparing a

three-component model against the two-component model yielded a simulated p-value < 0.001

indicating for these data a three-component model seems to be appropriate (Figure ??). Fig-

ure 1 (Appendix 1) shows grid point G versus the gradient function d(G,P) to diagnose the

NPMLE. G was NPMLE because d(G,P) ≤ 1 in the µmax interval [0.58, 1.58]. G also reaches

approximately one at all support points and has support points between the minimum and

maximum maximum lag phase duration.

Acid stress response

The fitted model suggested a four-component approximation with Log-Likelihood at maximum

of 15.58. Comparing a three-component model against the four-component model yielded

a simulated p-value < 0.05 indicating for these data a four-component model seems to be

appropriate. Figure 1 (Appendix 1) shows grid point G versus the gradient function d(G,P) to

diagnose the NPMLE. G was NPMLE because d(G,P) ≤ 1 in the µmax within the data range

interval. G reaches approximately one at all support points and has support points between

the minimum and maximum maximum growth rate.

4

2 Predictive Modeling

Model Selection

The performance of the machine learning methods random forest (RF), support vector machine

(SVM) (radial (SVMR) and linear kernels (SVML)), neural network (NN), stochastic gradient

boosting (GBM) and logit boost (LB) was evaluated using the accuracy estimates from the 10-

fold cross-validation. In order to choose the statistical hypothesis test approach, assumptions

of analysis of variance (ANOVA) namely, that the data are normally distributed and there is

homogeneity of variance across the the model accuracy were assessed (Kurtner, Nachtsheim,

2009). Diagnostic results and those of class specific model performances are presented here.

Acid Stress

The plot of residuals versus fitted values indicated no relationships between residuals and

fitted values therefore implying homogeneity of variance. Levene’s test however showed evidence

that the variance across groups was statistically significantly different (p < 0.01;F = 4.13, 5df).

Plotting the quantiles of the residuals against the quantiles of the normal distribution showed

heavy tails away from the reference line indicating that the assumption of normal distribution

was not met. This conclusion was supported by the Shapiro-Wilk test on the ANOVA residuals

(W = 0.82, p < 0.001).

Kruskal-Wallis rank sum test was used followed by pairwise Mann–Whitney U-tests while

controlling the familywise error rate using the BH method by Benjamini and Hochberg (1995).

Sensitivity (specificity) values for prediction of highly susceptible, susceptible, tolerant and

highly tolerant class for the selected model, SVMR, were 1(1), 0.92(0.98), 0.93(0.97) and 1(1)

respectively. Positive predictive values (negative predictive values) from prediction highly

susceptible, susceptible, tolerant and highly tolerant classes by SVMR model were 0.99(1),

0.95(0.97), 0.92(0.98) and 0.99(1) respectively.

Cold Stress

Assessing the homogeneity of variance assumption using a plot of residuals versus fitted

values indicated no evident relationships between residuals and fitted values. Levene’s test indi-

cated that the variance across groups was not statistically significantly different (p > 0.05;F =

1.27, 5df). Plotting the quantiles of the residuals against the quantiles of the normal distribu-

tion showed heavy tails, an indication that the assumption of normal distribution was not met.

Shapiro-Wilk test on the ANOVA residuals was significant (W = 0.94, p < 0.01) confirming

that the assumption of normal distribution was not met.

Sensitivity, specificity, positive predictive and negative predictive values for the selected RF

model were 1, 0.98, 0.98 and 1 respectively.

5

Salt Stress

The plot of residuals against fitted values depicted no relationships between residuals and fit-

ted values which implied homogeneity of variance. Levene’s test however showed evidence that

the variance across groups was statistically significantly different (p < 0.001;F = 7.1, 5df).

When quantiles of the residuals were plotted against the quantiles of the normal distribu-

tion, heavy tails were observed indicating possible violation of the ANOVA assumption of

normal distribution. This conclusion was supported by Shapiro-Wilk test on the ANOVA

residuals (W = 0.95, p < 0.05). Kruskal-Wallis rank sum test was used followed by pairwise

Mann–Whitney U-tests while controlling the familywise error rate using the BH method by

Benjamini and Hochberg (1995).

Sensitivity (specificity) values from prediction of susceptible, tolerant and highly tolerant

classes by using RF were 1(0.98), 0.96(1) and 1(1) respectively. Positive predictive values

(negative predictive values) from prediction susceptible, tolerant and highly tolerant classes by

using RF model were 0.96(1), 1(0.98) and 1(1) respectively.

Desiccation Stress

The plot of residuals versus fitted values depicted no relationships between residuals and

fitted values implying homogeneity of variance. Levene’s test however showed evidence for

heterogeneity of variance in accuracy values across the models (p < 0.05;F = 2.7, 5df). The

Q-Q plot showed heavy tails giving evidence that the assumption of normal distribution was not

met which was also confirmed by a significant Shapiro-Wilk test on the ANOVA residuals (W =

0.75, p < 0.001). Kruskal-Wallis rank sum test was used followed by pairwise Mann–Whitney

U-tests while controlling the familywise error rate using the BH method by Benjamini and

Hochberg (1995).

Sensitivity, specificity, positive and predictive values of the class predictions for susceptible,

tolerant and highly tolerant from the RF model were all 1.

3 Example L. monocytogenes quantitative risk assess-

ment

Prediction of L. monocytogenes stress response components

Table 1 shows the predicted number of L. monocytogenes for each stress response type and

component or sub-group within response type for L. monocytogenes isolates from different

food types with unknown stress response components.

6

Table (1) Number of isolates in each stress response phenotype class predicted

using machine learning models for new food isolates with unknown stress pheno-

types

Acid Cold Salt Desiccation

Food Category HS S T HT S T S T HT S T HT

Dairy 0 18 19 0 0 37 1 36 0 3 34 0

Meat 0 20 24 0 0 44 1 42 1 2 42 0

Fish 0 16 19 0 1 34 2 33 0 1 34 0

Ready to eat 0 10 21 0 0 31 1 29 1 2 29 0

Vegetables 0 13 13 0 1 25 2 24 0 1 25 0

Mix food 0 9 19 0 0 28 1 27 0 1 27 0

Highly susceptible (HS), susceptible (S), tolerant (T), highly tolerant (HT)

4 R code

#Codes for cold stress example are given

###

###Finite mixture modeling example of cold stress #

###

#df: Cold.stress

>head(Cold.stress)

colname Umax

1 1 0.73

2 2 0.75

3 3 0.76

#Histogram of cold stress maximum growth rates

x <- Cold.stress$Umax

par(mfrow=c(2,2))

hist(x, prob=TRUE, col="grey", xlab="Umax", main="Cold Stress", breaks=20)#

prob=TRUE for probabilities not counts

lines(density(x), col="blue", lwd=2) # add a density estimate with defaults

lines(density(x, adjust=2), lty="dotted", col="darkgreen", lwd=2)

#Fit finite mixture model combining both VEM and EM

library(CAMAN)

npml<-mixalg(obs="Umax", family="gaussian", data=Cold.stress, acc=10^(-8),

numiter=50000, startk=50)

7

##################

#Parametric bootstrap tests: two versus one component

em1<-mixalg.EM(npml,p=c(0.96933114),t=c(0.7622953))

em2<-mixalg.EM(npml,p=c(0.03066886, 0.96933114),t=c(0.7622953,1.0066507))

ll<-anova(em0,em2,nboot=250) #might take some minutes

#two versus 3

em3<-mixalg.EM(npml,p=c(0.03066886, 0.96933114,0.041970285),t=c(0.7622953,1.0066507,

1.2550669))

ll<-anova(em2,em3,nboot=250) #might take some minutes

#Classification of L. monocytogenes isolates into components of the mixture

emcold<-mixalg.EM(obs="Umax", family="gaussian",data=Cold.stress,

t=c(0.7622953,1.0066507), p=c(0.03066886,0.96933114), acc=10^(-20))

#Plotting gradient function

m0 <- mixalg.VEM(npml, family="gaussian",data=Cold.stress,startk=20)

plot(m0@totalgrid[,2],m0@totalgrid[,3], type="l",xlab="Parameter",ylab="Gradient",

col = "blue", main="Cold Stress")

###

###Machine learning example of cold stress #

###

library("caret")

#Specifies amount of cores R can use in order to make it run faster

library(doParallel)

#Find out how many cores are available

cores<-detectCores()

#Create cluster with desired number of cores, leave one free

#core processes

cl <- makeCluster(cores[1]-1)

#Register cluster

registerDoParallel(cl)

#

Data preprocessing

#

#Near zero variance remove

nzv <- nearZeroVar(df_ML1)

filteredDescr <- df_ML1[, -nzv]

df_ML1 <- filteredDescr

8

#Attach outcome /cold phenotype classes from finite mixture models to the isolates:

#should be sorted in same order

Cold <- Cold.df$Cold

listacid <- cbind(Cold, df_ML1)

#

#Model selection: Class Imbalanced Dataset

#

randomly pick 70% of the number of observations

index <- sample(1:nrow(df_ML1),size = 0.7*nrow(df_ML1))

subset to include only the elements in the index

training <- df_ML1[index,]

subset to include all but the elements in the index

testing <- df_ML1[-index,]

#Exploration of outcome variable "Cold".

qplot(Cold,data=training, main="Distribution of Cold phenotypes")

+theme(axis.text=element_text(size=14, color="black"))+

theme(axis.title=element_text(face="bold",size="14"))

#The cross validation. number = 10

fitCtrl <- trainControl(method = "cv",number = 10, verboseIter = F)

generate dataframe over multiple prediction

predDf <- data.frame(run = 0, time = 0, gbm = 0, rf = 0, svmr = 0,

svml = 0, nn=0, lb = 0)

#‘‘‘

##Running the ML algorithms

#‘‘‘{r}

start.time.all = Sys.time() #log the starting time

Run the model buiding 10 times & record accuracy over test set

for (i in 1:10){

index <- sample(1:nrow(df_ML1),size = 0.7*nrow(df_ML1))

subset to include only the elements in the index

training <- df_ML1[index,]

subset to include all but the elements in the index

testing <- df_ML1[-index,]

dim(training)

dim(testing)

#Start building model

9

start.time = Sys.time()

mod.gbm <- train(Cold~ . , data= as.data.frame(training), method = "gbm",

trControl = fitCtrl, verbose = F)

mod.rf <- train(Cold~ . , data= training , method = "rf",

trControl = fitCtrl, verbose = F)

mod.svmr <- train(Cold~ . , data= training , method = "svmRadial",

trControl = fitCtrl, scale = FALSE, verbose = F)

mod.svml <- train(Cold~ . , data= training , method = "svmLinear",

trControl = fitCtrl, scale = FALSE, verbose = F)

mod.nn <- train(Cold~ . , data= training , method = "nnet",

trControl = fitCtrl, MaxNWts=85000, verbose = F)

mod.lb <- train(Cold~ . , data= training , method = "LogitBoost",

trControl = fitCtrl, verbose = F)

stop.time = Sys.time()

#Predictions

pred_val <- c(i, (stop.time - start.time),

unname(confusionMatrix(predict(mod.gbm, testing), testing$Cold)$overall[1]),

unname(confusionMatrix(predict(mod.rf, testing), testing$Cold)$overall[1]),

unname(confusionMatrix(predict(mod.svmr, testing), testing$Cold)$overall[1]),

unname(confusionMatrix(predict(mod.svml, testing), testing$Cold)$overall[1]),

unname(confusionMatrix(predict(mod.nn, testing), testing$Cold)$overall[1]),

unname(confusionMatrix(predict(mod.lb, testing), testing$Cold)$overall[1]))

predDf <- rbind(predDf, pred_val)

}

stop.time.all = Sys.time()

#calculate total time for execution

print(stop.time.all - start.time.all)

#correct the prediction frame

predDf <- predDf[-1,]

##Accuracy of the models

#Following displays the accuracy of the six models for all runs.

#Models are referred by short names.

library(knitr)

rownames(predDf) <- NULL

kable(predDf[,-c(2)], digits = 3)

#Average accuracy of all runs for all models are as per following

modAccuracy <- data.frame(colMeans(predDf[,-c(1,2)]))

colnames(modAccuracy) <- "Avg. Accuracy"

10

kable(t(modAccuracy), digits = 3)

#

#Confidence intervals

#algorithm bcanon of bootstrap R package.

#df

> head(listcold)

gbm rf svmr svml nn lb

1 0.948 0.927 0.948 0.969 0.927 0.969

2 0.969 0.979 0.969 0.948 0.979 0.979

algorithm <- function(x){bcanon(x,1000,mean(x),alpha=c(0.025,0.975))}

#Confidence intervals

set.seed(123)

coldBCaCI <- apply(listcold, 2, algorithm)

#"Out of sample" accuracy

validAccuracy <- data.frame(Accuracy = c(

confusionMatrix(predict(mod.rf, testing), testing$Cold)$overall[1],

confusionMatrix(predict(mod.nn, testing), testing$Cold)$overall[1],

confusionMatrix(predict(mod.gbm, testing), testing$Cold)$overall[1],

confusionMatrix(predict(mod.lb, testing), testing$Cold)$overall[1],

confusionMatrix(predict(mod.svml, testing), testing$Cold)$overall[1],

confusionMatrix(predict(mod.svmr, testing), testing$Cold)$overall[1]))

rownames(validAccuracy) <- c("rf", "nn", "gbm", "lb", "svml", "svmr")

kable(t(validAccuracy), digits = 3)

#

Unbalanced dataset high model accuracies but class

#specific accuracies are quiet dismal

#

#Upsampling

#

set.seed(123)

up_train <- upSample(x =df_ML1, y = df_ML1$Cold)

table(up_train$Class)

S T

160 160

#Rename

df_ML1 <- up_train

library("dplyr")

df_ML1 <- rename(df_ML1, Cold = Class)

#Rerun ML model selection process

#Confusion Matrix and Statistics

confusionMatrix(predict(mod.rf, testing), testing$Cold)

11

#

#Model selection: hypothesis testing

#

>head(listcold)

model accuracy

1 gbm 0.948

2 gbm 0.969

3 gbm 0.958

Compute the analysis of variance

res.aov <- aov(accuracy ~ model, data = listcold)

Summary of the analysis

summary(res.aov)

#Check ANOVA assumptions

1. Homogeneity of variances

plot(res.aov, 1, main="Cold stress")

Levene’s test,

library(car)

leveneTest(accuracy ~ model, data = listcold)

2. Normality

plot(res.aov, 2, main="Normal probability plot cold stress",

xlab="Theoretical Quantiles")

#Shapiro-Wilk test

Extract the residuals

aov_residuals <- residuals(object = res.aov)

Run Shapiro-Wilk test

shapiro.test(x = aov_residuals)

#Non-parametric alternative to one-way ANOVA test

Kruskal-Wallis rank sum test,

kruskal.test(accuracy ~ model, data = listcold)

#If above significant

#Multiple pairwise-comparison between groups with BH

corrections for multiple testing.

PTcold <- pairwise.wilcox.test(listcold$accuracy,

listcold$model, p.adjust.method = "BH")

12

###

###Quantitative microbial risk assessment #

###

#

#Prediction of components for new isolates: example

#of isolates from dairy foods

#

listfinpreddairy <- listfinpred[which(listfinpred$ ‘Food matrice‘==’Diary’),]

listfinpreddairy <- as.data.frame(listfinpreddairy[,-c(1:3)])

listcoldpredictiondairy <- predict(finMod.rf, listfinpreddairy)

#####################

#QMRA Baseline

#############################

sims<-1000000

##Initial Listeria Concentration: range given:

uniform distribution

#

conc_o <- runif(sims, 1000, 10000)

#Storage time (days): min: 0.5, most likely: 6 to 10, maximum: 45. Below in hours

mini <-0.5*24

modest <- runif(sims, 6*24, 10*24)

maxest <- 45*24

tsl <- rpert(sims, min=mini, mode=modest, max=maxest, shape=4) #Time storage

#Increase during holding: Buchanan model for exponential growth phase

hold = Umax*(storagetime) which is composed of 50%

proportion of two growth components

Change proptol and propsuscept for scerario analysis so that

Case 1: 0% propsuscept, Case 2: 25% propsuscept versus 75% proptol,

#Case 3: 75% proptolversus 25% propsuscept

propsuscept <- 0.5

proptol <- 0.5

umaxsuscept <- rnorm(sims, 0.7622953, 0.00228928537495403)*propsuscept

umaxtol <- rnorm(sims, 1.0066507, 0.00228928537495403)*proptol

hold <- umaxtol*tsl+umaxsuscept*tsl

#Portion consumed

#Mean 236.75 g, var: 170^2

m <- 236.75

13

var <- 170^2

par1 <-par1<-log(m/sqrt(1+var/m^2))

par2<-sqrt(log(1+var/m^2))

quantperserving <-rlnorm(sims,meanlog=par1,sdlog=par2)

#Final concentration

Cfinal <- conc_o+hold

#Dose per serving

D <- quantperserving*(conc_o+hold)

#Probability of illness per serving

#Dose response : exponential Pill(D;r)=1-exp^(-r*D) for 3 populations

#Where r = 2.37*10^-14 for healthy; 1.06*10^-12 fpr susceptible and 5.8*10^-10

#for transplant recipients

Pill_healthy=1-exp(-2.37*10^-14*D)

Pill_susceptible=1-exp(-1.06*10^-12*D)

Pill_transplant=1-exp(-5.8*10^-10*D)

#Expected number of cases per million servings

#Generate how many persons in the population of 1000 000 get

#infected from a binomial distribution

Cases_PerMil_healthy <- rbinom(sims,1000000, Pill_healthy)

Cases_PerMil_susceptible <- rbinom(sims,1000000, Pill_susceptible)

Cases_PerMil_transplant <- rbinom(sims,1000000, Pill_transplant)

Rank correlation of inputs for different cases

#Healthy

rh<-c(cor(Cases_PerMil_healthyav,holdav,method="spearman"),

cor(Cases_PerMil_healthy,hold,method="spearman"),

cor(Cases_PerMil_healthy1,hold,method="spearman"),

cor(Cases_PerMil_healthy2,hold2,method="spearman"),

cor(Cases_PerMil_healthy3,hold3,method="spearman"))

barplot(rh,horiz=TRUE,names.arg=c("Growth baseline","Growth case 1", "Growth case 2",

"Growth case 3"), col = "lightgreen", main="Healthy population")

#Repeat for susceptible and tolerant

14

15

	Finite mixture modeling
	Predictive Modeling
	Example L. monocytogenes quantitative risk assessment
	R code

