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Abstract: (1) Background: microbiome host classification can be used to identify sources of
contamination in environmental data. However, there is no ready-to-use host classifier. Here,
we aimed to build a model that would be able to discriminate between pet and human microbiomes
samples. The challenge of the study was to build a classifier using data solely from publicly available
studies that normally contain sequencing data for only one type of host. (2) Results: we have
developed a random forest model that distinguishes human microbiota from domestic pet microbiota
(cats and dogs) with 97% accuracy. In order to prevent overfitting, samples from several (at least four)
different projects were necessary. Feature importance analysis revealed that the model relied on several
taxa known to be key components in domestic cat and dog microbiomes (such as Fusobacteriaceae and
Peptostreptococcaeae), as well as on some taxa exclusively found in humans (as Akkermansiaceae).
(3) Conclusion: we have shown that it is possible to make a reliable pet/human gut microbiome
classifier on the basis of the data collected from different studies.
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1. Introduction

A microbiome is a complex ecological structure that is unique to each environment. Microbiota
inhabiting living organism sites, such as the human gut, are of particular interest. Even though
metagenomic approaches have made revealing microbiome compositions routine, their characterization
and the identification of unique traits is still a challenge.

In the field of microbiome classification, there are several classification settings. One is the
classification of the microbiome as a whole. There are also models for disease prediction, and some
other individual trait predictions, such as age [1] or specific owner identification (skin microbiome), [2]
for example. The gut microbiota, despite its complexity and great variation between individuals,
was shown to be predictive of various intestinal diseases and conditions, such as irritable bowel
syndrome (IBS) [3], Crohn’s disease [4,5], and colorectal cancer [6]. Interestingly, the composition of
the gut microbiome also predicts some non-intestinal illnesses, such as coronary artery disease [7],
liver fibrosis [8], metabolic diseases/obesity [9], insomnia [10], and bipolar depression [11]. Another
classification setting is the detection of contamination in samples. This task mostly arises in the case of
water contamination with sewage or animal faeces. In this setting, the fraction of sequences coming
from another host can be minimal. Moreover, contamination might come from several different sources
making this task quite challenging [12–14]. In our study, we had a specific goal: host discrimination of
the whole gut microbiome. This task arose from our need to filter out faecal samples of pets mistakenly
or intentionally sent for commercial microbiome analysis in guise of human ones.

The mammalian gut microbiome evolves together with the host. As a general rule, the distance
between microbiomes increases with the evolutionary distance between hosts [15]. At the same time,
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microbiome composition is also a reflection of the host’s dietary category. For example, while sharing
the same main bacterial phyla, herbivores and carnivores harbor different families of Clostridiales
(Ruminococcaceae and Peptostreptococcaceae, respectively) [15]. Herbivores also show greater
diversity at all taxonomic levels than carnivores. It is also generally accepted that species with the
same diet are similar at a higher taxonomic level, while host phylogeny reveals itself more at a
lower taxonomic level (species and strains) [15,16]. Accordingly, this information was used in host
prediction (contamination prediction) models. The oligotyping technique harnesses the existence of
the host-specific/preferred species and strains, showing that it is possible to detect sequences from a
specific host using just one or several genera [12,13]. This analysis is also considered to be more robust
to high fluctuations in microbiome taxonomic composition caused by different sequencing techniques.
The total microbiome taxonomy groups can be used as well, for example, as an input to the state-of-art
program for contamination tracking called Source Tracker [14]. A disadvantage of Source Tracker for
host classification is that it requires host data training from the same experiment to build a prediction
model. Here, we checked if it is possible to use regular taxonomy features for accurate microbiome
classification of pets and humans.

It is a widely acknowledged problem that next-generation sequencing (NGS) data in general,
and microbiome 16S rRNA sequencing data specifically, vary from data center to data center.
This introduces strong batch effects that sometimes make meta-analysis a rather sophisticated statistical
task [17,18]. This is caused by different protocols for sample collection and storage [19], different DNA
purification [20] and amplification protocols [21], and the use of different sequencing platforms [22].
Moreover, sequencing of different regions of the 16S rRNA gene influences the abundance of specific
taxa in the resulting data [23]. A recent meta-analysis of human microbiomes found that differences in
experimental protocols can affect microbiome composition more than the biological variance of some
traits [17]. Another meta-analysis, this time of colorectal cancer studies, demonstrated that samples
clustered primarily by study [18]. On the other hand, the incorporation of several studies helped
increase the overall accuracy in this study. It should be noted that, in this meta-analysis, each study
still had its own set of control (healthy) samples. Here, we aimed to build a classifier using public data
where each class (host) was sequenced in a separate study, as there were no studies where human and
pet samples were sequenced in the same experiment.

Random forest (RF) algorithm [24] was chosen for the classification task. RFs are highly used
machine learning algorithms for microbiome classification [3–11] due to the limited number of model
parameters and simple results interpretation.

2. Materials and Methods

2.1. Data

Data with publicly available cat, dog, or human faecal samples used in our study are listed in
Table 1. Only projects that performed Illumina sequencing of the V4 region of 16S RNA were included.
Overall, data from five cat projects and seven dog projects were collected, providing 321 pet samples in
total. Ten human projects provided 1242 samples. Note that from the specified human projects, we
used only healthy control (HC) subjects, and from the pet projects we used all subjects (i.e., not only
healthy samples) to provide a bigger dataset. After the models were trained, we further tested them
on five independent pet and two independent human projects. These additional projects contained
432 animal and 358 human samples.
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Table 1. Data used in the study.

Project Name Host Host Type
Number

of
Samples

Number of
Samples

(Train Dataset)
PMID Author/Year Ref.

PRJNA504021 Felis catus pet 65 65 31844119 Marsilio et al.
(2019) [25]

PRJNA349988 Felis catus pet 44 44 27912797 Duarte et al.
(2016) [26]

PRJNA248757 Felis catus pet 30 30 25279695 Bell et al. (2014) [27]

PRJNA338653 Felis catus pet 19 19 30709324 Whittemore et al.
(2019) [28]

PRJNA350163 Felis catus pet 6 6 28278278 Vientós-Plotts
et al. (2017) [29]

PRJNA488105 Canis familiaris pet 34 34 no paper

PRJNA525542 Canis familiaris pet 32 32 31565574 Jarett et al.
(2019) [30]

PRJNA358232 Canis familiaris pet 30 30 no paper

PRJNA391562 Canis familiaris pet 23 23 29852000 Herstad et al.
(2018) [31]

PRJNA493249 Canis familiaris pet 19 19 32027665 Fujishiro et al.
(2020) [32]

PRJDB5398 Canis familiaris pet 13 13 29643280 Omatsu et al.
(2018) [33]

PRJNA492898 Canis familiaris pet 6 6 32027665 Fujishiro et al.
(2020) [32]

PMID29795809 Homo sapiens human 681 46 29795809 McDonald et al.
(2018) [34]

PMID25417156 Homo sapiens human 200 45 25417156 Goodrich et al.
(2014) [35]

PMID28195358 Homo sapiens human 115 45 28195358 Hill-Burns et al.
(2017) [36]

PMID28179361 Homo sapiens human 102 45 28179361 Pascal et al.
(2017) [37]

PMID31027508 Homo sapiens human 49 45 31027508 Liu et al. (2019) [38]

PMID26179554 Homo sapiens human 31 31 26179554 Keshavarzian
et al. (2015) [39]

PMID28429209 Homo sapiens human 22 22 28429209 Petrov et al.
(2017) [40]

qiita_10928 Homo sapiens human 21 21 no paper

PMID29404425 Homo sapiens human 12 12 29404425 Zhou et al.
(2018) [41]

PMID28191884 Homo sapiens human 9 9 28191884 Halfvarson et al.
(2017) [42]

Additional Projects

PRJNA470724 Felis catus pet 74 29971046 Bermingham
et al. (2018) [43]

PMID32078625 Felis catus pet 46 32078625 Jha et al. (2020) [44]

PMID32078625 Canis familiaris pet 192 32078625 Jha et al. (2020) [44]

PRJNA401442 Canis familiaris pet 56 no paper

PRJNA589580 Canis familiaris pet 35 no paper

PRJNA592436 Canis familiaris pet 29 no paper

PRJNA385551 Homo sapiens human 284 28959739 Bian et al.
(2017) [45]

PRJNA493726 Homo sapiens human 74 30872359 Li et al. (2019) [46]

2.2. QIIME2

All the raw data fastq files were processed with QIIME 2 (Flagstaff, AZ, USA) [47] to obtain Chao
diversity estimations [48] and feature tables. The following parameters were employed in the QIIME2
microbiome analysis pipeline:
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• DADA2 [49] denoising quality parameter value was set to 10 (–p-trunc-q 10),
• taxonomy assignment using QIIME2 feature-classifier [50],
• a random subsample of 5000 reads was used to calculate feature tables,
• alpha-diversity was calculated by sampling 5000 random reads five times from the whole sample

to decrease the impact of low-abundance bacteria; the resulting chao index is the mean of these
iterations results,

• a custom reference database was used; the database is a restricted version of SILVA database [51],
aligned to the HITdb database [52] in order to leave mostly gut bacteria.

2.3. Grouping Features at Different Taxonomic Levels

Abundance data at a genus level was used in the analysis. Each genus is represented as its
full taxonomy, namely: kingdom, phylum, class, order, family, genus. Therefore, the original genus
table can be grouped into higher-level features. During this procedure, the abundances of genera
grouped by the same higher taxa were summed. The analysis was then performed for the tables at
each taxonomic level.

2.4. Filtering Rare Features

Statistical hypothesis testing and RF training were only performed for the taxa left after filtering
out features with low abundance. The taxonomic features where over 90% of samples had zero read
for both pet and human data were defined as rare. This procedure reduced the initial 386 genera to
138, 123 families to 55, 54 orders to 29, 26 classes to 18, 15 phyla to 10 (Table S1).

2.5. Mann-Whitney Test

Two-sided Mann-Whitney test was performed on the projects’ median abundance values for each
feature (i.e., for each feature there were 12 pet values versus 10 human values in the test). We applied
both Holm–Bonferroni [53] and FDR Benjamini–Hochberg [54] procedures to correct for the testing
of multiple features. Significant features were further used to build restricted versions of the RF
models. Two-sided Mann-Whitney test was also applied for the Chao diversity values that characterize
each sample.

2.6. t-SNE

t-SNE algorithm from Python3 sklearn library [55] with Bray-Curtis distance was used to visualize
the data. The analysis was performed for the balanced class dataset (see below). The input taxa were
restricted to 138 most abundant genus (see above).

2.7. Balanced Class Dataset

From the initial dataset that contained different numbers of animal and human samples, and
different numbers of samples from different projects, we constructed a dataset balanced by host
(321 animal and 321 human samples). It included all our animal data and a subset of human data.
The accession numbers of specific samples that fell into the dataset are listed in Table S2. The human
subset was balanced by projects (i.e., we aimed to take the same number of samples from each project).
The sampling was without replacement. This dataset was also used for data visualization using t-SNE
(see above).

2.8. CLR (Center Log Ratio) Transformation

CLR transformation of feature tables was performed with Python3 library scikit-bio version 0.5.6
(http://scikit-bio.org). CLR transformation converts compositional data from Aitchison geometry to the
real space [56]. Non-transformed or CLR-transformed data were optionally used to train the RF model.

http://scikit-bio.org
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2.9. RF Implementation

The input data matrix for the model consisted of feature abundance values and a column with
mean Chao diversity values. Optionally, the data were restricted to fewer features, or CLR-transformed
data was used beforehand. To construct an optimal prediction model, we first performed parameter
selection using stratified 5-fold cross-validation. The best parameters were defined by the highest
average test accuracy achieved at cross-validation. We varied the following model parameters:

• max_features in the range from 2 to the ‘number of features’,
• max_depth in the range from 2 to 52,
• min_samples_split in the range from 2 to 52,
• n_estimators from the set {1,5,10,50,100,500,1000}.

To speed up the parameter selection process, we performed it in two steps. First, we selected
the best set of parameters using all parameter combinations in a smaller range. During the second
step, each parameter was refined while all the other parameters were fixed to the values obtained
on the first step (Text S1). The model was then fit on the whole dataset with the best parameters,
and out-of-bag scores were reported as a final performance estimation of the model. The project
is realized using Python 3 sk-learn library. The source code of the project is available at GitHub
(https://github.com/nadiabykova/microbiota_host_classifier).

2.10. The Project Learning Curve

Our models are trained on data from specific projects. Therefore, it is possible that the model
‘remembers’ project features rather than host-specific features. If so, new projects that did not
participate in the training would be poorly predicted. To evaluate the ability of these models to
overfit to specific projects, we conducted the following experiment: we varied the number of human
projects incorporated in the training set and measured the performance on the projects that did not
participate in the training. Formally, for n from 1 to N − 1, where N is the number of human projects,
we formed new balanced training sets consisting of all animal data and samples from n human projects.
The number of considered project combinations for each n was set to the minimum value of 200 and
CN−1

n. The training sets were balanced by class, and the human part of the sets was balanced by
project. Here, we used sampling with replacements to be able to construct the human part of the
set with size 321 for each n. We also randomized the sampling from the human projects taking five
random samples for each combination of projects. Therefore, in total, approximately 200 × 5 models
were trained for each value of n (less for the cases where n < 4). Accuracy on projects that did not
participate in the training was then evaluated.

3. Results

3.1. t-SNE Plot

To visualize our data, we first built a t-SNE plot on the balanced class dataset (i.e., a sample of
original data that contains equal amounts of pet and human samples (see Materials and Methods)).
Figure 1 shows that human, cat, and dog samples cluster within groups, indicating that they can
possibly be classified using taxonomic features’ abundance values. Samples from specific studies also
tend to cluster together, but the host signal is stronger.

https://github.com/nadiabykova/microbiota_host_classifier
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Figure 1. t-SNE plot for the dataset on the genus level. The t-SNE plot was built using 138 most
abundant genera of the balanced dataset (see Materials and Methods). The Bray–Curtis dissimilarity
between vectors was used. The samples are colored by host (a), or by the study name (b). On side b,
the host is shown by a marker shape. See the in-plot legend for the specific name-color mapping.

3.2. Taxa Differentially Abundant in Pets and Humans

We studied the distribution of taxa abundances in pets and humans at several taxonomic levels
(see Materials and Methods). First of all, the data show substantial variation inside host groups. Even on
the phylum level, ‘project-outliers’ can be noted, illustrating that the batch effect can significantly affect
the abundance of specific taxa (Figure S1). To detect the taxa differently abundant in pets and humans,
we applied two-sided Mann-Whitney test to the projects’ median values of each taxon abundance at
each level. The significant taxa detected are listed in Table S3. On the phylum level, Verrucomicrobia
and Fusobacteria were significant (Figure S2A), which is in accordance with previous studies describing
Fusobacteria as one of the key phyla of domestic pets, and Verrucomicrobia as a taxon characteristic of
the human microbiota while being absent in cats and dogs [57]. On the level of class, Verrucomicrobia,
Fusobacteria, and Deltaproteobacteria were detected; Deltaproteobacteria was present in almost all
human projects, and absent or present in very small amounts in pet projects (Figure S2B). On the level
of order, Verrucomicrobiales and Desulfovibrionales were detected (Fusobacteriales were detected
only by the FDR correction method, Figure S2C). On the family level, there were more interesting
results (Figure 2). While the same effect at the higher levels was detected for Akkermansiaceae and
Desulfovibrionaceae, the difference in Bacteroidetes and Firmicutes was first detected at the family level.
Namely, the Peptostreptococcaceae family was characteristic of pets and Ruminococcaceae family for
humans; this switch in the usage of Clostridia families was previously described as a difference between
carnivorous and herbivorous animals [15]. Peptostreptococcaceae is also described as a prominent
taxon for cats [43]. The families of the Bacteroidetes phylum, Rikenellaceae and Marinifilaceae, were
detected almost exclusively in humans. FDR correction added another eight families from different
phyla. On the genus level, Astilipes and Odoribacter from the Rikenellaceae and Marinifilaceae families,
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respectively were detected, Ruminococcus_1 and Faecalibacterium (elevated amounts in humans) from
Ruminococcaceae family, Bilophila from Desulfovibrionaceae family, Akkermansia, 5 Lachnospiraceae
genera, and Erysipelotrichaceae_UCG-003 were detected (Figure S2D). FDR correction yielded an
additional 20 significant genera from different taxa. Taken together these data show that, at the level of
general composition, pets and humans do not show a great difference with all the main phylums being
insignificant (note that the Verrumicrobia and Fusobacteria consist of only one or two genera), while
all the main differences lay at the level of families and specific genera. The defined significant taxa
were further used to build restricted RF models. Mann-Whitney test for the median values of the Chao
diversity index was insignificant.
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3.3. Random Forest Models

RF models were trained on the dataset balanced by the host class that was derived from the initial
dataset (see Materials and Methods). To define the most appropriate model for host discrimination,
we tested several types of models. We tried models on different taxonomic levels, with all or only
specific sets of features (as defined by Mann-Whitney test above), we also optionally applied CLR
transformation to the initial data (see Materials and Methods). For each model, the best model
parameters were first defined using cross-validation. The models with the best parameters were fit
on the dataset, and performances were estimated on out-of-bag (OOB) samples. The obtained best
parameters, cross-validation and out-of-bag results are summarized in Table S4 and Table 2. Very good
results were achieved by all the models. However, genus models clearly outperformed family models,
and genus models with more features (Genus_ALL and Genus_MW-FDR) were better than the most
restricted Genus_MW-Holm model because a model using more meaningful features allows for better
prediction. Remarkably, using only MW-selected FDR features did not lead to a substantial decrease in
accuracy. The usage of CLR transformation did not introduce any significant improvement. The fact
that the usage of CLR transformation did not significantly improve results in our case might be
because the prediction accuracy is good with both methods. The OOB estimation of accuracy of both
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Genus_ALL and Genus_MW-FDR models was 0.99 ± 0.002. The process of parameter selection for
each model and corresponding ROC curve obtained in cross-validation for each model are presented
in Text S1. The ROC curves of all the models together are shown in Figure S3.

Table 2. Out-of-bag estimations of model performances.

Model Name Level Features
Type

Number
of

Features
CLR Accuracy F1 Score Precision Recall

Family_ALL_CLR Family all 56 yes 0.981 ± 0.004 0.980 ± 0.004 0.987 ± 0.004 0.974 ± 0.006

Family_ALL Family all 56 no 0.983 ± 0.004 0.983 ± 0.004 0.989 ± 0.004 0.977 ± 0.006

Family_MW-FDR_CLR Family best_fdr 14 yes 0.966 ± 0.004 0.966 ± 0.004 0.976 ± 0.005 0.955 ± 0.006

Family_MW-FDR Family best_fdr 14 no 0.970 ± 0.003 0.970 ± 0.003 0.986 ± 0.004 0.955 ± 0.005

Family_MW-Holm_CLR Family best_holm 6 yes 0.954 ± 0.003 0.954 ± 0.003 0.957 ± 0.004 0.951 ± 0.004

Family_MW-Holm Family best_holm 6 no 0.953 ± 0.004 0.953 ± 0.003 0.951 ± 0.006 0.955 ± 0.004

Genus_ALL_CLR Genus all 139 yes 0.990 ± 0.002 0.990 ± 0.002 0.999 ± 0.001 0.981 ± 0.003

Genus_ALL Genus all 139 no 0.992 ± 0.002 0.992 ± 0.002 0.999 ± 0.002 0.985 ± 0.003

Genus_MW-FDR_CLR Genus best_fdr 32 yes 0.986 ± 0.002 0.985 ± 0.002 0.997 ± 0.003 0.974 ± 0.004

Genus_MW-FDR Genus best_fdr 32 no 0.989 ± 0.002 0.989 ± 0.002 0.998 ± 0.003 0.979 ± 0.003

Genus_MW-Holm_CLR Genus best_holm 12 yes 0.972 ± 0.003 0.972 ± 0.003 0.982 ± 0.004 0.963 ± 0.004

Genus_MW-Holm Genus best_holm 12 no 0.967 ± 0.003 0.967 ± 0.003 0.981 ± 0.004 0.953 ± 0.005

3.4. Random Forest Feature Importance

RF models are suitable for selecting the most important features that allow us to distinguish
between classes. When comparing the most important RF features of full models (Family_ALL
and Genus_ALL) with MW-results (FDR correction), we found good correspondence both on the
family level (86% intersection between top features, Figure S4A) and genus level (78%, Figure S4B).
New families preferred by RF over Mann-Whitney-selected taxa were Enterococcaceae and unclassified
bacteria. At the genus level, the RF model brought up Fusobacterium, Collinsella, Anaerobiospirillum,
unclassified Fusobacteriaceae, unclassified bacteria, Intestinimonas, Veillonella.

3.5. Projects Learning Curve

We further tried to estimate if models built this way are robust for project overfitting. To this end,
we conducted the following experiment: the pet part of the dataset was fixed, and from the human
data we selected various numbers of projects to include in the training set. The remaining human
projects were used to control the model’s performance (see Materials and Methods). The dependency
of model accuracy on the number of human projects in the training set for genus models is shown
in Figure 3 (the accuracy is averaged among the combinations of training projects and among the
projects used for testing). Figures for the models where accuracy is shown for each test project can
be found in Figure S5. Figure 3 shows that models trained using only one human project appear to
consistently overfit, leading to decreased accuracy on the test projects. The appropriate number of
projects to capture the host differences for our setting should be more than four (as can be identified
from the graph). In the models described above, we used more projects (all of them) in the training set,
thus we do not expect them to be overfit. For the Genus_MW-FDR model, we do not expect accuracy
below 0.9 on other human projects (Figure S5E).
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3.6. Model Testing on Additional Projects

To test the performance of our actual models on some new projects, we downloaded several
additional human and animal projects (described in Table 1) and applied our models to them.
The resulting accuracy for all genus models is summarized in Table S5. The best results were once
again shown by Genus_ALL and Genus_MW-FDR models. Genus_MW-FDR model performance
is presented in Table 3 and Figure 4. The new data also contained samples from SLE (systemic
lupus erythematosus) and RA patients (rheumatoid arthritis); notably, all the models showed better
performance on healthy samples, as expected. From animal projects, almost all new samples were dog
samples –only two projects also contained cat samples. The dog samples were better recognized as
pets by all the models. To obtain the full discriminative characteristics of the models, we constructed
100 balanced animal/human sets of size 200 from these projects (50 cats, 50 dogs, and 100 humans).
The average accuracy, precision, recall, and f1 score of the Genus_MW-FDR model on healthy samples
is 0.99 ± 0.01, 0.98 ± 0.02, 1.00 ± 0.0, 0.99 ± 0.01 on all samples 0.97 ± 0.01, 0.98 ± 0.02, 0.97 ± 0.02,
0.97 ± 0.01 (Table 4), the estimations for the other genus models are in Table S6.

Table 3. Accuracy of Genus_MW-FDR model on additional projects.

Host Type Host Test Project Accuracy Number of Samples

human Homo sapiens PRJNA385551 1 284

human Homo sapiens PRJNA493726 0.932 74

human Homo sapiens PRJNA493726_HC 1 19

human Homo sapiens PRJNA493726_RA 1 18

human Homo sapiens PRJNA493726_SLE 0.865 37

pet Felis catus + Canis familiaris PMID32078625 0.983 238

pet Felis catus PMID32078625_cat 0.935 46

pet Canis familiaris PMID32078625_dog 0.995 192

pet Canis familiaris PRJNA401442 1 56

pet Felis catus PRJNA470724 0.973 74

pet Canis familiaris PRJNA589580 1 35

pet Canis familiaris PRJNA592436 1 29



Microorganisms 2020, 8, 1591 10 of 14

Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 15 

3.6. Model Testing on Additional Projects 

To test the performance of our actual models on some new projects, we downloaded several 
additional human and animal projects (described in Table 1) and applied our models to them. The 
resulting accuracy for all genus models is summarized in Table S5. The best results were once again 
shown by Genus_ALL and Genus_MW-FDR models. Genus_MW-FDR model performance is pre-
sented in Table 3 and Figure 4. The new data also contained samples from SLE (systemic lupus ery-
thematosus) and RA patients (rheumatoid arthritis); notably, all the models showed better perfor-
mance on healthy samples, as expected. From animal projects, almost all new samples were dog sam-
ples –only two projects also contained cat samples. The dog samples were better recognized as pets 
by all the models. To obtain the full discriminative characteristics of the models, we constructed 100 
balanced animal/human sets of size 200 from these projects (50 cats, 50 dogs, and 100 humans). The 
average accuracy, precision, recall, and f1 score of the Genus_MW-FDR model on healthy samples is 
0.99 ± 0.01, 0.98 ± 0.02, 1.00 ± 0.0, 0.99 ± 0.01 on all samples 0.97 ± 0.01, 0.98 ± 0.02, 0.97 ± 0.02, 0.97 ± 
0.01 (Table 4), the estimations for the other genus models are in Table S6. 

Table 3. Accuracy of Genus_MW-FDR model on additional projects. 

Host Type Host Test Project Accuracy Number of Samples 

human Homo sapiens PRJNA385551 1 284 

human Homo sapiens PRJNA493726 0.932 74 

human Homo sapiens PRJNA493726_HC 1 19 

human Homo sapiens PRJNA493726_RA 1 18 

human Homo sapiens PRJNA493726_SLE 0.865 37 

pet Felis catus + Canis familiaris PMID32078625 0.983 238 

pet Felis catus PMID32078625_cat 0.935 46 

pet Canis familiaris PMID32078625_dog 0.995 192 

pet Canis familiaris PRJNA401442 1 56 

pet Felis catus PRJNA470724 0.973 74 

pet Canis familiaris PRJNA589580 1 35 

pet Canis familiaris PRJNA592436 1 29 

 
Figure 4. Prediction score distributions of the additional projects. The histograms for the probability of
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color and linetype (see the in-graph legend).

Table 4. Genus_MW-FDR performance on a mixed class dataset.

Metric Name Total Dataset Only Healthy Controls

Accuracy 0.971 ± 0.010 0.988 ± 0.008

Precision 0.976 ± 0.015 0.977 ± 0.015

Recall 0.966 ± 0.016 1.000 ± 0.000

F1 score 0.971 ± 0.010 0.988 ± 0.008

4. Discussion

One result of our work was identifying the list of taxa differently abundant in pets and humans
that is statistically supported by a set of different studies. We show that the main differences do not
occur in the general composition of the microbiome, but rather in the usage of specific genera, even
though the species stick to very different diets. The main, if not to say the only, Verrumicrobia member
in a gut microbiome is Akkermansia genus. Akkermansia bacteria are known to live in a mucin layer
and degrade it. Previous studies show that indeed, feline and canine gut microbiome lack Akkermansia
because this ecological niche is occupied with other species, specifically members of Bacteroidaceae,
Prevotellaceae, Clostridiales, Faecalibacterium, and Fusobacteria phylum [58]. We also show that,
even when overfitting occurs (as observed in a few projects in the training set), the RF model appears
to be able to dissect host-specific features from the project-specific features, and the joint usage of
these features makes it possible to successfully classify samples from new projects. On the other hand,
even though we collected data from a substantial number of projects, we cannot guarantee that all
the possible sequences techniques were covered and that our model will not fail at some special new
project due to skewed taxa abundances. Moreover, samples from people with health conditions are
more likely to be mistaken as pet samples.

5. Conclusions

We have shown that it is possible to make a reliable pet/human classifier on the basis of taxonomic
feature abundance tables collected from different studies. Our study demonstrates that a classifier with
good performance can be built if at least four different studies are included in the training set. We also
provide a list of taxa that discriminate between hosts, these results are in line with previous studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/10/1591/s1.
Figure S1: The boxplot of the phylum abundance for the projects used in the study; Figure S2A–D: The boxplot of
the taxa significant in the MW test; Figure S3: ROC-curves for family and genus random forest models obtained;
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Figure S4: Top families and genera important for human/pet host discrimination as suggested by random forest
models; Figure S5: The dependency of accuracy on test human projects from the number of human projects used
in the training set; Table S1: Taxonomic feature abundances in the data, features with low abundance; Table S2:
The accession numbers of the specific samples used in the training dataset; Table S3: Differentially abundant taxa,
results of Mann-Whitney test; Table S4: Summary of models performance; Table S5: The accuracy of the genus
models on additional datasets; Table S6: Estimated accuracy, precision, recall, and f1 score of the genus models;
Text S1: Parameters selection of random forest models.
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