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Abstract: Microbial adhesion is critical for parasitic infection and colonization of host cells. To study
the host–parasite interaction in vitro, we established a flow cytometry-based assay to measure the
adherence of Trichomonas vaginalis to epithelial cell line SiHa. SiHa cells and T. vaginalis were detected
as clearly separated, quantifiable populations by flow cytometry. We found that T. vaginalis attached
to SiHa cells as early as 30 min after infection and the binding remained stable up to several hours,
allowing for analysis of drug treatment efficacy. Importantly, NADPH oxidase inhibitor DPI treatment
induced the detachment of T. vaginalis from SiHa cells in a dose-dependent manner without affecting
host cell viability. Thus, this study may provide an understanding for the potential development of
therapies against T. vaginalis and other parasite infections.
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1. Introduction

Trichomoniasis is a sexually transmitted disease (STD) caused by infection of the urogenital
tract by the flagellate protozoan parasite Trichomonas vaginalis [1–3]. Trichomoniasis in pregnant
women may lead to premature membrane rupture, preterm delivery, and low birth weight [4]. It has
also been associated with atypical pelvic inflammatory disease [5], infertility [6], predisposition to
invasive cervical cancer [7], and increased susceptibility to HIV infection [8]. While readily curable
with antibiotics, most infections are asymptomatic and left untreated, thereby increasing the chances of
its transmission and significant health consequences. Indeed, in 2008 the WHO estimated an incidence
of 276 million new trichomoniasis cases per year, making it the most common nonviral STD in the
world [9]. Despite its prevalence and serious health effects, trichomoniasis has received inadequate
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attention by health professionals. Of particular concern, antibiotic-resistant strains of T. vaginalis may
be emerging. The exact prevalence of nitroimidazole-resistant T. vaginalis infections is unknown,
largely due to the lack of standardized antibiotic susceptibility tests or surveillance systems to detect
treatment failures due to resistance [10]. Therefore, considerable efforts to establish a standardized
antibiotic susceptibility test and identify new anti-T. vaginalis drugs are highly warranted [11].

Adhesion of Trichomonas vaginalis to host mucosal cells is considered to be an initial and
essential step for its infection [12]. The adhesive properties of T. vaginalis are intimately related
to its virulent characteristics and several classes of molecules have been found to be critical
to the T. vaginalis–host interaction, including T. vaginalis lipophosphoglycan (TvLPG), adhesins,
BspA (bacteroides surface protein A)-like, and cadherin-like protein [13–17]. Upon contact with
primary vaginal epithelial cells, T. vaginalis has been shown to undergo rapid actin cytoskeleton
reorganization to transition from a flagellate to an elongated amoeboid shape with pseudopodia [18,19].
Several studies have highlighted signal transduction pathways that may underly these cytoskeletal
dynamics [18,20,21]. However, although reactive oxygen species (ROS) generated by NADPH oxidases
have been shown to regulate actin dynamics and adhesion in several other systems [22–24], the role of
ROS in T. vaginalis morphogenesis has yet to be addressed.

Understanding parasite adhesion is critical to gaining insight on how host cells are infected and
colonized. In this study, we established a flow cytometry-based method to examine the properties of
T. vaginalis adhesion on the cervix carcinoma cell line, SiHa cells. Using antioxidant compounds such as
N-acetyl-L-cysteine (NAC) and NADPH oxidase inhibitor diphenyleneiodonium (DPI), we determined
whether ROS production was involved in the adhesion process during T. vaginalis infection.
We found that, DPI, but not NAC, was involved in blockade of parasite adherence to host cells,
suggesting that DPI-targetable ROS generation in T. vaginalis contributes to the pathogenic
adherence process.

2. Materials and Methods

2.1. Host Cell Culture

Human cervical epithelial cancer cell lines (SiHa cells) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). SiHa cells were maintained under 5% CO2 at 37 ◦C
in Dulbecco’s modified Eagle’s medium (DMEM) with 10% heat-inactivated fetal bovine serum
(FBS, Gibco BRL, Grand Island, NY, USA) and 1 × antibiotic–antimycotic (Anti-Anti, Gibco BRL).

2.2. T. vaginalis Culture

T. vaginalis T106 was provided by Prof. J. K. Alderete (University of Texas, Health Science Center,
TX, USA) and cultured in TYM medium consisting of 20% (w/v) trypticase peptone, 10% (w/v)
yeast extract, 5% (w/v) Moltose monodydrate, 1% (w/v) L-cystein hydrochloride, 1% (w/v) ascorbic acid,
1% (w/v) K2HPO4, 1% (w/v) KH2PO4 (pH 6.2) with 10% heat-inactivated horse serum (Sigma-Aldrich,
St. Louis, MO, USA) and penicillin-streptomycin (Gibco BRL) and incubated under 5% CO2 at 37
◦C SiHa cells were infected with live T. vaginalis at multiplicities of infection (MOI) of 1 in the
mixed-medium (DMEM without Antibiotic: TYM = 2:1) as previously described [25].

2.3. Flow Cytometry Analysis

Forward scatter (FSC) and side scatter (SSC) were measured for gating and FSC-A and FSC-H
were used for the detection of single cells. Typically, SiHa cells and bound T. vaginalis were acquired
at 10,000 events. To assess SiHa cell and T. vaginalis viability, cell pellets were resuspended in
flow cytometry buffer containing 5 µg/mL propidium iodide (PI) (Sigma-Aldrich) and analyzed on
a FACSCalibur (BD Immunocytometry Systems, San Jose, CA, USA) as previously described [26].
Only live SiHa cells (PI-negative) were used for ROS detection via CM-H2DCFDA. Flow cytometry
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was analyzed by BD Canto II Flow cytometer (BD Biosciences, San Jose, CA, USA) and FlowJo software
(Treestar, Ashland, OR, USA).

2.4. Measurement of ROS Production

SiHa cells were pretreated with an antioxidant N-acetyl-L-cysteine (NAC, Sigma-Aldrich) or
the NADPH oxidase inhibitor diphenyleneiodonium (DPI, Sigma-Aldrich) prior to or at the same
time of T. vaginalis infection. The general oxidative stress indicator 5-(and-6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA, Life Technologies, Carlsbad, CA, USA)
was used to detect reactive oxygen species (ROS) in live cells, as previously described [27]. Single endpoint
measurements of ROS in SiHa and T. vaginalis cells were determined by adding DCFDA at 15 min before
harvesting and washing the cells. Dye oxidation in cells treated with NAC or DPI was calculated as the
percentage increase of mean channel fluorescence relative to that of untreated cells at each time point using
the following equation:

[(MCFtreat −MCFuntreat)/MCFuntreat] × 100 (1)

2.5. Statistical Analysis

Experiments were repeated at least three times and expressed as the mean± standard deviation (SD).
p-values between groups were determined by two-tailed unpaired t-test or one-way ANOVA with
Tukey’s post-test using GraphPad Prism (v7.02, GraphPad, San Diego, CA, USA). p < 0.05 was
considered statistically significant.

3. Results

3.1. Flow Cytometric Analysis of Parasite–Host Cell Mixed Culture

In previous studies, fluorescent dye-loaded T. vaginalis had been incubated with host cells and
monitored by microscopy or flow cytometry [28,29]. Here, we developed a quantitative flow cytometry
assay to identify T. vaginalis and SiHa cells in a mixed population without the use of fluorescent dyes
and separately assess the properties of each group. Cells from the cervix carcinoma cell line (SiHa) were
infected with live T. vaginalis trophozoites, incubated for the time indicated, and washed with PBS to
remove unbound cells. The remaining attached cells were trypsinized and analyzed by flow cytometry.
Due to the remarkable differences in cell size, SiHa cells and T. vaginalis were clearly detected as
separate populations in the FSC-A and SSC-A dot plot (Figure 1A). It is of note that T. vaginalis attached
to SiHa cells as early as 30 min after infection and maintained attachment for up to three hours.
In contrast, prolonged infection (over 18 h) lead to a reduction in SiHa host cells to around 20% of the
total cell number and a concomitant increase in the percent population of T. vaginalis cells (Figure 1B–D).
As identified by propidium iodide (PI) positive staining, the proportion of dead SiHa cells increased in
infections greater than 18 h, indicating that prolonged infection of T. vaginalis is detrimental to host
cells and in agreement with previous reports [25] (Figure 1E). Overall, our data suggest that T. vaginalis
immediately adhere to SiHa cells and maintain attachment status, ultimately allowing T. vaginalis to
induce host cell lysis.

3.2. DPI Reduces Adherence of T. vaginalis to SiHa Cells

It is known that ROS play important roles in infectious disease. ROS generated by NADPH oxidases
has been shown to regulate cell adhesion, where antioxidant drugs were successfully used to modulate
cell–cell interactions in various other systems [22–24]. Using our flow cytometry-based method,
we sought to test the effect of NAC and DPI on the attachment of T. vaginalis. SiHa cells were treated
with 10 mM NAC or 1 µM DPI for the last 2 h of the indicated T. vaginalis infection durations (Figure 2A).
Interestingly, treatment with NADPH oxidase inhibitor DPI induced detachment of T. vaginalis from
SiHa cells, whereas NAC, a widely used general antioxidant, did not affect the host–parasite interaction
(Figure S1, Figure 2B,C).
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Figure 1. Flow cytometric analysis of parasite–host cell mixed culture. (A,B) SiHa cells were infected 
with live T. vaginalis (T.v) trophozoites for the indicated durations. Cells were then trypsinized and 
analyzed by flow cytometry. Flow cytometry data plots based on cell size (SSC-A and FSC-A) were 
used to identify T. vaginalis (small) and SiHa (large) cell populations. (C) SiHa cell levels were 
quantified from flow cytometry data (n = 3). (D) Bound T. vaginalis levels were quantified from flow 
cytometry data (n = 3). (E) Propidium iodide (PI) positive (+) dead SiHa cells at the time indicated (n 
= 3). Statistical difference by one-way ANOVA compared to no infection controls or 30 min infection. 
Mean ± SD, ***p < 0.001, ****p < 0.0001. Data are representative of at least three independent 
experiments. 
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Figure 1. Flow cytometric analysis of parasite–host cell mixed culture. (A,B) SiHa cells were infected
with live T. vaginalis (T.v) trophozoites for the indicated durations. Cells were then trypsinized and
analyzed by flow cytometry. Flow cytometry data plots based on cell size (SSC-A and FSC-A) were used
to identify T. vaginalis (small) and SiHa (large) cell populations. (C) SiHa cell levels were quantified from
flow cytometry data (n = 3). (D) Bound T. vaginalis levels were quantified from flow cytometry data
(n = 3). (E) Propidium iodide (PI) positive (+) dead SiHa cells at the time indicated (n = 3). Statistical
difference by one-way ANOVA compared to no infection controls or 30 min infection. Mean ± SD,
*** p < 0.001, **** p < 0.0001. Data are representative of at least three independent experiments.

3.3. Antioxidant Pretreatment of SiHa Cells Does Not Affect T. vaginalis Adhesion

To test whether pretreating host cells with antioxidants could affect parasite binding, SiHa cells
were treated with NAC or DPI for 1 h. After washing with PBS, pretreated SiHa cells were infected with
T. vaginalis trophozoites for 30 min or 1 h and analyzed by flow cytometry (Figure 3A). Bound T. vaginalis
levels were unchanged by pretreatment with NAC or DPI, suggesting that DPI affects the infection
process rather than the host cell biology (Figure 3B,C).
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Figure 2. Antioxidant diphenyleneiodonium (DPI) reduced adherence of T. vaginalis to SiHa cells.
(A) Experimental scheme: SiHa cells were infected with T. vaginalis for 3 or 6 h and treated with
10 mM NAC and 1 µM DPI for the last 2 h. Attached cells were analyzed by flow cytometry.
(B) Representative flow cytometry profile. (C) Bound T. vaginalis levels were quantified from flow
cytometry data (n = 3). Statistical difference by one-way ANOVA compared with no treatment
controls (None). Mean± SD, * p < 0.05. Data are representative of at least three independent experiments.

3.4. DPI Induces Detachment of T. vaginalis from SiHa Cells and Reduces ROS Generation

To find the optimal concentration of DPI that can induce T. vaginalis detachment, SiHa cells were
infected with T. vaginalis for 3 h and incubated with various concentration of DPI for the last 2 h.
To monitor ROS generation, 1 µM CM-H2DCFDA was added for the last 15 min. (Figure 4A). The levels
of attached T. vaginalis were markedly decreased in a dose dependent manner (Figure 4B,C). On the
other hand, DPI did not impact viability when given to either SiHa cells or T. vaginalis alone (Figure S2).
Infected SiHa cells treated with DPI did not show statistically significant changes in relative DCFDA
oxidation in a dose-dependent manner, whereas bound T. vaginalis showed significant reductions in
DCFDA oxidation following 0.5 µM or 1 µM DPI treatment (Figure 4D). Taken together, DPI treatment
induced the detachment of T. vaginalis from SiHa cells in a dose-dependent manner that may be
associated with decreased ROS production in T. vaginalis.
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Figure 3. Pretreating SiHa cells with DPI did not affect T. vaginalis adherence. (A) Experimental scheme:
SiHa cells were pretreated with 10 mM NAC and 1 µM DPI for 1 h. After washing with PBS, pretreated
cells were infected with T. vaginalis for 30 min or 1 h and subjected to flow cytometry data analysis.
(B) FSC-A and SSC-A dot plots for SiHa cells and T. vaginalis populations. (C) Bound T. vaginalis levels
were quantified from flow cytometry data (n = 3). Mean ± SD, one-way ANOVA.

3.5. Kinetics of DPI-Induced Detachment of T. vaginalis from SiHa Cells

To examine the kinetics of DPI treatment on T. vaginalis detachment, SiHa cells were infected with
T. vaginalis, incubated with 0.5 µM of DPI for an additional 20–120 min, and loaded with CM-H2DCFDA
for the last 15 min (Figure 5A). DPI treatment induced the detachment of T. vaginalis as early as
20–40 min and maintained its effect up to 2 h (Figure 5B,C). Similarly, DPI significantly reduced
DCFDA oxidation in bound T. vaginalis at all time points examined (Figure 5D). Together, 0.2–0.5 µM
DPI treatment for 20–40 min is sufficient to induce detachment of T. vaginalis following infection of
SiHa cells.
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Figure 4. DPI induces detachment of T. vaginalis from SiHa cells in a dose-dependent manner and
reduces ROS generation. (A) Experimental scheme: SiHa cells were infected with T. vaginalis for
three hours, with DPI treatment at the indicated concentrations for the last 2 h prior to incubating
with 1 µM CM-H2DCFDA for the last 15 min. Attached cells were analyzed by flow cytometry.
(B) Representative FSC-A/SSC-A dot plot of the attached cell populations. Attached T. vaginalis cells
are indicated by red arrows. (C) Bound T. vaginalis levels were quantified from flow cytometry data
(n ≥ 3). (D) Levels of CM-H2DCFDA oxidation in SiHa cells and bound T. vaginalis relative to DPI
untreated samples. Mean ± SD, one-way ANOVA. * p < 0.05, ** p < 0.01, **** p < 0.0001. The data
represent triplicate experiments.
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Figure 5. Kinetics of DPI-induced detachment of T. vaginalis from SiHa cells. (A) Experimental scheme:
SiHa cells were infected with T. vaginalis for 1 h and treated with 0.5 µM DPI for the indicated durations.
The mixed culture was incubated with 1 µM CM-H2DCFDA prior to trypsinization and flow
cytometric analysis. (B) The FSC-A/SSC-A dot plot of SiHa cells and T. vaginalis. Attached T. vaginalis
populations are indicated by red arrows. (C) Bound T. vaginalis levels were quantified from flow
cytometry data (n ≥ 3). (D) Relative change of CM-H2DCFDA oxidation in the bound T. vaginalis.
Mean ± SD. * p < 0.05, ** p < 0.01, **** p < 0.0001. Statistical difference by unpaired t-test compared to
no treatment controls (CON). Data are representative of at least three independent experiments.

4. Discussion

In this study, we reported a new effect of the well-known NADPH/NADH oxidase inhibitor DPI
on the attachment of flagellate parasite T. vaginalis to a human cervical cancer cell line using flow
cytometry analysis of mixed cell cultures. DPI treatment was able to rapidly induce the detachment
of T. vaginalis from its parasitic adhesion on host SiHa cells. Given the concomitant reduction in
DCFDA oxidation following DPI treatment, the effects of DPI may be associated with ROS production
in T. vaginalis.
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T. vaginalis is a mucosal parasite, where adherence to host urogenital epithelial cells is
critical for the initiation and maintenance of infection [12]. Upon contact with host cells,
T. vaginalis showed strong upregulation of actin and actin-associated genes among other major
transcriptomic changes [19], suggesting that the cytoskeletal transformation of T. vaginalis is
important for its adherence [18,20,21]. Indeed, host cell adhesion was accompanied by significant
morphology changes in these trophozoites [18,19]. Specifically, actively swimming T. vaginalis tend
to be ellipsoidal, ovoidal, or even spherical in shape, while those incubated with human cells
demonstrated amoeboid morphology and attached to their hosts via pseudopodia-like extensions [30].
This actin-based machinery was reported to also mediate T. vaginalis migration across host tissue [18].
ROS produced NADPH oxidases have been shown to act as critical regulators of the actin
skeleton and cytoskeleton-supported cell functions [22–24]. Moreover, many proteins involved
in cytoskeletal reorganization, including actin, GTPases, and integrins, were shown to be regulated
in a redox-dependent manner [22–24]. Processes and molecules in T. vaginalis targeted by DPI,
including nitric oxidase synthase and other flavin-dependent enzymes, may be similarly involved in
the reorganization of the actin cytoskeleton during T. vaginalis adherence to host cells.

Among the forefront of global health concerns is the emergence of drug-resistant pathogens.
Currently, nitroimidazoles are the only class of antimicrobial drugs recommended for
trichomoniasis treatment, and although highly effective, present significant vulnerability to emerging
resistance due to the lack of alternative therapies. Metronidazole resistance is already being reported
in 5–10% of clinical isolates [31,32]. Therefore, there is a pressing need for novel anti-T. vaginalis drugs.
Based on our findings, DPI may be one such compound by inhibiting parasitic adhesion to
host cells. Interestingly, a previous study similarly identified DPI as a nonantibiotic inhibitor
exhibiting potent antimicrobial activity against drug-resistant strains of Staphylococcus aureus and
Mycobacterium tuberculosis [33]. DPI has also been reported to be microbicidal against parasites of the genus
Leishmania and Trypanosoma [34], as well as the malaria parasite Plasmodium falciparum [35]. Our data
show that DPI does not have detrimental effects on host cells, suggesting that DPI and similar compounds
may present an effective alternative therapy for trichomoniasis.

DPI acts by binding to and targeting flavin-containing oxidase enzymes, many of which reside
within the mitochondria. For example, DPI was shown to inhibit the reduction of iron–sulfur clusters
in mitochondrial NADH-ubiquinone oxidoreductase [36]. T. vaginalis expresses several iron–sulfur
flavoprotein homologs in its mitochondrial-related organelles, called hydrogenosomes, that may act as
possible targets of DPI [37,38]. The function of these iron–sulfur flavoprotein homologs is unknown
but may be involved in electron transfer, which would allow DPI to selectively deplete T. vaginalis
intracellular ATP levels. Given that actin reorganization and general cytoadherence require a large
consumption of ATP, this may be responsible for T. vaginalis detachment [39]. Interestingly, DPI did not
induce T. vaginalis cell death in our study. As such, DPI treatment may induce a viable but nonculturable
(VBNC) state in T. vaginalis. DPI has been similarly reported to induce the rapid transition from an
active to a VBNC state in Mycobacterium tuberculosis [40]. Collectively, these data strongly suggest that
DPI contribute to parasite detachment from host cells during T. vaginalis infection. Further studies
are needed to determine the exact mechanism(s) by which DPI leads to T. vaginalis detachment from
SiHa cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/10/1570/s1,
Figure S1: Representative microscopic images of SiHa and T. vaginalis mixed cultures with or without DPI (1 µM)
treatment. Figure S2: DPI treatment on SiHa cells or T. vaginalis alone did not affect cell viability.
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