Supplementary Materials

Combined use of diagnostic fumarate addition metabolites and genes provides evidence for anaerobic hydrocarbon biodegradation in contaminated groundwater

Gurpreet Kharey¹, Gabrielle Scheffer, and Lisa M. Gieg*

Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; <u>gurpreet.kharey@mail.mcgill.ca</u>; gabrielle.scheffe1@ucalgary.ca

* Correspondence: lmgieg@ucalgary.ca; Tel.: 1-403-210-7207

¹Present address: Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Annede-Bellevue, QC H9X 3V9/National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada

Supplementary Methods Supplementary Tables

Supplementary Methods

Design of assA and bssA primer mixture

Searching for '*assA*' and 'alkylsuccinate synthase' in the NCBI database resulted in ~1,700 entries, from which 20 were selected (7 from organismal entries, 9 from non-taxonomic clones). Similarly, a search for '*bssA*' and 'benzylsuccinate synthase' resulted in ~16,000 entries, from which 17 sequences were selected (9 from organismal entries, 8 from non-taxonomic clones) (Table S2). Initially a larger pool of sequences were selected from the NCBI database, in an attempt to encompass different sampling sites and research groups, but were removed due to repeated sequences.

Selected sequences were compiled into a Multiple Sequence Alignment (MSA) using ClustalOmega aligning algorithm via the Benchling online tool, replacing duplicated sequences [1, 2]. Regions of sequence homology were identified (i.e. regions that had fewest basepair mismatches), and forward primers were designed using the built-in Primer3 function. The primers generated by Primer3 did not align with the selected regions to target, thus they were adjusted slightly in length to bind to the intended region. This was done to ensure uniform produced amplicons, which would otherwise complicate qPCR analyses. Primers specific to the differing sequences in the MSA were made by modifying the new primer to be identical to sequences in the MSA that were not homologous with each other. The *assA* forward primer 'assOri' was designed from *D. alkenivorans* (Ori = Original; *D. alkenivorans* was set as the 'archetypal' organism)[3], and primer 'assSml' was designed to capture *Smithella* SCADC sequences (Sml = *Smithella*). The other primers in the primer mix, 'assMsd' and 'assEx' were designed from an annotated *masD* sequence and *Desulfoglaeba alkenexedens*, respectively (Table S2).

The *bssA* forward primers 'bssMys', 'bssWin', and 'bssOil' were designed from uncultured sequences (in NCBI: Mys = von Netzer submitted sequence, Win = Winderl submitted sequence, Oil = Uncultured sequence sample name with 'OIL003'). The lack of characterized *bssA* sequences aligning to specific genera hinders direct targeting of 'under-represented' *bssA* in mixed communities. Primer bssSuf was designed to target characterized taxa Suf = *Desulfotomaculum*) (Table S3).

The reverse primer used for *assA* was taken from literature, as sequence coverage in the MSA did not extend beyond the binding region of 8543r (the reverse primer used) [4]. The reverse primer for *bssA* was designed similarly to forward primers (as literature primers binding site was not reflected in the MSA across majority of sequences) and named bssHitr, which binds 48 bp upstream of 8546r (reverse primer[4]), and so named as it 'Hits' (aligns with) the upstream region. The amplicons derived from these primers were designed in such a way as to amplify a region *within* the amplicon from primers designed by Winderl et al. and von Netzer et al. as a method to ensure accurate amplification [4, 5].

Homo/hetero-dimerization among forward primers and the reverse primer was tested *in silico* using IDT OligoAnalyzer 3.1, discarding/redesigning any primer with $\Delta G < -7$ kJ. Forward primers were then combined into an equimolar (20 nM) mix (separate mixtures were prepared for *assA* and *bssA*). Primer mixtures were then tested via PCR no-template controls and positive controls using gDNA extracts from known *assA* and *bssA* harbouring isolates to optimize thermocycling conditions and reduce primer dimerization.

Supplementary Tables

Table S1. Total hydrocarbon concentrations in groundwater collected from various wells from Site A and Site B. Shading denotes concentrations above Alberta guidelines for allowable hydrocarbon concentrations in non-drinking groundwater [6].

	Well Name	Benzene (ppm)	Toluene (ppm)	Ethylbenzene (ppm)	Xylenes (ppm)	C ₆ - C ₁₀ Alkanes (ppm)	Total Hydrocarbon (ppm)
	Guideline	0.005	0.002	0.002	0.02	2.2	
	C01-01	0.3	0.0	< 0.0005	0.0	0.2	0.5
	C01-04	2.5	0.0	0.1	0.0	0.5	3.1
	C02-06	< 0.0005	< 0.0003	< 0.0005	< 0.0005	< 0.1	< 0.1
	C02-07	< 0.0005	< 0.0003	< 0.0005	< 0.0005	< 0.1	< 0.1
	C02-08	2.2	0.1	0.9	1.7	5.5	10.3
~	C03-10	8.0	0.1	1.3	0.2	0.9	10.4
ite ∕	C03-11	0.1	< 0.0003	< 0.0005	< 0.0005	< 0.1	0.1
S	C03-12	0.1	< 0.0003	0.0	0.0	0.1	0.2
	C03-13	0.0	< 0.0003	0.0	0.0	0.4	0.4
	C03-14	0.2	0.1	1.8	0.0	4.4	6.5
	MW07	< 0.0005	< 0.0003	< 0.0005	0.0	< 0.1	<0.1
	MW23	< 0.0005	< 0.0003	< 0.0005	0.0	< 0.1	<0.1
	Trip Blank	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.1	<0.1
	ISCO-3-B	1.7	0.1	0.1	0.0	< 0.1	3.8
	ISCO-3-C	9.9	0.6	0.0	0.0	3.1	23.9
	ISCO-4-C	9.3	0.9	0.0	0.0	2.8	23.2
	ISO 49	0.3	0.9	0.2	4.5	1.3	13.2
	REC 11	0.8	0.7	0.0	5.0	2.7	15.7
-	REC 12	2.4	0.0	0.0	0.0	2.2	7.2
ite]	REC 24	8.4	0.4	0.3	0.7	2.8	22.2
01	REC 26	0.4	0.1	0.0	0.4	0.2	2.0
	REC 31	7.9	0.9	0.4	1.0	5.5	25.7
	REC 34	2.2	3.8	0.3	6.1	9.9	34.9
	S14-49B	< 0.0005	< 0.0003	< 0.0005	< 0.0005	< 0.1	<0.1
	S14-7R	1.3	0.1	0.0	0.1	1.2	4.2
	Trip Blank	< 0.0005	< 0.0003	< 0.0005	< 0.0005	< 0.1	< 0.1

Table S2.	Sequences	used in	assA a	and <i>bssA</i>	primer	design	with	description	and	accession	number	from	NCBI
database.													

assA sequences (as per NCBI)	Accession Number	<i>bssA</i> sequences (as per NCBI)	Accession Number
Desulfatibacillum alkenivorans AK-01, complete genome	CP001322.1	Desulfobacula toluolica Tol2 complete genome	FO203503.1
Sulfate-reducing bacterium AK-01 alkylsuccinate synthase (assA1) gene, complete cds	DQ826035.1	<i>Geobacter metallireducens</i> benzylsuccinate synthase alpha subunit (bssA) gene, partial cds; and benzylsuccinate synthase beta subunit (bssB) gene, complete cds	AF441130
Sulfate-reducing bacterium AK-01 alkylsuccinate synthase (assA2) gene, complete cds	DQ826036	<i>Thauera aromatica</i> tdiSR and bssDCAB operons for benzylsuccinate synthase and a two-component regulatory system	AJ001848.3
<i>Desulfoglaeba alkanexedens</i> alkylsuccinate synthase (<i>assA</i>) gene, complete cds	GU453656.1	Geobacter metallireducens GS-15, complete genome	CP000148.1
Uncultured prokaryote clone Passaic_River_OTU2 alkylsuccinate synthase (assA) gene, partial cds	GU453657	Thauera sp. MZ1T, complete genome	CP001281.2
Gowanus_Canal_OTU1 alkylsuccinate synthase (assA) gene, partial cds	GU453659	Desulfobacula toluolica strain DSM 7467 benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	EF123663
Fort_Lupton_OTU3 alkylsuccinate synthase (assA) gene, partial cds	GU453664	benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	EF123665.1
Uncultured prokaryote clone Arthur_Kill_OTU1 alkylsuccinate synthase (assA) gene, partial cds	GU453666	Sulfate-reducing bacterium TRM1 benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	EF123667
Uncultured bacterium clone BGM02 alkylsuccinate synthase alpha subunit (assA) gene, partial cds	JX219367	Uncultured bacterium clone B49bss_021 benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	EF123670
Uncultured bacterium clone BGM24 alkylsuccinate synthase alpha subunit (assA) gene, partial cds	JX219368	Uncultured bacterium clone Pb312_80 benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	EF123703
Uncultured bacterium clone M-NAPH012 alkylsuccinate synthase alpha subunit (assA) gene, partial cds Uncultured bacterium clone M-OII 045	KC464263.1	Uncultured prokaryote clone Fort_Lupton_OTU1 benzylsuccinate synthase (bssA) gene, partial cds Uncultured bacterium clone F3A10	GU453672
alkylsuccinate synthase alpha subunit (assA) gene, partial cds	KC464317	benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	JX219282.1
Smithella sp. enrichment culture clone SCADC alkylsuccinate synthase alpha subunit (assA) gene, complete cds Bacterium enrichment culture clone residual oil-	KF824850	Uncultured bacterium clone F5A30 benzylsuccinate synthase alpha subunit homologue (bssA) gene, partial cds Uncultured bacterium clone M-CON001	JX219323
degrading OTU1 alkylsuccinate synthase alpha subunit gene, partial cds	KU094062	benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	KC463949.1
Bacterium enrichment culture clone octadecane- degrading OTU1 alkylsuccinate synthase alpha	KU094063	Uncultured bacterium clone M-OIL003 benzylsuccinate synthase alpha subunit	KC464029

Desulfatibacillum aliphaticivorans partial masD gene for methylalkyl succinate synthase, strain CV2803	LN868321.1	<i>Desulfosporosinus</i> sp. enrichment culture clone S2S-F11 1.697-4 benzylsuccinate synthase (bssA) gene, partial cds	KJ398020
<i>Desulfatibacillum alkenivorans</i> partial masD gene for methylalkyl succinate synthase, strain PF2803	LN868322	Uncultured bacterium clone OTU1 benzylsuccinate synthase alpha subunit (bssA) gene, partial cds	KX148522.1
Uncultured <i>Desulfatibacillum</i> sp. partial masD gene for 1-methyl alkyl succinate synthase, strain Propane60-GuB	LN879422		
Uncultured bacterium partial masD gene for 1- methylalkyl succinate synthase, clone OTU_1	LT546441		
uncultured bacterium partial assA gene for alkylsuccinate synthase, clone HeM4	LT907865.1		

Table S3. Designed Illumina MiSeq adapter primers for assA and bssA qPCR primers. Adapter sequences are attached

to the 5' end. "MS" denotes MiSeq.						
Name	Sequence (Nextera Adapter Sequence in bold)	Length (bp)				
bssA forward						
MSbssSuf	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATACGTGGAGCGACCCGCTC	55				
MSbssWin	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAATCCGTGGCTTCAGGTTCAT	55				
MSbssMys	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAATCCGTGGCACAACTGCATG	55				
MSbssOil	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATCCCTGGTTACAGGTCCAC	55				
bssA reverse						
MSbssHitr	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTCGTAGCCTTCCCAGTT	54				
assA forward						
MSassOri	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCCGCCACGGCCAACTG	51				
MSassMsd	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCAGCCACCGCCAACTG	51				
MSasSml	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGCGCCACGGCCAACTG	51				
MSassEx	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTGCGACCGCGAATTG	51				
assA reverse						
MS8543r	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGTCRTTGCCCCAYTTNGG	54				

Organism	Coding DNA Sequence (CDS)	% identity		
Polaromonas sp. JS666	SSU ribosomal protein S17P	83		
Acidovorax sp. KKS102	Nitrate reductase alpha subunit	87		
Rhizobium sp. TCK	RTCK_02902	80		
<i>Geobacter</i> sp. M21	Exinuclease ABC; ABC transporter related	78		
Sphingobium sp. SCG-1	Aromatic hydrocarbon degradation protein	97		
Dour dourou oo mananii atmain DVa	Bifunctional UDP-4-amino-4-deoxy-L-Arabinose/formyltransferase/UDP-	00		
Pseudomonus veronti straitt P v y	glucuronic acid oxidase ArnA			
Acidovorax cattleyae strain CAT98_1	Transketolase	84		
Rhodoferax sp. DCY110	Transketolase	84		
Gemmatimonas aurantiaca T-27	Replicative DNA Helicase	71		
Mycobacterium gallinarum JCM 6399	Hypothetical protein	99		
Dogudomonac hronnori otroin BC0771	UDP-4-amino-4-deoxy-L-Arabinose/formyltransferase / UDP-glucuronic			
r seudomonus orenneri strafft b32771	acid dehydrogenase/(UDP-4-keto-hexauronic acid decarboxylating)	77		
Mesorhizhobium	ABC transporter	85		
Jatrophihabitans sp. GAS493	Dyp-type peroxidase family	81		
Rhodoferax saidenbachensis strain	Methionine aminotransferase	82		
DSM 22694	Ded change determining angle in MarD	72		
Springomonus sp KC8	Ctr A setier transact ATPass	73		
	CtpA cation transport ATPase	76		
Geobacter sp. FeAm09	Glutamate synthase large subunit	79		
Pandorea pnomenusa strain M202	505 ribosomal protein	81		
Paracoccus anguinis strain OM2164	Heavy metal associated domain containing protein	75		
Planctomycetes bacterium Pla85_3_4	Hypothetical protein	73		
Collimonas fungivorans Ter331	Phosphoribosylformylglycinamidine synthase	85		
Noviherbaspirillum sp. UKPF54	Acyl-CoA synthetase	83		
Pelolinea submarina MO-CFX1	Simple sugar transport system ATP binding protein	75		
Janthinobacterium sp 17J80-10	ABC transporter	73		
Sulfuritalea hydrogenivorans sk43H	Hypothetical protein	72		
Iamiaceae bacterium SCSIO 58843	Pyruvate dehydrogenase (acetyl-transferring)	80		
Jatrophihabitans sp. GAS493	Dyp-type peroxidase family	81		
<i>Massilia violaceinigra</i> strain B2	Urocanate hydratase	84		
<i>Aquabacterium olei</i> strain NBRC 110486	Acyl transferase	77		
Azoarcus sp. DN11	Aspartate ammonia lyase	86		

Table S4. Examples of sequenced *assA* assay products that passed quality control analysis but that were not annotated as alkylsuccinate synthase genes using a BLASTn analysis.

References

- [1] Sievers, F.; Wilm, A.; Dineen, D.; Gobson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* **2011**, *7*, 539.
- [2] Benchling [Biology Software]. Retrieved from https://benchling.com 300, 2017.
- [3] Callaghan, A.V.; Davidova, I.A.; Savage-Ashlock, K.; Parisi, V.A.; Gieg, L.M.; Suflita, J.M.; Kukor, J.J.; Wawrik, B. Diversity of benyzl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. *Environ. Sci. Technol.* 2010, 44, 7287–7294.
- [4] von Netzer, F.; Pilloni, G.; Kleindienst, S.; Krüger, M.; Knittel, K.; Gründger, F.; Lueders, T. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. *Appl. Environ. Microbiol.* 2013, 79, 543–552.
- [5] Winderl, C.; Schaefer, S.; Lueders, T. Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (*bssA*) genes as a functional marker. *Environ. Microbiol.* 2007, 9, 1035–1046.
- [6] Alberta Environment and Parks (AEP). *Alberta Tier 1 Soil and Groundwater Remediation Guidelines;* Land Policy Branch, Policy and Planning Division: Edmonton, AB, Canada, **2019**.