
microorganisms

Article

Isolation of a Psychrotolerant and UV-C-Resistant
Bacterium from Elephant Island, Antarctica with a
Highly Thermoactive and Thermostable Catalase

María T. Monsalves 1, Gabriela P. Ollivet-Besson 1, Maximiliano J. Amenabar 1 and
Jenny M. Blamey 1,2,*

1 Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago 7750132, Chile;
mtmonsalves@bioscience.cl (M.T.M.); gollivet-besson@bioscience.cl (G.P.O.-B.);
amenabar.barriuso@gmail.com (M.J.A.)

2 Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins
3363, Estación Central, Santiago 9170022, Chile

* Correspondence: jblamey@bioscience.cl

Received: 27 November 2019; Accepted: 7 January 2020; Published: 10 January 2020
����������
�������

Abstract: Microorganisms present in Antarctica have to deal not only with cold temperatures but
also with other environmental conditions, such as high UV radiation, that trigger the generation of
reactive oxygen species. Therefore, Antarctic microorganisms must have an important antioxidant
defense system to prevent oxidative damage. One of these defenses are antioxidant enzymes,
such as catalase, which is involved in the detoxification of hydrogen peroxide produced under
oxidative conditions. Here, we reported the isolation and partial characterization of an Antarctic
bacterium belonging to the Serratia genus that was resistant to UV-C radiation and well-adapted to
cold temperatures. This microorganism, denominated strain I1P, was efficient at decreasing reactive
oxygen species levels produced after UV-C irradiation. Genomic and activity assays suggested that
the enzymatic antioxidant defense mechanisms of strain I1P, especially its catalase enzyme, may
confer UV resistance. This catalase was active in a wide range of temperatures (20–70 ◦C), showing
optimal activity at 50 ◦C (at pH 7.0), a remarkable finding considering its psychrotolerant origin. In
addition, this enzyme was thermostable, retaining around 60% of its activity after 6 h of incubation
at 50 ◦C. The antioxidant defense systems of strain I1P, including its surprisingly thermoactive
and thermostable catalase enzyme, make this microorganism a good source of biocompounds with
potential biotechnological applications.

Keywords: Antarctica; Serratia; psychrotolerant; UV-C radiation; catalase; thermostable; antioxidant;
ROS; oxidative stress

1. Introduction

Antarctica is one of the most extreme and pristine environments on Earth. Along with
low temperatures and low water activities, high ultraviolet (UV) radiation is also present in this
continent [1–4]. These environmental stresses trigger the generation of reactive oxygen species (ROS),
including superoxide anions (O2

−), hydrogen peroxide (H2O2), and the highly reactive hydroxyl radicals
(•OH), which could lead to oxidative stress if the antioxidant mechanisms of the cell are overcome by
pro-oxidant agents [3]. These species are highly reactive, causing oxidative damage and altering the
structure and function of macromolecules, such as DNA, lipids, and proteins [5–8]. Therefore, in order
to inhabit these environments, Antarctic microorganisms must have an important antioxidant defense
system to prevent oxidative damage [1,9,10]. These defense systems are classified into enzymatic or
non-enzymatic based on the nature of the antioxidant agents [11]. The non-enzymatic mechanism

Microorganisms 2020, 8, 95; doi:10.3390/microorganisms8010095 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
http://www.mdpi.com/2076-2607/8/1/95?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms8010095
http://www.mdpi.com/journal/microorganisms


Microorganisms 2020, 8, 95 2 of 16

involves the use of glutathione, vitamins, and/or pigments to prevent oxidative damage [3,12]. Among
these antioxidant agents, it has been shown that pigments might play a dual role by protecting
cells not only against oxidative damage but also against osmotic shock [3,12]. Some examples of
Antarctic microorganisms that use these non-enzymatic defense mechanisms include Pedobacter sp.,
a psychrololerant bacterium that produces different types of carotenoids with a strong antioxidant
capacity, protecting cells against lipid peroxidation and ROS induced by UV radiation [3]. Similarly,
Flavobacterium sp., Arthrobacter sp., and Sphingomonas sp., all of them isolated from Antarctica, also
produce pigments that protect cells against UV radiation [13].

The enzymatic mechanism involves the use of enzymes, such as superoxide dismutase (SOD),
catalase (CAT), and/or glutathione peroxidase (GPx), as the protecting agents against oxidative
damage [11,14]. The mechanisms involved in the enzymatic antioxidant reaction are various and
oftentimes work in synchrony against ROS. For example, SOD catalyzes the dismutation of O2

− into
oxygen (O2) and H2O2 and then CAT degrades H2O2 into O2 and water [14–16]. Some examples of
Antarctic microorganisms that rely on these enzymes against oxidative stress include Pseudomonas sp.,
Bacillus sp., and Marinomonas sp. [17]. Other Antarctic microorganisms, such as Colwellia psychrerythraea,
rely on both non-enzymatic mechanisms, through the use of reduced glutathione, which can protect
cells against free radicals, and enzymatic defense mechanisms, through the use of CAT and SOD [18].

Due to their properties, these antioxidant enzymes have also been of interest in biotechnology [16,
19]. In particular, CAT has been widely used in several industrial applications, including food or textile
processing, to remove H2O2 that is used for sterilization or bleaching purposes, respectively [20–24].

The growing demand for antioxidant enzymes in the market [16,20] in addition to the increasing
levels of UV radiation at which organisms are exposed to, mainly due to ozone depletion in the
atmosphere [2], have led to an increasing interest in ROS detoxification studies involving enzymatic
defense mechanisms. To this end, Antarctica represents a great natural laboratory to study UV-resistant
microorganisms that could reveal new antioxidant compounds or enzymes with novel properties.

In this work, we reported the isolation and partial characterization of a psychrotolerant and
radio-resistant bacterium from Elephant Island, Antarctica. The ability of this microorganism to resist
UV-C radiation prompted additional experiments aimed at further study of the mechanisms allowing
these cells to deal with ROS generation. Especially, we aimed to determine if these cells were capable
of decreasing ROS levels after UV-C radiation and to shed some light on the potential mechanisms
involved. The results suggest that the enzymatic antioxidant defense mechanisms of this Antarctic
bacterium, especially its CAT enzyme, may be important for conferring UV-C resistance. In addition,
the enzymatic and stability properties of the purified CAT make this enzyme a good candidate for
potential biotechnological applications.

2. Materials and Methods

2.1. Sample Collection and Enrichment of Strain I1P

Samples for enrichments and isolation were collected from Elephant Island (61◦08′ S 55◦07′ W),
Antarctica, during the Antarctic Chilean Expedition 46 (ECA 46). Surface soil samples (~8 ◦C; pH
~6.5) were sampled aseptically using a flame-sterilized spatula, placed in sterile vials, and stored for
transport to the laboratory where they were used for culture enrichments. Roughly ~500 mg of the
environmental sample was used to inoculate an aerobic media containing tryptone (10 g L−1), yeast
extract (5 g L−1), and NaCl (60 g L−1). The final pH of the medium was 7.0. In total, 100 mL of the
medium were dispensed into 250-mL bottles and were subjected to autoclave sterilization. Following
autoclave sterilization, the bottles were inoculated with the soil samples recovered from Elephant
Island and were incubated at 8 ◦C for up to two weeks. The progress of culture enrichments was
monitored by phase-contrast microscopy (Eclipse 80i, Nikon, Tokyo, Japan). Following 2 rounds of
dilution to extinction in conjunction with colony isolation from solid media, a single morphotype was
observed, which was designated as strain I1P.
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2.2. DNA Extraction, 16S rRNA Gene Amplification, and Phylogenetic Analysis

Genomic DNA was extracted from the isolate using a modified phenol–chloroform extraction as
previously described [25]. DNA extract was subjected to PCR amplification of archaeal and bacterial
16S rRNA genes. PCR amplification of the 16S rRNA gene was performed according to previously
described protocols [26] using archaeal primers 21F (5’-TCCGGTTGATCCYGCCGG-3’) and 1492R
(5’-GGTTACCTTGTTACGACTT-3’) and bacterial primers 334F (5’-CCAGACTCCTACGGGAGGCAGC-3’)
and 939R (5’-CTTGTGCGGGCCCCCGTCAATTC-3’). Archaeal 16S rRNA gene amplicons were not
detected. Bacterial 16S rRNA gene amplicons were purified, sequenced, assembled, and analyzed
using previously published methods [27]. Briefly, PCR products were purified with the commercial kit,
Wizard PCR Preps DNA Purification System (Promega, Madison, WI, USA), following the instructions
provided by the manufacturer. Purified products were sequenced using an ABI 3730xl automated
DNA sequencer (Applied Biosystems, Foster city, CA, USA) on the Biomedical Core Research from
the University of Michigan. Sequences were assembled using the BioEdit sequence alignment editor
freeware (version 7.2.5) (Ibis Therapeutics, Carlsbad, CA, USA) [28] and obtained contigs were subjected
to nucleotide–nucleotide Basic Local Alignment Search Tool (BLASTn) analysis [29] against the “nr”
database provided by the National Center for Biotechnology Information (NCBI). ClustalW software
(University College Dublin, Dublin, Ireland) was used to align the partial sequence of the 16S rRNA
gene with those of the type strains of species of the genus Serratia retrieved from GenBank. The software
package MEGA6 (Pennsylvania State University, PA, USA) [30] was used for phylogenetic analysis
using the neighbor-joining method [31]. Distances were computed using the maximum composite
likelihood method [32] with a bootstrap analysis of 1000. Nucleotide sequences of the 16S rRNA gene
of strain I1P were deposited in the GenBank database under the accession number MN011068.

2.3. Morphological, Physiological and Biochemical Characterizations

Cell morphology was examined by phase-contrast microscopy (Eclipse 80i, Nikon, Tokyo, Japan).
The temperature range for the growth of strain I1P was tested between 4 to 40 ◦C, at pH 7.0 (optimal
pH). The pH range for growth was tested between 4.0 and 11.0, at 22 ◦C (optimal temperature). The
salinity range for growth was tested between 1% and 21% NaCl at pH 7.0 and 22 ◦C. Biochemical
characterization was performed using the API 20 E Kit (bioMérieux, Inc., Marcy- l’Étoile, France).
Gram stain was determined using the Difco Gram-staining kit (BD Difco™ BBL™, BD, Drogheda,
United Kingdom).

2.4. Effect of UV Radiation on Cell Viability

UV radiation tolerance was studied by exposing sterile Petri plates containing 5 mL of liquid
culture (OD600 = 0.4) to UV-C radiation using previously described protocols [9]. A specially designed
dark chamber equipped with a UV-C lamp was used to irradiate cultures. Briefly, cultures were placed
30 cm away from the UV-C lamp and exposed to UV-C radiation for 2 h. Then, 100-µL aliquots were
taken at different time intervals, inoculated in Petri plates with solid LB medium, and incubated in
optimal conditions (see below) for 24 h. Cell viability was determined by colony forming units (CFUs)
per mL and expressed as the percent of viable cells. Escherichia coli strain BL21 (Promega, Madison,
WI, USA) and Geobacillus sp. strain GWE1 (personal culture collection) [33] were used as control
microorganisms. E. coli strain BL21, strain GWE1, and strain I1P were grown in Luria- Bertani (LB)
medium (at 37 ◦C), LB/3 medium (at 70 ◦C), and LB 6% NaCl (at 22 ◦C), respectively. The irradiance of
the UV-C lamp was quantified with a radiometer (VLX-3W; Vilber Lourmat, Marne-la-Vallée, France)
equipped with a UV-C sensor. The UV-C sensor was placed inside a dark chamber at the same distance
the cultures were placed. The average intensity of the lamp in addition with the UV-C radiation dose
(intensity × time) was determined by the radiometer.
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2.5. Detection of Reactive Oxygen Species (ROS)

For the quantification of ROS species, a free radical probe 2’,7’-dichlorodihydrofluoresceindiacetate
(H2DCFDA) (Sigma, San Louis, MO, USA) was used as previously described [3]. Cells of E. coli, strain
GWE1, and strain I1P were grown using the conditions described in the previous section. Cultures
were grown to OD600 = 0.4 and immediately exposed to UV-C radiation for 4 min. Then, cells were
washed with 10 mM potassium phosphate buffer (pH 7.0), incubated for 30 min in the same buffer
containing 10 µM H2DCFDA (dissolved in dimethyl sulfoxide), and washed and resuspended in
potassium phosphate buffer (10 mM, pH 7.0). Finally, cells were disrupted by sonication, cell debris
was removed by centrifugation (10 min 13,000× g), and the fluorescent intensity was measured in a
fluorescence multi-well plate reader (Biotek series FLX 800 TBI, Biotek, Bad Friedrichshall, Germany)
(excitation, 490 nm; emission, 519 nm). Results were normalized per mg of protein and expressed as
the percent of fluorescence for each strain. The fluorescence intensity of the unexposed control (time
0) was assigned 100% of the fluorescence and this value used to compare the fluorescence intensity
at the different time points. A negative and positive control for each strain were used to detect the
baseline of the fluorescence intensity and determine the concentration of the probe to obtain an optimal
signal, respectively. The negative control corresponded to cells treated with the probe but without any
other treatment that could induce ROS (i.e., UVC radiation). The positive control corresponded to cells
treated with the prove and an elicitor of ROS (UVC radiation for 5 min).

2.6. Enzyme Assay

Catalase activity was measured spectrophotometrically by monitoring the decrease in absorbance
at 240 nm due to the transformation of H2O2 to H2O and O2. The reaction mixture contained 10 mM
H2O2 and 50 mM potassium phosphate (pH 7.0). One unit (U) of CAT activity was defined as the
decomposition of 1 µmol of H2O2 per minute [34]. Peroxidase activity was monitored at 420 nm with
pyrogallol as the substrate [35]. SOD activity was assayed based on the ability of SOD to inhibit the
reduction of nitroblue tetrazolium (NBT) as previously described [14]. One U of SOD activity was
defined as the amount of enzyme that inhibited the reduction of NBT by 50%. The protein concentration
was measured by the method of Bradford [36] using a commercial assay kit (Bio-Rad, Berkeley, CA,
USA).

2.7. Effect of UV Radiation on Enzyme Activity

The effect of UV-C radiation on SOD and CAT activities was studied by exposing sterile Petri
plates containing 5 mL of liquid culture (OD600 = 0.4) to UV-C radiation using previously described
protocols [9]. Cultures were exposed to UV-C radiation for 50 min and aliquots were taken at different
time intervals and assayed for SOD and CAT activities. Enzyme activities at each time point were
compared to the enzyme activities of the unexposed cells (time 0), which were assigned 100% of the
relative activity. Measurements were performed in triplicate.

2.8. Enzyme Purification

Catalase enzyme was routinely purified from I1P cells at 22 ◦C. For the preparation of the crude
extract, 20 g of cells were lysed with a modified cellular disruption method [37]. Briefly, cells were
resuspended in 80 mL of 50 mM Tris HCl buffer (pH 7.5) containing 1 mM EDTA and lysozyme
(1 mg·mL−1) and incubated at 37 ◦C for 1 h. Then, the sample was disrupted using a sonicator (Branson
sonifier 450, Branson, Danbury, CT, USA) and the cell debris was removed by centrifugation (9000× g
for 30 min). The final supernatant was then used as the crude extract for the purification step. The crude
extract was loaded onto a column (XK 16/20, GE Healthcare, Chicago, IL, USA) of DEAE-Sepharose
Fast Flow (Pharmacia Biotech, Stockholm, Sweden) previously equilibrated with 50 mM Tris HCl
buffer (pH 8.0). The enzyme was eluted with a linear gradient of NaCl 0 to 1 M in Tris HCl buffer (pH
8.0) with a flow rate 1 mL·min−1. Fractions containing CAT activity were combined, concentrated
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to a volume of 1 mL by ultrafiltration (PM-30 membrane filter; Amicon, Burlington, MA, USA), and
applied to a column (Tricorn 10/600, GE Healthcare, Chicago, IL, USA) of Superdex-200 (Pharmacia
Biotech, Stockholm, Sweden) previously equilibrated with 0.2 M NaCl in 50 mM Tris HCl buffer (pH
8.0). Fractions with CAT activity were then loaded to a column Q-HiTrap Fast Flow (Pharmacia Biotech,
Stockholm, Sweden) previously equilibrated with 50 mM Tris HCl buffer (pH 8.0). The enzyme was
eluted with a linear gradient of NaCl 0 to 1 M in Tris HCl buffer (pH 8.0) with a flow rate of 1 mL·min−1.
All columns were controlled by a Pharmacia FPLC system (Pharmacia Biotech, Stockholm, Sweden).

2.9. Molecular Mass Determination

The apparent molecular mass of the native CAT was estimated by gel filtration chromatography
on a Superdex-200 column (Tricorn 10/600, GE Healthcare, Chicago, IL, USA) (Pharmacia Biotech,
Stockholm, Sweden) as previously described [14]. Briefly, a Superdex-200 column was equilibrated with
50 mM Tris HCl buffer (pH 8.0) containing 0.2 M NaCl and calibrated using bovine GDH (300.0 kDa),
BSA (66.0 kDa), ovalbumin (45.0 kDa), and lysozyme (14.3 kDa) as the standard proteins. Blue dextran
was used to determine the void volume. The subunit molecular mass was determined by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (12%) according to the method of
Laemmli [38] using a wide range marker (Thermo Scientific, Waltham, MA, USA) with the following
proteins: β-galactosidase (120 kDa), BSA (85 kDa), ovalbumin (50.0 kDa), cardonic anhydrase (35 kDa),
β-lactoglobulin (25 kDa), and lysozyme (20 kDa). Gel was stained with 0.2% Coomassie Brillian
Blue R250.

2.10. Protein Identification

Catalase was identified by Matrix-Assisted Laser Desorption/Ionization – Time-Of-Flight (MALDI
TOF/TOF) in the National Center for Biotechnology, Spain. Briefly, protein samples were digested with
trypsin and analyzed with a MALDI TOF/TOF mass spectrometer. Mass spectra (m/z) corresponding
of the tryptic peptides were obtained and analyzed against the National Center for Biotechnology
Information Non-redundant (NCBInr) database.

2.11. Effects of pH and Temperature on Catalase Activity

The pH dependence of CAT activity was determined between pH 5.5 and 8.0 using the following
buffers: 50 mM MES (pH 5.5–6.5), 50 mM phosphate (pH 7.0), 50 mM EPPS (pH 7.5), and 50 mM Tris
HCl (pH 8.0). The temperature range of CAT activity was determined between 20 and 70 ◦C, at pH 7.0.

2.12. Thermostability

For determination of CAT thermostability, the enzyme was placed in small tubes with O-ring-sealed
caps and incubated at 50 ◦C in a dry bath (MD-02N-220, Major Science, Saratoga, CA, USA) for 0 to 6 h,
as previously described [37]. Samples were taken at different times and assayed for enzyme activity.
Residual activity was determined at 50 ◦C.

2.13. Effect of Inhibitors on Catalase Activity

Catalase activity was tested in the presence of different concentrations of inhibitors, including
3-amino-1,2,4-triazole (75 mM) [39], potassium cyanide (10 mM) [39], and H2O2 (80 mM) [39,40]. The
reaction mixture was incubated for 2 min at 25 ◦C, and the remaining activity was quantified according to
Allgood and Perry [39]. The effect of organic solvents on CAT activity was also evaluated. The enzyme
was mixed with ethanol and chloroform (10:5:3) and vortexed for 10 min at room temperature [41].
Then, CAT activity was monitored spectrophotometrically at 240 nm as previously described.



Microorganisms 2020, 8, 95 6 of 16

2.14. Statistical Analyses

Two-tailed Student’s t-tests were used to evaluate the statistical significance (p < 0.05) of differences
between datasets and were conducted in Microsoft Excel.

3. Results and Discussion

Antarctica could be considered as one of the wildest, extreme, and more isolated continents on Earth.
Microbes in Antarctica have to deal with different extreme conditions, including low temperatures,
low water activities, high salt concentrations, and/or high UV radiation [1,4]. These conditions often
occur in synchrony, selecting for microorganisms that can withstand different extreme conditions
simultaneously [1,9,10]. To this end, two of the most ubiquitous conditions to which microorganisms are
exposed to in Antarctica are cold temperatures and high UV radiation [2,3]. Since these environmental
stresses trigger the generation of ROS [3,42], microorganisms inhabiting these environments must have
an important antioxidant defense system to prevent oxidative damage.

To study if microorganisms present in Antarctica are adapted to cold temperatures and UV
radiation, and to shed some light on the mechanisms allowing these cells to deal with ROS generation,
we isolated and partially characterized a psychrotolerant and radio-resistant microorganism from
Elephant Island, Antarctica, designated as strain I1P. This rod-shaped microorganism was gram
negative (Supplementary Figure S1) and grew in a temperature range from 4 to 37 ◦C (optimum growth
at 22 ◦C) and in a pH range from 5 to 10 (optimum growth between 7 and 9). The salinity range for
growth of strain I1P was 2% to 19% NaCl (optimum growth between 2% and 6%). Its biochemical
characterization using the API 20 E Kit (Table 1) indicated that strain I1P was positive for L-tryptophane
deaminase, gelatinase, reduction of nitrates to nitrites (NO2), and reduction of nitrates to nitrogen gas
(N2). Negative results were obtained for β-galactosidase, arginine dihydrolase, lysine decarboxylase,
ornithine decarboxylase, citrate utilization, H2S production, urease, indol production, and acetoin
production. All fermentation/oxidation tests for carbohydrates were negative in the API20 E strips.

Table 1. Morphological, physiological, and biochemical characterization of strain I1P.

Characteristics I1P

Morphology rod
Gram stain negative

Temperature range (optimum) 4–37 ◦C (22 ◦C)
pH range (optimum) 5–10 (7–9)

Salinity range (optimum) 2–19% (2–6%)
API 20 E tests
β-galactosidase −

Arginine dihydrolase −

Lysine decarboxylase −

Ornithine decarboxylas −

Citrate utilization −

H2S production −

Urease −

l-tryptophane deaminase +
Indol production −

Acetoin production −

Gelatinase +
d-glucose (fermentation-oxidation) −

d-mannitol (fermentation-oxidation) −

Inositol (fermentation-oxidation) −

d-sorbitol (fermentation-oxidation) −

l-rhamnose (fermentation-oxidation) −

d-sucrose (fermentation-oxidation) −

d-melibiose (fermentation-oxidation) −

Amygdalin (fermentation-oxidation) −

l-arabinose (fermentation-oxidation) −

Nitrate reduction to NO2 +
Nitrate reduction to N2 +

+ positive reaction; − negative reaction.
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Analysis of the 16S rRNA gene partial sequence indicated that strain I1P was 96.41% identical
to the 16S rRNA gene from Serratia proteamaculans (closest cultured microorganism). This 16S rRNA
gene sequence similarity was below the species delineation threshold value of 98.7% suggested
by Stackebrandt and Ebers [43] or <97% as suggested by other authors as the threshold for a new
specie [44]. The evolutionary history of the 16S rRNA gene sequence from strain I1P, inferred using
the neighbor-joining method (Figure 1), shows the phylogenetic placement of strain 1IP within
the Serratia genus. Although S. proteamaculans was the closest cultured microorganism, strain 1IP
formed a separate branch from this specie. These differences between 16S rRNA gene sequences, in
addition to the biochemical differences between strain I1P and S. proteomaculans [45,46], particularly the
l-tryptophane deaminase activity present in I1P but not in other strains from S. proteomaculans [45,46]
and the absence of β-galactosidase, lysine decarboxylase, and ornithine decarboxylase activities and
the inability to use citrate or ferment/oxidize carbohydrates by I1P in comparison to other strains from
S. proteomaculans [45,46], suggests that I1P may represent a novel specie within the Serratia genus.
However, more information is required to further support this observation.
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Serratia genus. The percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) are shown next to the branches. Pseudomonas aeruginosa DSM 50071T
was used as an out-group. Bar, 2 nucleotide substitutions per 100 nucleotides.

Consistent with members of the Serratia genus [47], strain I1P was gelatin and nitrate positive,
displayed salt tolerance, and grew at low temperatures and alkaline pH. Although Serratia strains have
been previously isolated from cold temperature environments, including Antarctica [48–50], to our
knowledge, there is no report about the effect of UV-C radiation on cell viability in members from this
genus. To evaluate the effect of UV-C radiation in strain I1P, the cell viability of UV-C-exposed cultures
was studied. E. coli and Geobacillus sp. strain GWE1 were used as “control cultures” for UV-sensitive
and UV-resistant microorganisms, respectively [14]. As expected, E. coli was not resistant to UV-C
radiation, being completely unviable after 5 min of irradiation (Table 2). In comparison, Geobacillus
sp. strain GWE1 was more resistant to UV-C radiation, likely due to its efficient enzymatic defense
mechanism against ROS [14]. Strain I1P was remarkably more resistant to UV-C radiation than both
control microorganisms, being able to form colonies even after 120 min of UV-C irradiation (final UV-C
dose 6.33 Jls/cm2) (Table 1). Although Geobacillus sp. strain GWE1 and Serratia sp. strain I1P were
able to form colonies after 120 min of UV-C irradiation, strain GWE1 lost over 90% viability after 5
min of UV-C irradiation. Differences in the cell viability between strains were statistically significant
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(p < 0.05). These results suggest that strain I1P must have an efficient antioxidant defense mechanism
that allows these cells to deal with ROS generation to prevent oxidative damage, particularly during
the first stages of UV exposure [11,51–54].

Table 2. Viability of cells exposed to UV-C radiation.

E. coli GEW1 I1P

Time (min) Viability * UV Dose # Viability * UV Dose # Viability * UV Dose #

0 100 0 100 0 100 0
5 0 0.19 4.5 0.19 75.0 0.19
30 0 1.26 0.08 1.26 18.5 1.26
60 0 2.63 0.02 2.63 5.0 2.63

120 0 6.33 0.01 6.33 2.0 6.33

* Viability in %, 100% of viable cells represents the maximum number of colonies counted. Measurements were
performed in quintuplicate. # UV dose in Jls/cm2.

In order to study the antioxidant response to UV radiation, intracellular ROS levels were measured
with the free radical probe H2DCFDA. This probe is sensitive to peroxynitrite anion, peroxyl radical,
and H2O2. All these ROS can cause oxidative stress if the antioxidant defense system is overcome.
Cultures of E. coli, Geobacillus sp. strain GWE1, and Serratia sp. strain I1P were exposed to UV-C
radiation for 2 and 4 min and their fluorescence intensity compared to the unexposed cells (time
0), which were assigned 100% of the fluorescence. Cultures were only irradiated for 4 min, since E.
coli was not viable after 5 min of irradiation with UV-C (Table 1), preventing a comparison of ROS
production over this time. Although the fluorescence intensity could be directly measured on intact
cells, cell lysis considerably increased the fluorescent signal, facilitating the measurements. Because
of this, and also based on previous reports that disrupted cells for ROS determination when using
this free radical probe, we lysed the cells before the fluorescent measurements. All cultures showed a
statistically significant (p < 0.05) increase in intracellular ROS production after UV-C radiation, with
E. coli being the microorganism that produced more ROS after UV-C treatment (~80% after 2 min)
(Figure 2). Although both Geobacillus sp. strain GWE1 and Serratia sp. strain I1P displayed a ~30%
increase in ROS levels after 2 min of UV-C exposure, strain I1P was more efficient at decreasing these
ROS levels after 4 min of irradiation (Figure 2). This suggested that Serratia sp. strain I1P must have an
efficient antioxidant defense system against UV radiation, in comparison to E. coli and Geobacillus sp.
strain GWE1.
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2’,7’-dichlorodihydrofluorescein diacetate. Cells were exposed to UV-C radiation for 2 and 4 min and
their fluorescence intensity compared to the unexposed control (time 0), which was assigned 100% of
the fluorescence. Measurements were performed in quintuplicate.
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To date, two main defense mechanisms against oxidative damage have been described [11]. One
is non-enzymatic, involving the use of glutathione, vitamins, and pigments, such as carotenoids, to
prevent oxidative damage [3,12]; and the second is an enzymatic mechanism involving the use of
enzymes, such as SOD, CAT, and/or GPx [11,14]. Genomic analysis of Serratia sp. strain I1P (protected
data, unavailable) suggested a potential role for both non-enzymatic (through glutathione) and/or
enzymatic defense mechanisms (through SOD, CAT, or GPx) against oxidative stress. Preliminary
enzyme activity screening on crude extracts from strain I1P revealed both SOD (1.37 U/mg) and CAT
(25 U/mg) activities, consistent with the ability of this microorganism to withstand UV-C radiation. To
further evaluate the role of these antioxidant enzymes in the resistance of I1P against UV-C radiation,
SOD and CAT activities were measured in cells exposed to UV-C radiation. SOD and CAT activities
increased approximately 1.4- and 2.2-fold, respectively, after 10 min of UV-C radiation, in comparison
to the unexposed cells (time 0) (Figure 3). The bigger increase in CAT activity after UV-C radiation, in
addition to the higher specific activity (~18-fold) of CAT related to SOD, suggests that CAT contributes
in a higher degree to the antioxidant response of I1P cells than SOD. The role of CAT conferring UV-C
radiation resistance was further supported by the use of a recombinant E. coli BL21 strain expressing
the gene that encodes the CAT enzyme from I1P (Monsalves et al. in prep). This recombinant strain
was irradiated with UV-C radiation for 35 min and the cell viability was assayed at different intervals
of time. In comparison to E. coli strain BL21 without the plasmid carrying the gene that codes for CAT
(negative control), the recombinant strain was more resistant to UV-C radiation, highlighting the role
of this enzyme in conferring UV-C radiation (Supplementary Table S1).
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Figure 3. Effect of UV-C radiation on superoxide dismutase (SOD) and catalase (CAT) activities of I1P.
Cells were exposed to UV-C radiation for 50 min. SOD and CAT activities were measured at different
lengths of time and compared to the enzyme activities of the unexposed cells (time 0), which were
assigned 100% of the relative activity. Measurements were performed in triplicate.

Based on genomic data and enzymatic activity measurements of I1P, it is likely that a set of
different antioxidant defense mechanisms are simultaneously involved in the resistance to UV-C
radiation. To this end, O2

− produced in UV-C-exposed cells is degraded into O2 and H2O2 through the
activity of SOD and then CAT degrades H2O2 into O2 and water [14–16]. Additionally, GPx could also
reduce H2O2 to H2O by oxidizing two molecules of reduced glutathione to glutathione disulfide, and
then the enzyme glutathione reductase, which is also encoded in the I1P genome, could reduce the
oxidized glutathione to complete the cycle [55,56] (Figure 4).
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Among these antioxidant agents, SOD and CAT have been of great interest in biotechnology
in the last decades [19]. The high activity of CAT in comparison to the other antioxidant enzymes
from I1P prompted further analyses to purify and characterize this enzyme in order to address the
potential use of this CAT in biotechnological applications. Table 3 shows the results of the purification
method developed for the CAT from strain I1P. An increment in the specific activity and a decrease in
the amount of protein with each purification step was observed. The enzyme was purified 298-fold
compared to the crude extract, with a 21% recovery of activity after three successive chromatographic
steps. The apparent molecular mass of the native enzyme was 223.8 kDa as estimated by size
exclusion chromatography using a Superdex-200 column. Based on SDS-PAGE gel electrophoresis, the
purified enzyme was found to be composed of subunits of an estimated molecular mass of 62.7 kDa
(Supplementary Figure S2). The experimental results obtained from the size exclusion chromatography
and gel electrophoresis suggest that the native enzyme has a tetrameric structure, composed of four
identical or similar subunits. In order to confirm the identity of the CAT enzyme, the 62.7-kDa band
was excised from SDS-PAGE and subjected to MALDI TOF/TOF analysis. The experimentally obtained
masses were compared with the theoretical peptide masses of proteins stored in the NCBInr database
using the mass search program Mascot as previously described [37]. The result of the peptide mass
fingerprinting showed that the enzyme matched with the information reported for the CAT from
Serratia proteamaculans 568.

Table 3. Purification of catalase from I1P.

Purification Step Total Protein (mg) Total Activity (U) Specific Activity (U/mg) Purification (Fold)

Crude Extract 2320 59,143 25 1
DEAE- Sepharose FF 26 82,141 318 13

Superdex-200 13 81,321 6265 251
Q-HiTrap FF 2 12,511 7447 298

To evaluate the potential role of this CAT enzyme in biotechnological applications (i.e., biocatalysts
must be stable and active in the harsh conditions at which industrial processes usually take place), the
optimal pH and temperature for the CAT activity in addition to stability studies were performed. The
effects of temperature and pH on CAT activity are shown in Figure 5a,b, respectively. Catalase from
strain I1P was active in a wide range of temperatures (from 20 to 70 ◦C), showing optimal activity at 50
◦C (at pH 7.0) (Figure 5a). The optimal pH for enzyme activity was 7.0 (at 50 ◦C) (Figure 5b). Although
it is not clear why an apparent two pH optimum were observed in this purification, the optimal pH
(pH 7.0) was always the same between different batches of purifications. Surprisingly, the optimal
temperature for enzyme activity of this CAT was found to be higher than the upper temperature at
which strain I1P was able to grow (37 ◦C), indicating that this enzyme is thermoactive and more similar
to thermophilic than psychrophilic homologs. It is important to mention that although the temperature
range for enzyme activity reported here was between 20 and 70 ◦C, this catalase was even active at 0 ◦C,
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as shown by the production of bubbles due to the enzymatic decomposition of H2O2 in the presence
of catalase (Supplementary Figure S3). Quantitative data could not be obtained below 20 ◦C due to
experimental constraints, thus not allowing spectrophotometric enzymatic assays to be performed
with temperature control at lower temperatures.
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Figure 5. Optimal temperature (a) and pH (b) of I1P catalase activity. Temperature and pH range
of catalase activity was determined at pH 7.0 and 50 ◦C respectively. Here, 100% of catalase activity
represents the maximum activity measured. Measurements were performed in triplicate.

To further evaluate the thermoactive properties of I1P CAT, the themostability of this enzyme was
studied. Figure 6 shows that the enzyme retained around 60% of its activity after 6 h of incubation at
50 ◦C. In comparison to other catalases isolated from psychrophiles or facultative psychrophiles, I1P
CAT was more thermostable than the enzymes from Vibrio rumoiensis S-1T or the Antarctic bacterium
Bacillus sp. strain N2a, whose catalases only retained 70% of its activity after 15 min of incubation at
50 ◦C [40] and 40% of its activity after 40 min of incubation at 50 ◦C [57], respectively. These results
further support the observation that CAT from strain I1P is thermoactive, an important property in the
biotechnological industry [58].
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Figure 6. Thermostability of I1P catalase at 50 ◦C. Measurements were performed at pH 7.0 and 50
◦C. Here, 100% of catalase activity represents the maximum activity measured. Measurements were
performed in triplicate.

Although it has been previously reported that other catalases from psychrophilic microorganisms
could share some characteristics (i.e., themostability, optimal temperature) with their mesophilic
homologues [57], to our knowledge, this is the first report of a CAT from a psychrotolerant
microorganism that is more similar to thermophilic homologs. Although the structural mechanisms
determining these thermal characteristics are not known, it has been previously suggested that
stabilizing interactions of the secondary, tertiary, and quaternary structure throughout the protein
are likely involved in conferring these properties [59]. Further studies are required to investigate the
structural characteristics of this thermoactive enzyme responsible for its thermostability and activity at
thermophilic temperatures.

Another remarkable feature of the CAT enzyme from strain I1P was its high stability at room
temperature and at freezing conditions. I1P CAT retains 74% of its activity for 30 days at room
temperature, 66% of its activity for 137 days at 4 ◦C, and 100% of its activity after 137 days at −20 ◦C
(Supplementary Figure S4). Furthermore, this enzyme resists freezing and thawing cycles, retaining
66% of its activity after 33 of these cycles. These characteristics, in addition to the ability of the enzyme
to be active in a wide range of temperatures, being thermoactive and thermostable, make this enzyme
a good candidate for industrial applications. Moreover, the catalytic activity of the CAT enzyme from
strain I1P (Table 3) was shown to be higher than the activity of several commercial catalases currently
sold in the market (Table 4), reaching 7447 U/mg in its last purification step.

Table 4. Commercially available catalases and their uses.

Manufacturer Commercial Name Source Applications Specific Activity (U/mg)

Novozyme Terminox Ultra No data Textile industry 10

Catazyme Aspergillus niger * Food and textile
industry 4960

Sigma-Aldrich
Catalase A. niger

Research market
>4000

Catalase Corynebacterium
glutamicum >71,428

Catalase Micrococcus luteus 65–150

Biocatalysts Catalase 929 L A. niger Food industry 16.5

Calzyme Catalase A. niger No data 2000

This study Catalase Serratia sp. I1P Research market 7447

* Recombinant version.
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To further characterize this CAT enzyme, the effect of different inhibitors, including 3-amino-1,2,4
triazole (75 mM), potassium cyanide (10 mM), and H2O2 (80 mM), on enzyme activity was also studied.
The catalytic activity of the purified CAT from strain I1P was inhibited by 70% by 3-amino-1,2,4-triazole
and 90% by potassium cyanide. Treatment with H2O2 only inhibited 30% of the enzyme activity. On
the other hand, organic solvents, like ethanol and chloroform, did not have a strong effect on CAT
activity, since the enzyme was able to maintain 50% of its activity after 41 h of exposure to these organic
solvents. The inhibition pattern of I1P CAT activity, specifically its sensitivity to 3-amino-1,2,4-triazole
and its stability against chemical denaturation by organic solvents, suggests that CAT from strain
I1P belongs to the monofunctional catalase group. This is consistent with the homotetrameric nature
of the I1P CAT, which is a characteristic of most monofunctional catalases [40,60,61]. In contrast,
catalase-peroxidases are more sensitive to heat, organic solvents, and H2O2 than the monofunctional
catalases and are insensitive to 3-amino-1,2,4-triazole [40]. The sensibility to potassium cyanide, a
typical inhibitor of heme proteins, suggests that the subunits of I1P CAT possess a ferric heme, a shared
characteristic between monofunctional catalases and catalase-peroxidases but absent in the third class
of catalases, known as manganese-catalases [62]. The observation that the CAT enzyme from strain I1P
belongs to the monofunctional catalase group was supported by enzyme activity analysis that showed
an absence of peroxidase activity in the purified enzyme.

4. Conclusions

The evidence presented here indicates that Serratia sp. strain I1P is resistant to UV-C radiation
and is well-adapted to cold temperatures. These physiological adaptations are likely consequences
of the Antarctic environmental pressures (i.e., high UV radiation, cold temperatures), which select
for microorganisms that can withstand these extreme conditions in order to thrive. Among the
properties that allow strain I1P to deal with ROS generation caused by the environmental conditions
present in Antarctica, we suggest that CAT plays a key role in the antioxidant defense mechanisms
of this bacterium. The characterization of the purified CAT from strain I1P showed that this enzyme
was thermoactive with a remarkable thermostability, considering that this enzyme was purified
from a psychrotolerant microorganism. Moreover, in addition to its thermal stability and activity at
thermophilic temperatures, this enzyme was shown to be stable for a long time at room temperature
and during freezing conditions. These stability properties, in conjunction with its good catalytic activity,
make this CAT enzyme a good candidate for industrial applications. These observations, in addition
to previous investigations reporting the isolation of novel enzymes with potential biotechnological
applications from Antarctic microorganisms [1,16], underscore the importance of Antarctica as an
interesting source of new extreme microorganisms containing stable and active enzymes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/1/95/s1, Figure
S1: Optical micrograph of strain I1P, Figure S2: Molecular mass determination of I1P catalase subunits and native
enzyme, Figure S3: Qualitative assay to detect catalase activity at 0 ◦C, Figure S4: Stability of I1P catalase, Table
S1: Viability of E. coli BL21 cells exposed to UV-C radiation.

Author Contributions: Conceptualization, M.T.M., M.J.A. and J.M.B; methodology, M.T.M., G.P.O.-B., M.J.A. and
J.M.B.; validation, M.T.M., G.P.O.-B., M.J.A. and J.M.B.; formal analysis, M.T.M., M.J.A. and J.M.B.; investigation,
M.T.M., G.P.O.-B., M.J.A. and J.M.B.; data curation, M.J.A.; writing-original draft preparation, M.T.M., M.J.A.
and J.M.B.; writing-review and editing, M.T.M., M.J.A. and J.M.B.; visualization, M.T.M., M.J.A. and J.M.B.;
supervision, M.J.A. and J.M.B., funding acquisition, J.M.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by INNOVA-CORFO grant 07CN13PXT-64, the Air Force Office of Scientific
Research (AFOSR) grant FA9550-09-1-0349, Conicyt-PIA grant No. ACT-1412 and Instituto Antártico Chileno
(INACH).

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2076-2607/8/1/95/s1


Microorganisms 2020, 8, 95 14 of 16

References

1. Flores, P.A.; Amenábar, M.J.; Blamey, J.M. Hot Environments from Antarctica. Source of Thermophiles and
Hyperthermophiles, with Potential Biotechnological Applications. In Thermophilic Microbes in Environmental
and Industrial Biotechnology, 2nd ed.; Satyanarayana, T., Littlechild, J., Kawarabayasi, Y., Eds.; Springer:
Dordrecht, The Netherlands, 2013; pp. 99–118. [CrossRef]

2. Smith, R.C.; Prézelin, B.B.; Baker, K.S.; Bidigare, R.R.; Boucher, N.; Coley, T.R.; Karentz, D.; MacIntyre, S.;
Matlick, H.A.; Menzies, D. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic
waters. Science 1992, 255, 952–959. [CrossRef] [PubMed]

3. Correa-Llantén, D.N.; Amenábar, M.J.; Blamey, J.M. Antioxidant capacity of novel pigments from an Antarctic
bacterium. J. Microbiol. 2012, 50, 374–379. [CrossRef]

4. Amenabar, M.J.; Flores, P.A.; Pugin, B.; Boehmwald, F.A.; Blamey, J.M. Archaeal diversity from hydrothermal
systems of deception island, Antarctica. Polar Biol. 2013, 36, 373–380. [CrossRef]

5. Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. Trans. Integr. 1997, 82, 291–295. [CrossRef]
6. Briviba, K.; Klotz, L.O.; Sies, H. Toxic and signaling effects of photochemically or chemically generated

singlet oxygen in biological systems. Biol. Chem. 1997, 378, 1259–1265.
7. Wu, H.; Gao, K.; Villafañe, V.E.; Watanabe, T.; Helbling, E.W. Effects of solar UV radiation on morphology

and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 2005, 71,
5004–5013. [CrossRef]

8. Imlay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [CrossRef]
9. Correa-Llantén, D.N.; Amenábar, M.J.; Muñoz, P.A.; Monsalves, M.T.; Castro, M.E.; Blamey, J.M.

Alicyclobacillus sp. strain CC2, a thermo-acidophilic bacterium isolated from deception island (Antarctica)
containing a thermostable superoxide dismutase enzyme. Adv. Polar Sci. 2014, 25, 92–96. [CrossRef]

10. Mondino, L.J.; Asao, M.; Madigan, M.T. Cold-active halophilic bacteria from the ice-sealed Lake Vida,
Antarctica. Arch. Microbiol. 2009, 191, 785–790. [CrossRef]

11. Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species.
Int. Microbiol. 2000, 3, 3–8.

12. Correa-Llantén, D.N.; Amenabar, M.J.; Blamey, J.M. Resistance to hypoosmotic shock of liposomes containing
novel pigments from an Antarctic bacterium. Microbiol. Biotechnol. Lett. 2012, 40, 215–219. [CrossRef]

13. Dieser, M.; Greenwood, M.; Foreman, C.M. Carotenoid Pigmentation in Antarctic Heterotrophic Bacteria as a
Strategy to Withstand Environmental Stresses. Arct. Antarct. Alp. Res. 2010, 42, 396–405. [CrossRef]

14. Monsalves, M.T.; Amenabar, M.J.; Ollivet-Besson, G.P.; Blamey, J.M. Effect of UV radiation on a thermostable
superoxide dismutase purified from a thermophilic bacterium isolated from a sterilization drying oven.
Protein Pept. Lett. 2013, 20, 749–754. [CrossRef]

15. Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant
Physiol. 2006, 141, 312–322. [CrossRef]

16. Boehmwald, F.; Muñoz, P.; Flores, P.; Blamey, J.M. Functional screening for the discovery of new extremophilic
enzymes. In Biotechnology of Extremophiles: Grand Challenges in Biology and Biotechnology; Rampelotto, P., Ed.;
Springer: Cham, Switzerland, 2016; pp. 321–350. [CrossRef]

17. Zheng, Z.; Jiang, Y.; Miao, J.; Wang, Q.F.; Zhang, B.T.; Li, G.Y. Purification and characterization of a cold-active
iron superoxide dismutase from a psychrophilic bacterium, Marinomonas sp. NJ522. Biotechnol. Lett. 2006, 28,
85–88. [CrossRef]

18. Ji, M.; Barnwell, C.; Grunden, A. Characterization of recombinant glutathione reductase from the psychrophilic
Antarctic bacterium Colwellia psychrerythraea. Extremophiles 2015, 19, 863–874. [CrossRef]

19. Kaushal, J.; Mehandia, S.; Singh, G.; Raina, A.; Arya, S.K. Catalase enzyme: Application in bioremediation
and food industry. Biocatal. Agric. Biotechnol. 2018, 16, 192–199. [CrossRef]

20. Liu, X.; Kokare, C. Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes;
Brahmachari, G., Demain, A.L., Adrio, J.L., Eds.; Elsevier: London, UK, 2017; pp. 267–298. [CrossRef]
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