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Abstract: An aerobic denitrification strain, Pseudomonas balearica RAD-17, was identified and showed
efficient inorganic nitrogen removal ability. The average NO3

−-N, NO2
−-N, and total ammonium

nitrogen (TAN) removal rate (>95% removal efficiency) in a batch test was 6.22 mg/(L·h), 6.30 mg/(L·h),
and 1.56 mg/(L·h), respectively. Meanwhile, optimal incubate conditions were obtained through
single factor experiments. For nitrogen removal pathways, the transcriptional results proved
that respiratory nitrate reductases encoded by napA, which was primarily performed in aerobic
denitrification and cell assimilation, were conducted by gluS and gluD genes for ammonium
metabolism. In addition, adding the strain RAD-17 into actual wastewater showed obvious higher
denitrification performance than in the no inoculum group (84.22% vs. 22.54%), and the maximum cell
abundance achieved 28.5 ± 4.5% in a ratio of total cell numbers. Overall, the efficient nitrogen removal
performance plus strong environmental fitness makes the strain RAD-17 a potential alternative for
RAS (recirculating aquaculture system) effluent treatment.

Keywords: aerobic denitrification; Pseudomonas balearica RAD-17; nitrogen removal; metabolic
pathways; bioaugmentation

1. Introduction

Biological nitrogen removal is crucial for wastewater treatment, and the heterotrophic
denitrification is the most selective method due to its high efficiency and flexibility [1]. During the
process, organic carbons are necessary to supply the electrons to the nitrate. Substances such as methanol,
ethanol, etc., were commonly used [2]. However, precise liquid organic was difficult to measure, and an
overdose can add organic loading to the bio-filter, which would have negative effects on the aquaculture
system stability [3]. In wastewater with low C/N ratio characteristics, solid-phase denitrification that
use biodegradable polymer as a simultaneous organic carbon source, as well as biofilm carriers, are
considered more appropriate in specific fields [4]. For example, in recirculating aquaculture system (RAS)

Microorganisms 2020, 8, 72; doi:10.3390/microorganisms8010072 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0003-4887-2433
https://orcid.org/0000-0002-5177-8010
http://dx.doi.org/10.3390/microorganisms8010072
http://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/8/1/72?type=check_update&version=2


Microorganisms 2020, 8, 72 2 of 17

effluent, PBS (poly-butylene succinate) or PHBV (poly 3-hydroxybutyrate-co-3-hydroxyvalerate)-based
denitrifying reactors demonstrated efficient nitrogen removal performance [3,5]. Therefore, using
biodegradable polymer as slow-release organic will also have additional benefits to increase the fish
survival rate [3,6].

The drawback of the biodegradable polymer-based denitrification is the relative high cost in
media when compared with liquid carbon [4]. On the other hand, residual DOC (dissolved organic
carbon) in effluent commonly appeared in solid-phase denitrifying reactors [3,7,8], which indicated
that the entirety of the carbon source was not optimally used since part of degrading bacteria have
an incapable ability in denitrification [9]. Moreover, the residual organic substances were considered
to support DNRA (dissimilatory nitrate reduction to ammonium) over denitrification [10], as well
as the SRB (sulfate reduced to sulfide) process [3], especially in marine environment conditions.
Therefore, enhancement of the denitrification performance is crucial for this technology in practice.

An interesting alternative to promote the denitrification performance is the supplement of
functional bacteria through bioaugmentation technology [11]. In a previous study, adding the
Diaphorobacter polyhydroxybutyrativorans strain SL-205 enabled rapid reactor startup and improved
nitrate removal performance when compared with active sludge inoculation in an anoxic solid-phase
denitrification reactor [12]. This indicated that the initial microbial regulation can support relative
bacterial community in reactors. Furthermore, to suppress the DNRA and SRB pathways in a marine
PBS denitrification reactor, the alternant aerobic/anoxic operations instead of continuous anoxic
were demonstrated to be feasible in our previous study [6]. Therefore, the bacteria screening for
bioaugmentation need strong fitness in such salinity and aerobic conditions.

Traditional denitrification or the similar reduction process only appeared under anoxic
conditions [13,14], as the narG gene encoded for the nitrate reductase is sensitive to oxygen
presence, which could block the sequential energy and electron transfer under aerobic condition [15].
Recently, many aerobic denitrifying groups were found to support a potential pathway for a biological
nitrogen removal process [16]. The main characteristics of these strains are that they have a gene cluster
of the napFDAGHBC family while napA was responsible for synthesis of the catalytic subunit for electron
delivery from NADH+ to nitrate aerobically [17]. Under aerobic or alternate aerobic/anoxic conditions,
the nitrate reductase encoded by the napA gene, which is located in the periplasm, was primarily
infiltrated by nitrate and oxygen as compared to the narG gene located in plasma membrane [18].
Therefore, the high activity of the napA gene make these aerobic denitrifying strains use nitrate over
oxygen preferentially [16]. Potentially, this wide niche can reduce technological requirements in current
biological nutrient treatment processes, which always cause temporal (Anoxic/Oxic, A/O process) or
spatial (sequencing batch reactor, SBR process) division for different microbiota [19]. Until now, many
aerobic denitrifies were reported in plenty of genera including Pseudomonas stutzeri YZN-001 [20],
Acinetobacter sp. HA2 [21], Pseudomonas stutzeri T13 [22], Marinobacter hydrocarbonoclasticus RAD-2 [23],
Pseudomonas stutzeri C3 [24], etc. In addition, several strains were also found to have aerobic
ammonium removal ability, which show potential through heterotrophic nitrification or assimilation
pathways [22,24–26].

In this study, a novel aerobic denitrifying halotolerant strain, Pseudomonas balearica RAD-17,
was isolated for a long-term PBS-supported denitrification reactor for RAS effluent treatment,
demonstrated in a previous study [6]. The 16S rRNA gene was amplified to identity the phylogenetic
relationship for the isolated strain, while API 20NE (analytical profile index of Gram-negative with
non-Enterobacteriaceae) was used for its physiological feature. Meanwhile, the inorganic nitrogen
removal performance was also evaluated by different nitrogen sources. Moreover, the aerobic nitrogen
metabolic pathways were investigated by quantifying the key denitrifying genes (napA, nirS, norB,
and nosZ) and glutamic biosynthesis genes (gluD and gluS) that are potentially related with ammonium
assimilation. In addition, the strain’s bioaugmentation performance was also evaluated by adding it
into actual RAS effluent. To the best of our knowledge, this is the first report of a functional strain
with efficient aerobic nitrogen removal ability in the Pseudomonas balearica species. Overall, the results
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might provide new insight in aerobic denitrifying microbial resources and potential alternatives for
enhancing nitrate-removal performance for RAS practice.

2. Materials and Methods

2.1. Cultured Media

The culture media used in this study were according to our previous study [23]. The LB
(Luria-Bertani) media was prepared by using 5.0 g/L yeast extract, 10.0 g/L peptone, 25.0 g/L NaCl,
and 1.5% (w/v) agar. The DM (denitrification media) was prepared in the ratio of 2.0 g/L sodium acetate,
2.0 g/L KNO3 (or NaNO2), 0.2 g/L MgSO4·7H2O, 1.0 g/L K2HPO4, and 1.0% (v/v) trace-element solution
for aerobic denitrification performance evaluation. The HNM (heterotrophic nitrification media) was
prepared as follows: 2.0 g/L sodium acetate, 0.3 g/L NH4Cl, 0.2 g/L MgSO4·7H2O, 6.7 g/L Na2HPO4, 1.0
g/L KH2PO4, and 1.0% (v/v) trace-element solution for ammonium-nitrogen removal evaluation. The
trace-element solution contained 50.0 g/L EDTA, 2.2 g/L ZnSO4, 5.5 g/L CaCl2, 5.06 g/L MnCl2·4H2O,
5.0 g/L FeSO4·7H2O, 1.1 g/L (NH4)6Mo7O2·4H2O, 1.57 g/L CuSO4·5H2O, and 1.61 g/L CoCl2·6H2O.
In addition, the amounts of nitrogen and carbon in DM or HNM can also change according to the
experimental setting. The initial pH of all media was set to 7.2 and then autoclaved for 20 min at 121
◦C.

2.2. Bacteria Isolation and Identification

The RAD-17 strain was screened from a long-term PBS based denitrifying reactor, which operated
under alternant aerobic/anoxic conditions in our previous study [6]. The reactor influent contained
around 10 mg/L NH4

+-N and 150 mg/L NO3
−-N and showed average TAN and nitrate removal

rates of 47.35 ± 15.62 g NH4
+–N·m−3

·d−1) and 0.64 ± 0.14 kg NO3
−-N·m−3

·d−1with no obvious nitrite
accumulation [6]. For screening, a 15 mL mixture of mature PBS and solutions were transferred
into a 150 mL flask aseptically with 100 mL LB media for 10 days of preculture. The temperature
and revolution were set at 30 ◦C and 150 rpm (revolutions per minute), respectively. Afterwards,
the homogenized suspensions were serially diluted and plated using a DM media and incubated
at 30 ◦C for 72 h. Then, a single colony with a pale-yellow circle was dilution-streaked onto a DM
agar plate for further purification. Finally, a strain of the Pseudomonas balearica, named RAD-17,
was isolated. The genomic DNA of the RAD-17 strain was extracted using a DNA extraction kit
(TaKaRa Biotechnology Co. Ltd, Beijing, China). The 16S rRNA amplified product was sequenced by
the Zhejiang Institute of Microbiology (Hangzhou, China). Phylogenetic relationships of the strain
RAD-17 with other denitrifying bacteria were constructed using the molecular evolutionary genetics
analysis software (MEGA 5, The Biodesign Institute, Tempe, USA). In addition, the purified strain
RAD-17 was also stored in a 30% glycerol solution at −80 ◦C for following experiments.

2.3. Nitrogen Removal Performance

The inorganic nitrogen removal performance of the strain RAD-17 was evaluated on DM or HNM
media. For aerobic denitrification capacity, a sole nitrogen source of NO3

−-N (around 300 mg/L) or
NO2

−-N (around 300 mg/L) was tested in DM media, which contained KNO3 or NaNO2, respectively.
For heterotrophic ammonium removal, sole nitrogen source of NH4Cl (around TAN 80 mg/L) was carried
out in similar operation in HNM media. For process, 3% (v/v) seed suspension was inoculated in 250 mL
Erlenmeyer flasks and cultured for 48 h under aerobic condition at 25 ◦C and 150 rpm, respectively.
Meanwhile, the cell-growth (OD600 value) and nitrogen concentrations were measured every 4 h.

2.4. Single-Factor Experiments

Single-factor experiments were also carried out to evaluate the effect of various conditions on
the aerobic denitrification performance of the strain RAD-17, for optimized incubated conditions.
The basal condition was determined as follows: NO3

−-N concentration of 300 mg/L, C/N ratio 10,
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NaCl concentration 25%�, temperature 25 ◦C, rotation 150 rpm, and 3% inoculation (v/v). On C/N ratio
test, the C/N ratios were set to 2, 5, 10, 15, and 20. On salinity test, the NaCl concentrations were
set at 0%�, 2.5%�, 5%�, 15%�, and 25%�. On carbon sources, fructose, sodium acetate, lactin, glucose,
and sodium citrate were tested. On revolution test, the speeds were set to 0 rpm, 50 rpm, 100 rpm,
150 rpm, and 200 rpm. On temperature test, 5 ◦C, 15 ◦C, 25 ◦C, and 40 ◦C were used. All tests were
conducted in triplicate and non-seeded samples were used as blank control.

2.5. qRT-PCR Analysis

The transcriptional level gene expression intensity of the strain RAD-17 on nitrogen removal
processes was investigated to reveal the metabolic pathways. In this study, real-time quantitative
PCR was conducted to amplify the denitrifying genes napA, nirS, norB, nosZ, and the ammonium
incorporation genes gluD (NADP-specific glutamate dehydrogenase) and gluS (glutamate synthase)
with RNA samples in 48-h experiments. All primers were designed by the genome sequence of the
strain RAD-17 and are listed in Table 1. The amplification specificities of these primer pairs were
verified through agarose gel electrophoresis (Figure S2). The housekeeping gene 16S ribosoml RNA
was used as an internal control to normalize the data. Total RNA extraction and cDNA synthesis
were performed by using an RNAprep Bacteria Kit and a FastQuant RT Kit (Tian Gen BiotechCo. Ltd,
Beijing, China), respectively. PCR amplification was performed with the following protocol: Initial
denaturation at 95 ◦C for 2 min followed by 40 cycles of denaturation at 95 ◦C for 15 s, annealing at
55 ◦C for 15 s, and synthesis at 72 ◦C for 15 s; a melting curve was generated by linear heating from
70 ◦C to 95 ◦C over 25 min [27]. All quantitative amplifications were conducted in triplicate using the
SYBR Green Real-Time PCR Kit (Novland, Shanghai, China) and respective primers on a StepOne PCR
instrument (Applied Biosystems, Forest City, CA, USA).

Table 1. All the primers used in this study for Pseudomonas balearica strain RAD-17.

Gene Primer Sequences (5′-3′) References

16S rRNA
F: CCTACGGGAGGCAGCAG This study
R: ATTACCGCGGCTGCTGG

gluD F: GCTATCGCATCCAGATGAAC This study
R: CATCACTTCGTTGTCGCTC

gluS F: CGCAACATCTTCTCCAACCC This study
R: TTCTCCTCACCCCATTCGAC

napA F: TTCATGGCCTGCTGTACCTG This study
R: TCATCCTGGCGCAATCGAAC

nirS
F: TGGAAAGCCAGATGCAGCAC This study

R: ACGCTCCTTGACGAAGTGGATG

norB
F: TTCTACAACCCCGAGAACC This study
R: GCAATGATGACGTACAGCC

nosZ
F: CAACATCGACCAGATCGAAG This study
R: TGCAGTAGTACCAGTGCAG

2.6. Bioaugmentation Performance Evaluation

The strain RAD-17 was added into actual RAS effluent to evaluate its bioaugmentation performance.
The experimental tanks had a total volume of 10 L. A total of 5 L was used for raw RAS wastewater.
The NO3

−-N concentration and the C/N ratio were adjusted at approximately 100 mg/L and 15 by
adding KNO3 and sodium acetate, respectively. Then, 500 µL of the strain RAD-17 (OD600 = 1.0)
solution was added into the experimental tanks and aerobically cultured for 140 h. Another group
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without inoculation operated as control. Air-pumps (ACO-003, 120 W, Sengseng Co., Ltd., Taipei,
Taiwan) were used for aerobic condition and temperature was set at 25 ± 1 ◦C in a thermostatic chamber.
All treatments were carried out in triplicate.

During the experimental phase, 2 mL solutions were cultured on DM media to evaluate the potential
denitrification strains by the most probable number (MPN) standard method. Here, the amount of
CFU can partly reveal the potential denitrifying ability as DM is a specific media for the denitrifier [28].
Meanwhile, the growth rate of the strain RAD-17 was also detected through monitoring the copies
ratio of the napA gene by the strain RAD-17 that is relative to the total 16S rDNA genes using absolute
qPCR. The qPCR primers are listed in Table 1. In the absolute qPCR assay, the standard curves were
constructed using serial dilution of purified target DNA from PCR amplification. The amount of the
template DNA was determined by the NanoDrop ND-2000 ultraviolet absorption assay. There are
different gene copies between the napA gene and the 16S rDNA gene. The average number of 16S
rDNA copies per bacterial cell is 4.2, and the napA gene carries a single copy in the strain RAD-17
cell [19]. The different copy numbers of two genes were used to normalize the ratio of qPCR data.

2.7. Analytical Methods

The solution samples were filtered through a 0.45 µm filter membrane before analyzing. The
TAN, NO2

−-N, and NO3
−-N concentrations were analyzed according to standard methods [29].

Bacteria biomass was measured by OD600 value using a spectrophotometer at 600 nm (Agilent
Technologies Cary 60 UV-vis, Santa Clara, USA). The morphology of the strain RAD-17 was observed
by a scanning electron microscope (SEM) (SU8010, Hitachi High-Technologies Corporation, Tokyo
Japan). The pH value was measured using a portable pH meter (S8, Mettler Toledo, Zurich, Switzerland).
DO was measured using a DO meter (SG9-FK2, Mettler Toledo, Zurich, Switzerland). Physiological
and biochemical characteristics were tested using API 20NE kits (BioMérieux Shanghai Co. Limited,
Shanghai, China), and test strips were checked after incubation for 24 h [23]. Nitrogen balance analysis
was done according to the previous study. For process, 3% (v/v) seed suspension was inoculated
in 250 mL Erlenmeyer flasks and cultured for 20 h under aerobic condition at 25 ◦C and 150 rpm,
respectively. The incubated nitrate was set at around 30 mg/L. Then, the nitrogen balance can be
calculated on the initial and final nitrogen concentration [30].

3. Results and Discussion

3.1. Bacteria Characteristics and Identification

For strain screening, more than 20 pure isolates were obtained from the DM medium, while one
named RAD-17 showed the highest aerobic denitrification performance. The colonies of the RAD-17
strain were pale yellow, salient, semitransparent, circular in shape, and presented a moist surface
on the LB medium. The RAD-17 strain was a gram-negative strain with a bacilliform sharp in
size of around 0.3–0.4 µm in diameter and 0.8–1.6 µm in length, respectively (Figure S1). The 16S
rRNA gene sequence was submitted to the NCBI database with the accession number MK881511,
and the highest similarity of the RAD-17 strain was found with Pseudomonas balearica DSM 6083.
The phylogenetic analysis (threshold 100%) further confirmed the identification of the RAD-17 strain
as Pseudomonas balearica (Figure 1). For nitrogen removal, many strains in the genus Pseudomonas were
demonstrated to have aerobic denitrification ability, such as Pseudomonas stutzeri C3 [24], Pseudomonas
stutzeri T13 [25], Pseudomonas stutzeri YZN-001 [20], Pseudomonas stutzeri PCN-1 [31], Pseudomonas
tolaasii Y-11 [32], etc. In addition, several groups also have ammonium removal capacity under
aerobic conditions [22]. However, in Pseudomonas balearica, though strain DSM6083 presented genome
information (ASM81801v1), no study on the denitrifying function was reported in this sub-lineage.

The API 20NE tests were carried out for further identification of the physiological and biochemical
characteristics of the strain RAD-17 (Table 2). The RAD-17 strain was positive for nitrate reduction,
but was negative for urease, β-glucosidase, protease, and β-galactosidase. On cell biosynthesis,
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it could use glucose, maltose, gluconate, capric acid, etc., while arabinose, mannose, mannitol,
and N-acetyl-glucosamine could not be assimilated.Microorganisms 2019, 7, x FOR PEER REVIEW 6 of 17 
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Figure 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing the position
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in branch nodes.

Table 2. Of the RAD-17 strain determined by analytical profile index of Gram-negative with
non-Enterobacteriaceae (API 20NE) tests.

API 20NE Results Strain RAD-17

Oxidase test
Nitrate reduction

−

+
Arginine dihydrolase −

Urease −

β-Glucosidase −

Protease −

β-Galactosidase −

Assimilation of
Glucose +

Arabinose −

Mannose −

Mannitol −

N-acetyl-glucosamine −

Maltose +
Gluconate +

Capric acid +
Adipic acid −

Malic acid +
Citric acid +

Phenylacetic acid −

+ Positive; − Negative.
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3.2. Nitrogen Removal Performance

3.2.1. Nitrogen Removal Ability

The aerobic inorganic nitrogen removal capacity of the strain RAD-17 is shown in Figure 2.
In general, the strain RAD-17 can use three typical nitrogen forms, such as nitrate, nitrite, and ammonia.
For aerobic denitrification, nitrate as sole nitrogen showed a quick start with the NO3

−-N concentration
decreasing from the initial 301.43 ± 1.06 mg/L to a final 2.94 ± 1.66 mg/L, which indicated a 99.02%
removal efficiency (Figure 2A). The lag phase was only observed during the initial 8 h, and the
logarithmic growth phase occurred during the following 8 h. Nitrite accumulation was also presented
and the peak concentration of 69.67 ± 6.64 mg/L and was found in 16 h but disappearing rapidly after
20 h. The strain biomass reached its maximum OD600 value with 1.61 ± 0.08 in 24 h but then slightly
decreased. The reason might be that the nitrogen substance was consumed in this period. Additionally,
when using nitrite as sole nitrogen, a backward lag phase was observed in 0–24 h, though the NO2

−-N
concentration also decreased from 302.27 ± 1.11 mg/L to 0.56 ± 0.37 mg/L rapidly (Figure 2B). The final
strain biomass was around 0.74 ± 0.04, which was lower than using nitrate as the nitrogen source
that potentially indicated that nitrite added toxicity to the cell. For the aerobic denitrification rate,
the RAD-17 strain obtained 6.22 mg NO3

−-N·L−1
·h−1 and 6.30 mg NO2

−-N·L−1
·h−1, respectively.

The results were consistent with the previous reported in the Pseudomonas family, such as 7.73 mg
NO3

−-N·L−1
·h−1 of Pseudomonas stutzeri YG-24 [33] and 6.52 mg NO3

−-N·L−1
·h−1 of Pseudomonas sp.

ADN-42 [34].
The aerobic ammonium removal ability of the strain RAD-17 is illustrated in Figure 2C. When using

ammonium as nitrogen source, no obvious lag phase occurred, indicating that ammonium should be an
accessible element for cell growth. The TAN concentration decreased from the initial 77.73 ± 2.35 mg/L
to the final 2.94 ± 1.66 mg/L, resulting in 1.56 mg TAN·L−1

·h−1 removal rate. This phenomenon could
also be supported by the higher OD600 value of 2.24 ± 0.05, which revealed more efficient strain yield
when compared with nitrate or nitrite as substance. It was interesting to note that a slightly nitrate
concentration of maximum 8.79 ± 0.80 mg/L was accumulated in 28–48 h. Under the current condition,
ammonium was the sole nitrogen source, so the mechanism and transfer pathway of ammonium to
nitrate and nitrogen gas still needs further study.
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3.2.2. Nitrogen Balance Analysis

The result of the nitrogen balance analysis is shown in Table 3. Under aerobic denitrification,
the strain RAD-17 gained 87.76% nitrogen loss, which indicated that the nitrate substance prioritized
transfer to gaseous products rather than biomass synthesis. Similar reports which showed 12.6% cell
assimilation from nitrate were presented in Paracoccus versutus KS293 [35] and 19.8% in Pseudomonas
stutzeri ZF31 [30]. On the other hand, using ammonium as sole nitrogen source, increased cell
yield revealed by higher OD600 value was obtained (Figure 2C), which were also consisted with
nearly 50% ammonium-nitrogen assimilated in Acinetobacter sp. HA2 and Paracoccusversutus LYM,
respectively [21,36].

Table 3. Balance analysis for the strain RAD-17 under aerobic denitrification.

Substance
Initial TN

(mg/L)
Final Nitrogen (mg/L) Intracellular

N
N Loss

(%)NO3−-N NO2−-N NH4
+-N Organic-N

Nitrate 30.56 ± 0.02 0.14 ± 0.03 0.05 ± 0.02 0.17 ± 0.06 0.15 ± 0.04 3.23 ± 0.34 87.76

Note: N loss = (Initial TN–Final N–Intracellular N)/Initial TN * 100%.
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3.2.3. Single Factor Experiments

The aerobic denitrification performance under different single factor conditions is shown in
Table 4. In general, the C/N ratio and the kinds of carbon source should strongly associate with nitrate
removal efficiency, due to this server as electron donor and energy support [13,15]. For carbon sources,
the strain RAD-17 was found unable to metabolize lactin while fructose also obtained low efficiency.
In contrast, more than 95% nitrate removal performance was presented in glucose, sodium acetate,
and sodium citrate, respectively. In general, these substances were thought to be easily utilized as
raw material for a TCA (tricarboxylic acid) cycle for maximum energy efficiency and ATP (adenosine
triphosphate) synthesis under aerobic metabolism [37]. For organic amounts, a C/N ratio with a range
of 5–15 was found to have optimal denitrification performance, which gained nearly complete nitrate
removal. For a C/N ratio of 2, low nitrate removal performance with residual nitrite indicated electron
donor deficiency. In addition, a slight decrease in nitrate removal efficiency was presented in a C/N
ratio of 20, which revealed that excess organic substances also had a negative effect on denitrification.
Serval similar reports were also found optimum C/N ratio 5–15 in the Marinobacter hydrocarbonoclasticus
RAD-2 strain [23], C/N ratio 15 in Marinobacter sp. F6 [38], C/N ratio 7–9 in Bacillus methylotrophicus
L7 [39], and C/N ratio 6–10 in Pseudomonas stutzeri YG-24 [33].

For salinity, the strain RAD-17 gained commendable denitrification performance in a NaCl
concentration range of 0–25%�. The similar OD600 value and nitrate removal performance were
presented in a NaCl amount of 0%� and 25%�, which indicated that salinity has no effect on growth and
the denitrifying activity of the strain RAD-17. An inferential mechanism was that Na+ ion supported
from sodium acetate can offset the NaCl deficiency. This was also demonstrated in Marinobacter
hydrocarbonoclasticus, as Na+ ion was absolutely required, no matter whether the K+ ion and Cl− ion
existed [40], and a minimal amount for its growth is a Na+ ion beyond 0.08 molarity concentration [41].
Therefore, the current phenomenon revealed that the strain RAD-17 might have wide ecological niche
fitness in practice.

For temperature, a typical mesophilic characteristic of the strain RAD-17 was present when
more than 90% nitrate removal efficiency was found in 15–40 ◦C. No denitrification occurred under a
temperature of 5 ◦C, which indicated that low a temperature might have a significant negative effect
on denitrifying enzyme activity. This result was consistent with previous studies that used mostly
mesophilic aerobic denitrifiers [23,42,43].

In this study, the effect of rotation speeds that revealed DO concentrations on denitrification
performance were also evaluated. It should be noted that the strain RAD-17 gained both ideal nitrate
removal efficiency in anoxic (0 rpm, DO 0.2 ± 0.1 mg/L) and aerobic (150 or 200 rpm, DO 3.3 ± 0.6 mg/L
or 4.7 ± 0.9 mg/L ) conditions, respectively. However, a decreased denitrification performance was
observed in oxygen-limited conditions (50 or 100 rpm, DO 0.9 ± 0.4 mg/L or 1.7 ± 0.8 mg/L). In a
previous study, several denitrifying strains, especially in the genus Paracoccus versutus, have both
aerobic and anoxic nitrate removal ability. For example, Paracoccus versutus KS293 exhibited 82% and
85% total nitrogen removal under anoxic and aerobic conditions, respectively [35]. Since denitrification
is a respiratory process, the regulation of the denitrification respirome in Paracoccus denitrificans is
related to transcription factors fnrP, nnrR, and narR to adopt the oxygen, nitric oxide, and nitrate shift
conditions [44,45]. However, whether the Pseudomonas family shares similar pathways or not is still
unclear. Therefore, further studies need to reveal the oxygen triggering mechanism for the strain
RAD-17 denitrification in future.
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Table 4. Varied single factors on the aerobic denitrification performance of strain RAD-17 after 48
h incubation.

Factor Variations
Initial
Nitrate
(mg/L)

Final
Nitrate
(mg/L)

Final
Nitrite
(mg/L)

Final
TAN

(mg/L)

Growth
(OD600)

C/N
ratios

2 295.48 ± 0.60 149.00 ± 2.87 50.21 ± 1.52 8.61 ± 1.19 0.86 ± 0.16

5 298.42 ± 0.26 0.92 ± 0.80 0.36 ± 0.02 1.88 ± 0.04 1.17 ± 0.10

10 299.59 ± 0.37 8.17 ± 1.82 0.34 ± 0.01 1.19 ± 0.03 1.43 ± 0.03

15 301.51 ± 0.71 8.55 ± 5.10 0.30 ± 0.00 1.02 ± 0.03 1.04 ± 0.25

20 300.09 ± 0.71 23.41 ± 9.78 0.64 ± 0.02 0.95 ± 0.00 1.09 ± 0.14

NaCl
(%�)

0 302.47 ± 0.19 3.14 ± 2.00 0.34 ± 0.01 0.26 ± 0.08 1.73 ± 0.08

2.5 299.78 ± 0.56 6.52 ± 1.37 0.42 ± 0.03 0.30 ± 0.05 1.50 ± 0.06

5 301.29 ± 0.24 9.37 ± 5.57 0.27 ± 0.03 1.04 ± 0.08 1.30 ± 0.15

15 300.36 ± 0.17 8.11 ± 4.29 0.23 ± 0.07 1.05 ± 0.02 1.40 ± 0.35

25 301.46 ± 0.33 9.04 ± 4.11 0.25 ± 0.04 1.14 ± 0.06 1.66 ± 0.24

Carbon
source

Fructose 299.61 ± 0.22 205.59 ± 8.50 5.71 ± 4.08 29.13 ± 12.13 0.27 ± 0.03

NaAC 303.14 ± 0.11 2.39 ± 1.11 0.87 ± 0.02 3.34 ± 0.33 1.99 ± 0.11

Lactin 298.45 ± 0.27 296.90 ± 2.59 0.36 ± 0.03 – 0.69 ± 0.15

Glucose 300.12 ± 0.09 4.71 ± 1.64 1.03 ± 0.03 2.23 ± 0.65 1.93 ± 0.05

Na-citrate 301.09 ± 0.14 0.57 ± 0.27 0.51 ± 0.04 0.10 ± 0.09 1.86 ± 0.11

Rotation
Speed
(rpm)

0 304.56 ± 0.15 19.16 ± 6.26 0.35 ± 0.11 1.01 ± 0.40 1.37 ± 0.06

50 302.42 ± 0.31 36.57 ± 4.53 1.07 ± 0.25 1.68 ± 0.57 0.76 ± 0.05

100 301.77 ± 0.17 116.52 ± 9.91 13.74 ± 0.20 0.90 ± 0.65 1.07 ± 0.11

150 299.46 ± 0.20 8.99 ± 1.33 0.54 ± 0.04 1.71 ± 0.29 2.00 ± 0.07

200 301.26 ± 0.05 2.59 ± 0.94 0.53 ± 0.16 1.86 ± 0.93 2.19 ± 0.06

Temperature
(◦C)

5 299.76 ± 0.16 298.57 ± 1.50 – 0.45 ± 0.29 0.74 ± 0.06

15 298.31 ± 0.09 7.79 ± 0.91 0.62 ± 0.06 1.63 ± 1.42 1.89 ± 0.18

25 300.55 ± 0.11 2.28 ± 2.21 0.41 ± 0.07 2.49 ± 0.10 2.03 ± 0.25

40 300.98 ± 0.17 18.51 ± 5.32 0.60 ± 0.18 2.50 ± 1.20 1.70 ± 0.15

3.3. Nitrogen Metabolism Pathways Analysis

3.3.1. Aerobic Denitrification Pathway

The transcriptional expression levels of the denitrification genes under aerobic condition of the
RAD-17 strain are shown in Figure 3. The results reveal that the expression of four respiratory nitrate
reductases related genes were significantly upregulated by nitrate inducing, including napA, nirS, norB,
and nosZ. The napA firstly showed a quicker response to nitrate than nirS, norB, and nosZ, which is
consisted with the fact that this process is a sequence of electrons transfer [13,18]. Then, time-delay
expression of nirS and nosZ were present, which was consistent with the nitrite peak concentration after
16 h (Figure 2A). It was interesting to note that the enhanced expression of norB, which lasts 4–16 hours
incubation, presented a maximum intensity earlier than nirS and nosZ. In Pseudomonas stutzeri PCN-1,
coincident peak expression was found in nirS, norB, and nosZ [31]. Therefore, these results implied
that the environmental signals NO3

− and NO might both be the indirect inducer for norB [13]. In a
previous study, the transcriptional activators, fnrP, nnrR, and narR, were thought to be responsible as
primary effectors to oxygen, NO, and NO3

−/NO2
− [13,44,45]. Furthermore, when using nitrate as sole

nitrogen source, both respiratory nitrate reductases and assimilatory nitrate reductases were conducted
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together through a corporate chaperone encoded by narJ in the Paracoccus denitrification strain [46].
However, though this study proved the aerobic nitrate removal was caused by the respiratory nitrate
reductases under transcriptional results, the nitrate distribution mechanism in assimilation is still
unclear. Therefore, the difference of response and remodeled rules in Pesudomaonas balearica with other
aerobic denitrificans need to be further studied.Microorganisms 2019, 7, x FOR PEER REVIEW 11 of 17 
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3.3.2. Heterotrophic Ammonium Removal Pathway

The transcriptional expression levels of the ammonium assimilation genes under aerobic condition
of the strain RAD-17 are shown in Figure 4. In general, ammonium assimilation into different amino
acids was the start for glutamate. Based on the KEGG nitrogen metabolism pathways, there are two
major biosynthesis pathways of ammonium into L-glutamate, which involve glutamate dehydrogenase
(1.4.1.2, 1.4.1.3, 1.4.1.4) as well as the glutamine synthetase (6.3.1.2) and glutamate synthase (1.4.1.13,
1.4.1.14, 1.4.7.1) [6]. In this study, an obvious up-regulation of gluS and gluD genes occurred during
4–16 h, which were approximately 420 and 3100-folds compared with the control sample, respectively.
The ammonium concentrations also showed apparent consistency in this phase with a sharp decrease
(Figure 2C). A similar phenomenon was also reported in other aerobic denitrificans, like Pseudomonas
stutzeri T13 [22], Acinetobacter sp. HA2 [21], Paracoccus versutus LYM [36], and Klebsiella sp [47].
Therefore, this indicated that a certain assimilation pathway is performed in the strain RAD-17 when
using ammonium as the sole nitrogen source.

On the other hand, the respiratory nitrate reductases-related genes of napA, nirS, norB, and nosZ
did not show obvious enhanced expression during 0–24 hours, which indicated that ammonium should
not be a direct inducer for aerobic denitrification. It should be noted that a slight nitrate accumulation
occurred between 24–48 hours (Figure 2C), which also caused inconspicuous increase in the expression
of nitrate reductases genes (Figure 4). In a previous study, ammonium translated into nitrate in aerobic
denitrifications through hydroxylamine related genes [47]. However, we searched the whole genome
of the strain RAD-17 (data not shown), but no hydroxylamine genes were found, which indicated that
another potential pathway existed for the nitrate production and further denitrification. Thus, the results
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indicated that a novel pathway was existed for ammonia change to nitrogen-gas that none study
was reported before. Hence, a hypothesis was proposed that the strain RAD-17 was inclined to
reserve nitrate under ammonium feast condition. Basically, ammonium is a more available nutrient for
microbes, while nitrate is a selective substance. Therefore, this might be a characteristic of the strain
RAD-17 to fit a wider niche, but the mechanism needs further study.Microorganisms 2019, 7, x FOR PEER REVIEW 12 of 17 
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3.4. Bioaugmentation Performance Evaluation

The bioaugmentation performance by adding the strain RAD-17 into actual RAS effluent is shown in
Figure 5. In general, the inoculated groups have higher nitrate removal efficiency compared with control
groups (84.22% vs. 22.54%). The nitrate concentrations decreased from initially 99.27 ± 0.43 mg/L to
15.66 ± 3.85 mg/L or 76.89 ± 5.79 mg/L, respectively. In addition, the inoculated groups also gained
relative higher pH values and lower DO values (Figure 5A,C), since heterotrophic denitrification was an
alkalinity produced process [48]. Meanwhile, the strain RAD-17 also showed obvious preponderant cell
abundance in wastewater, which revealed its potentially strong fitness in environment. The maximum
denitrifying strains of 4.9 × 107

± 2.0 × 106 cells/mL was found after 36 h of incubation by inoculated
the strain RAD-17, while only 5.1 × 105

± 2.0 × 106 cells/mL was gained in control groups (Figure 5B).
It should be also noted that after 50 h, the relative abundance of strain RAD-17 was decrease, and
the reasons might be related to substance insufficient or other strain competitive. Based on the qPCR
detection, the strain RAD-17 occupied a peak ratio of 28.5 ± 4.5% in total strain cell numbers (Figure 5D).
No significant amplification of the napA gene was detected in control groups by gel electrophores
analysis (Figure S3). Bioaugmentation was a convinced technology to improve bioremediation system
performance [49]. Therefore, our results provided clear evidence that the strain RAD-17 can function
as efficient nitrate removal in RAS effluent treatment.
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3.5. Research Prospective

A proposed model for aerobic nitrogen removal mechanisms of the strain RAD-17 is shown in
Figure 6, which indicated the convinced substance utilization and electron transportation pathways.
The nitrate reductases that encoded at least five denitrification relative genes, napA, napB, napC, napD,
and napE, were found to orderly arrange in clusters by genome annotation of the strain RAD-17,
which should support the high nitrate removal efficiency. Respiratory nitrate reductases were carried
out by napA primarily for aerobic denitrification, as well as the cell assimilation were a predominant
approach started from gluS and gluD genes for ammonium metabolism. Taking into consideration
the halotolerant characteristic and bioaugmentation performance, the above abilities support that the
strain RAD-17 owns width ecological niche, and thus might have stronger fitness in the application.
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RAD-17. Red arrow means gene up-regulation; green arrow means inconspicuous gene regulation.

However, the current phenomenon also indicated that deeper insightful research should be done
for characterizing the strain RAD-17. The express mechanism of respiratory nitrate reductases and
assimilatory nitrate reductases should be clearer under aerobic or alternate aerobic/anoxic conditions.
The DO shifts commonly existed in temporal or spatial difference in practice to reveal potential
chaperone, and transcriptional activators were in favor of setting unequivocal operated parameters
in wastewater treatment project. Furthermore, the novel pathways responsible for the ammonia
translated to nitrogen-gas should be illuminated clearly.

Finally, the practical purpose is to use the strain RAD-17 for bioaugmentation to improve
denitrification performance in RAS effluent. The whole cell immobilization and integrated with
packing carrier should be considered. In addition, the function and ecological fitness of this individual
species with other microbes that relate with QS (quorum sensing) regulation should be further clarified,
and the relevant control methodologies still need further study.
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4. Conclusions

An aerobic denitrification Pseudomonas balearica strain RAD-17 showed efficient nitrogen
removal performance with average NO3

−-N, NO2
−-N, and TAN removal rates of 6.22 mg·L−1

·h−1,
6.30 mg·L−1

·h−1, and 1.56 mg·L−1
·h−1, respectively. The transcriptional results proved that aerobic

nitrogen metabolic pathways were performed in respiratory nitrate reductases (napA, nirS, norB,
and nosZ) for nitrate removal, or cell assimilation (gluS and gluD) for ammonium utilization. In addition,
the bioaugmentation performance by the strain RAD-17 achieved maximum cell abundance of
28.5 ± 4.5% in total environmental cell numbers, as well as obvious higher denitrification performance
than in the no inoculum group (84.22% vs. 22.54%).

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/1/72/s1,
Figure S1: Scanning electron microscope micrograph of Pseudomonas balearica RAD-17; Figure S2: The specificity
evaluation of PCR amplification assay. The specific DNA bands were detected by agarose gel electrophoresis, lane
1-7 represent the amplified products of 16S rDNA, gluD, gluS, napA, nirS, norB and nosZ, respectively; Figure S3:
The agarose gel electrophoresis of the qRT-PCR amplification product of napA gene (A) and 16S rDNA genes (B)
in one of the no-inoculum treatments. Lane 1-8 represent the time point of eight samples from 0 hour to 72 hours
(including 0, 6, 12, 24, 30, 36, 48, 72 hours).M, marker; CK, positive control.
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