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Abstract: Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively
regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia,
QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs).
In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and
SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth
rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with
variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by
QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production
and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes
reveal also the presence of both QS systems. In this manuscript we characterized the QS systems
of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible
of the production of short- and long-chain AHLs, respectively, at very low and not physiological
concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two
ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain
the DNA-binding motives, may control target genes in an AHL-independent manner. The presence
of a split traR gene is common in other S. fredii strains.

Keywords: quorum sensing; Sinorhizobium fredii HH103; AHL; rhizobia; LuxI-type proteins;
LuxR-type proteins; symbiosis; nodulation; legumes

1. Introduction

The rhizobium–legume symbiosis is one of the best studied model systems of mutualistic
interactions between bacteria and eukaryotic hosts. This symbiosis is initiated by a complex and
evolved molecular exchange between both symbionts that culminate in the formation of nitrogen-fixing
plant root nodules [1–3]. The infection is initiated by the exudation of plant-produced nod gene-inducing
flavonoids [4–6]. These polyphenolic compounds are perceived by bacterial transcriptional regulators,
i.e., NodD, that in turns induce expression of genes responsible for the synthesis of Nod factors
(NF), the nodulation (nod) genes [4,7]. NF are released by rhizobia and recognized specifically by
susceptible legumes, which triggers both root hair curling and cortical cell division [8]. Deformed
root hairs entrap rhizobia that enter into the root tissue through infection threads, reach the cortex,
multiply and colonize the intracellular spaces in root nodules, where nitrogen fixation takes place [1,8].
The symbiotic process is often very specific and most rhizobia establish symbiosis with a small number
of legume hosts. However, some rhizobia have evolved mechanisms that allow them to nodulate
a larger variety of legume plants [9,10]. Sinorhizobium (=Ensifer) fredii is a rhizobial species that
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has an extremely broad host range (more than 100 genera of legumes are nodulated) that includes
plants forming determinate and indeterminate nodules, such as Glycine max (soybean) and Glycyrrhiza
uralensis, respectively [11]. Nodulation ability of the three most studied S. fredii strains, NGR234,
USDA257 and HH103 [12–14], is explained in part because plant flavonoids, in addition to NFs,
regulate additional bacterial symbiotic-traits: Secretion of proteins through a type 3 secretion system
(T3SS), exopolysaccharide (EPS) production, formation of biofilms and functioning of quorum sensing
(QS) systems [15–17].

QS is a cell-to-cell signaling mechanism that allows bacteria to collectively modify and synchronize
behaviors, some of which being important for the interaction with eukaryotic hosts, by means of
small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and
detection of N-acyl-homoserine lactones (AHLs). LuxI-type synthases produce these molecules and the
corresponding LuxR-type receptors regulate target gene transcription in the presence of cognate AHLs.
In the model bacterium S. meliloti, functions regulated by QS include plasmid transfer, production of
surface polysaccharides, surface translocation, motility, growth rate, and nodulation [18–21]. The QS
systems TraI-TraR and SinI-SinR(-ExpR) described for S. meliloti are present in other species of
Sinorhizobium, with variations at the species and strain levels [18,22]. In S. fredii NGR234, phenotypes
regulated by their homologous QS systems, tra and ngr respectively, have been widely characterized:
Plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production, and the copy
number of the symbiotic plasmid (pSym). Some of these phenotypes are involved in the symbiotic
performance with legume hosts whereas others seem to play a role during free-living conditions [22].
The analysis of the S. fredii HH103 and USDA257 genomes reveal also the presence of tra and sin/ngr
QS systems [13,14]. However, no reports dealing with these QS systems have been published so far for
any S. fredii strain other than NGR234.

In this work, we characterized the QS systems of S. fredii HH103 and studied whether they
have a role in the regulation of important symbiotic molecules/traits, such as growth rate, surface
polysaccharides production, biofilm formation, or motility. We also assessed the influence of these
systems on symbiosis with two legume hosts, Glycine max and Glycyrrhiza uralensis. We determined that
both traI and sinI AHL-synthases genes are producing short- and long-chain AHLs at not physiological
concentrations, being not relevant for any symbiotic trait analyzed. Interestingly, the main HH103
luxR-type genes, traR and expR, are truncated, although putative proteins containing the original
carboxy-terminal part of TraR and ExpR (which harbor the DNA-binding motif), might control target
genes in an AHL-independent manner. We hypothesize that this fact could be an evolutionary strategy
to enhance symbiosis with a broader legume host-range.

2. Materials and Methods

2.1. Bacterial Strains and Plasmids

Bacterial strains and plasmids used in this work are listed in Table 1. Rhizobial strains used in
this study were grown at 28 ◦C on tryptone yeast (TY) medium [23] or yeast extract mannitol (YM)
medium [24], supplemented with genistein when necessary. Genistein was dissolved in ethanol and
used at 1 µg mL−1 to give a final concentration of 3.7 µM. Escherichia coli strains were cultured on LB
medium [25] at 37 ◦C. Agrobacterium tumefaciens NT1 (pZLR4) and A. tumefaciens GMI9023 (pMUS248)
were grown at 28 ◦C in YM and TY, respectively. When required, the media were supplemented
with the appropriate antibiotics as previously described [26]. Commercial AHLs were dissolved in
methanol and used at different concentrations. Flavonoids and AHLs were purchased from Fluka
(Sigma-Aldrich, St. Louis, MO, USA). The growth curves were obtained with a Sinergy HT microplate
reader (BioTek, Winooski, VT, USA) and growing the bacteria for 72 h at 28 ◦C with continuous orbital
shaking. Measurements were made every 2 h.
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Table 1. Bacterial strains and plasmid used in this study.

Strain or Plasmid Relevant Properties Source or Reference

S. fredii

HH103 Wild-type strain, spontaneous RifR [27]

HH103 traI HH103 traI::Ω, SpcR This work

HH103 sinI HH103 sinI::lacZ-GmR, GmR This work

HH103 traI sinI HH103 traI::Ω sinI::lacZ-GmR, SpcR GmR This work

E. coli

DH5α fhuA2 lac(del)U169 phoA glnV44 Φ80’ lacZ(del)M15
gyrA96 recA1 relA1 endA1 thi-1 hsdR17, NalR Stratagene (USA)

A. tumefaciens

NT1 (pZRL4)
A. tumefaciens devoid of pTiC58 and harboring
pZRL4, which carries the fusion traG::lacZ and the
traR gene

[28]

GMI9023 (pMUS248)

A. tumefaciens strain devoid of pTi and pAtC58 (C58
derivative), harboring plasmid pMUS248, KmR and
stable in rhizobia, which carries the fusion
pnodA::tet∆p, KmR

[29]

Plasmids

pRK2013 Helper plasmid, KmR [30]

pGEM-T Easy PCR cloning vector, ApR Promega (USA)

pK18mob Cloning vector, suicide in rhizobia, KmR [31]

pHP45Ω ApR vector containing the Ω interposon, ApR SpcR [32]

pAB2001 ApR vector containing the lacZ-GmR cassette, ApR

GmR [33]

pMUS997 pGEM-T Easy::traI, ApR This work

pMUS1079 pGEM-T Easy::sinI, ApR This work

pMUS989 pK18mob::traI, KmR This work

pMUS1083 pK18mob::sinI, KmR This work

pMUS1006 pK18mob::traI::Ω, KmR SpcR This work

pMUS1087 pK18mob::sinI::lacZ-GmR, KmR GmR This work

Plasmids were transferred from E. coli to HH103 by conjugation as described by Simon [34] using
plasmid pRK2013 as helper. Recombinant DNA techniques were performed according to the general
protocols of Sambrook et al. [35]. PCR amplifications were performed as previously described [36].
Primer pairs used for the amplification of the S. fredii HH103 genes are summarized in Table 2.

The complete HH103 traI and sinI genes were amplified using specific primers and the resulting
DNA fragments were cloned into pGEM-T Easy (Promega, Madison, WI, USA) obtaining plasmids
pMUS997 and pMUS1079, respectively. These plasmids were digested with suitable restriction
enzymes and fragments containing full traI and sinI ORFs were cloned into suicide plasmid pK18mob,
previously digested with the same enzymes, obtaining plasmids pMUS989 and pMUS1083, respectively.
Then, the plasmids pHP45Ω and pAB2001 were digested with restriction enzymes to extract DNA
fragments carrying the interposon Ω or the cassette lacZ-GmR, respectively. These DNA fragments
were cloned in each gene into an unique restriction site of pMUS989 and pMUS1083, respectively,
to obtain the pMUS1006 (pK18mob::traI::Ω) and pMUS1087 (pK18mob::sinI::lacZ-GmR) plasmids.
These plasmids were employed for the homogenotization of the mutated version of the traI and sinI
genes in S. fredii HH103 generating the mutant strains in each of these genes as well as a double
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mutant affected in both genes. Double recombination events were confirmed by southern blot (data
not shown). For hybridization, DNA was blotted to Hybond-N nylon membranes (Amersham,
Amersham, UK), and the DigDNA method of Roche (Basel, Switzerland) was employed according to
the manufacturer’s instructions.

Table 2. DNA oligonucleotide primers used in this study.

Name Sequence Usage

traI F 5′-CCAGAAGATTGGGATTGACA-3′ Amplification of the traI gene
traI R 5′-TGTCCGCCTATCGGAAGCTCA-3′

sinI F 5′-TTTTCATGCGTCGATGCTCGA-3′ Amplification of the sinI gene
sinI R 5′-CCGTAGGTCG GAACAATGACA-3′

ligEq_F 5′-AAGACCAAGCTGTCGCTC-3′ Chromosomal gene, qPCR assays
ligEq_R 5′-ATGTCGAAGCTGTCGCTG-3′

ftsZ1q_F 5′-ATACGCTGATCGTCATCC-3′ Chromosomal gene, qPCR assays
ftsZ1q_R 5′-GCCTTCCTTGACCATGAG-3′

flgJq_F 5′-TGCTGAATTCCTCGGAAG-3′ Chromosomal gene, qPCR assays
flgJq_R 5′-CAGCATCGACTTGACGAA-3′

nolRq_F 5′-CCAAAACGCCTGCTCATT-3′ Chromosomal gene, qPCR assays
nolRq_R 5′-ATTCTGGGCACGCAACTT-3′

nodAq_F 5′-ACGTCATGTATCCGGTGCTGCA-3′ pSym gene, qPCR assays
nodAq_R 5′-CGTTGGCGGCAGGTTGAGA-3′

syrMq_F 5′-GTTCAATGACGATCTCTTGGT-3′ pSym gene, qPCR assays
syrMq_R 5′-ATTGCCATAGTTACCTTCGAC-3′

d373q_F 5′-TCGACGATTCAATAAGGGTG-3′ pSym gene, qPCR assays
d373q_R 5′-CATATCCTCTCCGCAATAGC-3′

d161q_F 5′-AGAATGTCGCATACCTCTTAG-3′ pSym gene, qPCR assays
d161q_R 5′-GTGAAGGCTGTTATCCCATC-3′

qnodD1-F 5′-GCGAGCACGGACTGCGAA-3′ pSym gene, confirmation of conjugation transfer
of this plasmid to GMI9023 (pMUS248)

qnodD1-R 5′-CGGGAAAAATGGGTTGCGGA-3′

2.2. Well Diffusion Assay and Thin Layer Chromatography Analysis

A. tumefaciens NT1 (pZRL4) was used for the detection of AHLs (acyl chains ranging from C4 to
C18) from supernatants of the parental strain grown at OD600 1.2 in well diffusion assays in Petri dishes
as described by McClean et al. and Cha et al. [28,37]. Supernatants of the rhizobial strains grown at
different OD600 (0.3, 0.6, 0.9, and 1.2) in 5 mL of YM medium were extracted with dichloromethane,
evaporated to dryness, resuspended in 5 µL of methanol and analyzed by thin layer chromatography
(HPTLC plates RP-18 F254s 1.13724 and 1.05559, Merck, Darmstadt, Germany) using methanol:water
(60:40 v/v) as eluent, dried and developed with A. tumefaciens NT1 (pZLR4).

2.3. HPLC and Mass Spectrometry Analysis

Rhizobia were grown in 500 mL of YM medium for 6 days at 28 ◦C with shaking. Cultures
were centrifuged and supernatants were extracted with dichloromethane and the organic layer was
evaporated. The extracts were dissolved in 1 mL of methanol:water (1:1 v/v) containing 0.1% (v/v)
formic acid, microfiltered (0.2 µm), and 20 mL injected onto an HPLC system equipped with a Tracer
Hypersyl ODS column (250 × 4.6 mm, 5 µm particle size) (Teknokroma, Sant Cugat del Vallès, Spain).
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Elutions were carried out at room temperature with a flow rate of 400 µL min−1 using a gradient of
water and methanol, both acidified with 0.1% formic acid [38]. HPLC studies were performed on a
Perkin Elmer Series 200 HPLC system (Waltham, Waltham, MA, USA) coupled to a mass spectrometer.

Methods using high pressure liquid chromatography and tandem mass spectrometry
(HPLC-MS/MS) have been applied to profile the bacterial QS molecules from different bacteria [38–41].
Multiple-Reaction ion Monitoring (MRM) is a tandem MS/MS method in which user-selected specific
ions are transmitted through the first analyzer (a quadrupole, Q1) and user-selected specific fragments
arising from collision induced decomposition (CID) in Q2 are measured by the second analyzer
(Q3). This technique has shown to be very suitable for the identification and study of components in
very complex mixtures. Since both precursor (usually pseudomolecular ion, [M + H]+) and product
ions must be indicated before carrying out the analysis, the compound to identify must be known
and has been well-characterized previously before this type of experiment is undertaken. The AHL
family shows pseudomolecular peaks at [M + H]+ when electrospray is performed in positive mode
(precursor ion), and the CID fragmentation generates a common product ion at m/z 102, which formally
corresponds to this ring plus the nitrogen atom as NH3

+, together with the product ions corresponding
to [M + H − 101]+.

A second IDA method, called “ion precursor”, was also used in the analysis. This method was
set to register those compounds that generate fragments at m/z 102 in Q3. This technique results
complementary to MRM, as it can detect those compounds which are not included in the MRM Q1/Q3
list, such as adducts of AHL with ammonium or solvent molecules [42], although the solvents were
acidified and the declustering potential was optimized to minimize the formation of this kind of
adducts [43]. Besides IDA methods, enhanced product ion (EPI) spectra were also recorded of the two
more intense peaks (above 4000 counts per second) to verify the structure of the detected AHL by
comparison with mass spectra of standards.

All MS experiments were conducted on a 2000 QTRAP hybrid triple-quadrupole-linear trap mass
spectrometer (Applied Biosystem, San Francisco, CA, USA) equipped with a Turbo Ion source used in
positive ion electrospray mode. Mass spectrometric conditions were optimized by infusing solutions of
standards dissolved in methanol (100 mg ml–1) at a flow of 10–100 mL min–1: C6-HSL, 3-oxo-C6-HSL,
C8-HSL, 3-oxo-C8-HSL, C10-HSL, 3-oxo-C10-HSL, C12-HSL, 3-oxo-C12-HSL, 3-OH-C12-HSL, C14-HSL,
3-oxo-C14-HSL, and 3-OH-C14-HSL. The probe capillary voltage was optimized at 5500 V. Desolvation
temperature was set to 50 ◦C. Pressures of curtain, nebulizing, and turbo spray gases were set to 35, 20,
and 0 (arbitrary units), respectively. Nitrogen was used for CID. Ions were scanned from m/z 150 to
m/z 500 at a scan rate of 4000 Th s−1.

2.4. EPS Production and Analysis of Lipopolysaccharide (LPS) and K-Antigens Polysaccharide (KPS)

For analysis of EPS production in solid media, 20 µL droplets of YM-grown early log (OD600

0.4) cultures were placed onto YM plates supplemented with genistein when necessary, incubated at
28 ◦C for 96 h and photographed. LPS extraction from bacterial cultures grown on solid TY medium,
separation on SDS-PAGE gels and silver staining were carried out as described by Buendía-Clavería et
al. [44]. K-antigen capsular polysaccharides (KPS) were extracted from bacterial cultures grown on
solid TY medium and analyzed by PAGE as described by Hidalgo and colleagues [45].

2.5. Motility Assays

Swimming was examined on plates prepared with Bromfield medium (BM) [46] containing
0.3% agar, supplemented with genistein when necessary, and inoculated with 3 µL aliquots of
rhizobial cultures grown in TY (OD600 1.0). The migration zone was determined as the colony
diameter (mm) after 24 h, 48 h, and 7 days of incubation. Each experiment was performed three
times. The swimming motility of each strain were compared to that of the parental strain by the
Mann–Whitney nonparametric test.
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2.6. Biofilm Formation Assays

The biofilm formation assay was based on the method described by O’Toole and Kolter [47] with
modifications [48]. Cultures were grown in 5 mL of low-phosphate MGM medium supplemented with
genistein when necessary [47], diluted to an OD600 of 0.2 and inoculated with 100 µL aliquots and
placed on polystyrene microtiter plates, U form (Deltalab S.L., Rubí, Spain). The plates were inverted
and incubated at 28 ◦C for 7 days with gentle rocking. Cell growth was analyzed by measuring OD600

using a microtiter reader Synergy HT (Biotek, Winooski, VT, USA). The culture in each well was
removed carefully; the wells were dried, washed three times with 0.9% NaCl and dried again. Biofilms
in each well were stained with 100 µL of 0.1% crystal violet for 20 min, then washed with water
three times and dried again. Finally, 100 µL of 96% ethanol were added to each well and the OD570

was measured. Numbers provided are the average value ± standard deviation of three independent
experiments with eight technical replicates each. The biofilm produced by each strain were compared
to that of the parental strain by the Mann–Whitney nonparametric test.

2.7. Nodulation Assays

For the evaluation of the symbiotic phenotypes, the wild-type and derivative mutant strains of
HH103 were grown in YM medium. Surface-sterilized seeds of G. max (determinate nodules) and G.
uralensis (indeterminate nodules) were pre-germinated and placed in sterilized Leonard jars and test
tubes respectively, containing Fårhaeus N-free solution [24]. Germinated seeds were then inoculated
with 1 mL of bacterial culture in a concentration approx. 109 cells mL−1. Growth conditions were 16 h
at 26 ◦C in the light and 8 h and 18 ◦C in the dark, with 70% of humidity. Nodulation parameters were
evaluated after 6 weeks for G. max and after 8 weeks for G. uralensis. Shoots were dried at 70 ◦C for
48 h and weighed. Nodulation experiments were performed three times with six replicates for each
treatment. For the different parameters analyzed, the values of each treatment were compared to those
of S. fredii HH103 by using the Mann–Whitney non-parametrical test.

2.8. Protein Alignment

LuxR-type proteins were aligned using the ClustalW program and manipulated with Boxshade
at EMBnet.

2.9. RNA-seq Data Accession Number and Gene Transcript Assignment

The RNA-seq data obtained from S. fredii HH103 grown in YM medium in the absence of
genistein and discussed in this publication are deposited in the Sequence Read Archive of NCBI
(BioProject database) under the BioProject ID PRJNA313151. To obtain the number of transcripts
assigned to each gene, the initial whole transcriptome paired-end reads obtained from sequencing [49]
were mapped against the latest version of the S. fredii HH103 genome (http://www.ncbi.nlm.nih.
gov/assembly/GCF_000283895.1/) using the Life Technologies mapping algorithm version 1.3 (http:
//www.lifetechnologies.com/). Low-quality reads were eliminated using Picard Tools software version
1.83, remaining only high quality reads. Transcriptomic ranking for each gene (%) was established
sorting all S. fredii HH103 genes according to the number of transcripts assigned for each and
implementing the following formula: (1 − (transcriptomic relative position/total gene number)) × 100.

2.10. Calculation of pSym Conjugation Frequency

Conjugation of the pSym of S. fredii HH103 and its sinI and/or traI mutants to A. tumefaciens
GMI9023 carrying plasmid pMUS248 were carried out by biparental mating. Plasmid pMUS248
contains a tetracycline-resistance gene under the transcriptional control of the nodA promoter of
Rhizobium leguminosarum bv. viciae, thus conferring TcR in the presence of a NodD protein and
appropriate flavonoids [29]. Donor strains were cultured on TY, whereas GMI9023 (pMUS248) was
cultured on TY supplemented with kanamycin (25 µg/mL) for maintaining of plasmid pMUS248.

http://www.ncbi.nlm.nih.gov/assembly/GCF_000283895.1/
http://www.ncbi.nlm.nih.gov/assembly/GCF_000283895.1/
http://www.lifetechnologies.com/
http://www.lifetechnologies.com/
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Briefly, cells of 1 mL of stationary phase cultures of donor and recipient (after washing with TY for
eliminating Km) were collected, mixed, resuspended in 100 µL of TY, deposited onto a TY plate,
and incubated at 28 ºC for 24 h. The developed bacterial biomass was then resuspended in 1 mL of
TY and plated at different dilutions onto TY plates supplemented with chloramphenicol (4 µg/mL)
and kanamycin (25 µg/mL) for selecting the recipient and TY plates containing chloramphenicol
(4 µg/mL), kanamycin (25 µg/mL), tetracycline (15 µg/mL), and genistein (1 µg/mL) for selecting
GMI9023 (pMUS248) transconjugants that had received the pSym of the donor strain. Genistein is an
effective nod gene inducer for S. fredii HH103 [29]; thus, those transconjugants of GMI9023 (pMUS248)
that had received a pSym plasmid containing the nodD1 gene of HH103 are able to resist Tc at 15 µg/mL
when grown in the presence of genistein. As a control, cultures of GMI9023 (pMUS248) were unable
to grow in the presence of tetracycline at such concentration. The frequency of conjugation of the
pSym for each donor strain was calculated as the ratio between the numbers of transconjugants
cells/mL and recipient cells/mL. Numbers provided are the average value ± standard deviation of four
independent experiments. The presence of the pSym of the donor strain in 40 different transconjugants
was confirmed by PCR using specific primers for the S. fredii HH103 nodD1 gene (Table 2), which
allows amplification of a 171-bp internal fragment of that gene.

2.11. Quantification of Plasmid Copy Number

gDNA extraction and quantitative PCR were performed as previously described [50]. Total
DNA was isolated using GenEluteTM Bacterial Genomic DNA Kit (Sigma-Aldrich, St. Louis, MO,
USA). Samples were analyzed with primer sets (Table 2) specifically targeting four plasmid genes
(nodA, syrM, psfHH103d_306, and psfHH103d_373) and four chromosomal genes (ligE, ftsZ1, flgJ,
and nolR). Quantitative PCR was performed using a LightCycler 480 (Roche, Basel, Switzerland) and
SYBR®Green Master Mix (Biorad, Hercules, CA, USA) with the following conditions: 95 ◦C, 10 min;
95 ◦C, 30 s; 50 ◦C, 30 s; 72 ◦C, 20 s; forty cycles, followed by the melting curve profile from 60 to
95 ◦C to verify the specificity of the reaction. Plasmid copy number was defined as the plasmid DNA:
chromosome ratio, using the formula 2-∆CT, where ∆CT is the difference in average threshold cycles
(Ct) between plasmid and chromosomal genes. Numbers provided are the average value ± standard
deviation of three independent experiments (each one using different cultures and DNA extractions).

3. Results

3.1. S. fredii HH103 Produces Short- and Long-Chain AHLs at not Physiological Concentrations by Means of
TraI and SinI, Respectively

The analysis of the S. fredii HH103 genome reveals the presence of two genes (psfHH103d_478 and
SFHH103_01571) encoding for the LuxI-type synthases TraI (CEO91679.1) and SinI (CCE96069.1) [14].
Supernatants from S. fredii HH103 cultures grown at stationary phase (OD600 1.2) were first assayed
for AHLs production in well diffusion assays by using the biosensor A. tumefaciens NT1 (pZRL4).
Unexpectedly, these experiments showed that this rhizobial strain does not produce detectable AHLs
at physiological concentrations (Figure S1). In order to concentrate 100-fold the putative AHLs present
in HH103 supernatants, 5 mL of wild-type cultures grown at four different OD600 (0.3, 0.6, 0.9, and 1.2)
were extracted with dichloromethane, evaporated, resuspended in 5 µL of methanol and analyzed
by thin layer chromatography (TLC) using the same biosensor strain. By using this methodology,
two spots corresponding to short- and long-chain AHLs could be detected (Figure 1a). However, the
two AHL-types detected showed different kinetics of production: Short-chain AHLs accumulation
increased according to bacterial growth while long-chain AHLs accumulation reached its highest value
at late exponential phase and then decreased. Mass spectrometry analyses unequivocally identified
the C8-HSL, 3-oxo-C8-HSL, C12-HSL, C14-HSL, and 3-oxo-C14-HSL in supernatants of S. fredii HH103
cultures (Table 3), which is consistent with the occurrence of both short- (acyl chains between C4 and
C8) and long-chain (acyl chains between C10 and C16) AHLs in TLC assays.
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Figure 1. thin layer chromatography (TLC) analysis of N-acyl-homoserine lactones (AHLs) produced
(100-fold) by S. fredii HH103 strains at four different OD600 (0.3, 0.6, 0.9 and 1.2) in YM medium.
Migration of two different AHL standards (C8-HSL and C14-HSL) is shown on the left of each panel.
(A) HH103. (B) HH103 traI. (C) HH103 sinI. (D) HH103 traI sinI.

Table 3. AHLs identified by HPLC-MS/MS in supernatants of S. fredii strains (+: detected, −: not
detected).

Standars
Strain

HH103 traI sinI traI/sinI

C6-HSL − − − −

3-oxo-C6-HSL − − − −

C8-HSL + − + −

3-oxo-C8-HSL + − + −

C10-HSL − − − −

3-oxo-C10-HSL − − − −

C12-HSL + + − −

3-oxo-C12-HSL − − − −

3-OH-C12-HSL − − − −

C14-HSL + + − −

3-oxo-C14-HSL + + − −

3-OH-C14-HSL − + − −
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To further investigate the role of each luxI-type gene in the production of AHLs, single and
double mutants in the traI and sinI genes were constructed and analyzed for the production of AHLs.
TLC and mass spectrometry assays showed that the HH103 traI only produced the long-chain AHLs
(Figure 1b), indicating that TraI is involved in the synthesis of at least the C8-HSL and 3-oxo-C8-HSL.
In contrast, when the sinI mutant supernatants were assayed, only the short-chain AHLs were detected
and identified (Figure 1c), demonstrating that SinI produces at least the C12-HSL, C14-HSL, and
3-oxo-C14-HSL. As expected, no AHLs were detected in supernatants of the double mutant (Figure 1c),
which points out that SinI and TraI might be the only LuxI-type synthases present in the genome of
S. fredii HH103.

3.2. S. fredii HH103 AHLs Do Not Regulate Symbiotically Important Traits and Have No Influence on the
Symbiotic Performance with G. max and G. uralensis

As commented above, the QS systems of S. meliloti and S. fredii NGR234 are controlling some
important traits such as growth rate, surface polysaccharide production, motility, or biofilm formation
that, to a greater or lesser extent, are related with an optimal symbiotic performance [22]. In order
to decipher the symbiotic relevance of QS systems of S. fredii HH103, these nodulation-related traits
were analyzed in the wild-type and mutant strains. First of all, analyses of their growth in TY and YM
media indicated that that inactivation of sinI and/or traI has not impact in the bacterial growth rate,
indicating that any difference that could further be observed among strains is not due to an effect on
bacterial growth (Figure S2).

In some S. meliloti strains the presence of AHLs is necessary for the synthesis of symbiotically
important exopolysaccharides (EPS) [22,51]. In this work we have analyzed three S. fredii HH103
important polysaccharides in symbiosis: EPS, capsular polysaccharides (KPS or K-antigens), and
lipopolysaccharides (LPS) [52]. The traI, sinI and traI/sinI mutant strains were investigated for the
production of KPS or LPS by growing them in TY medium and analyzing by polyacrylamide gel
electrophoresis (PAGE) cell extracts enriched in these polysaccharides. KPS were visualized by a
treatment with Alcian Blue and silver staining. No differences were detected among KPS profiles
in any of the assayed strains (Figure S3a). LPS profiles of these mutants grown in TY medium
were also analyzed by PAGE assays performed in the presence of SDS followed by a silver staining.
The LPS electrophoretic profile of the different mutants was unaltered in comparison with that of
HH103 (Figure S3b). The study of the EPS was performed analyzing the mucoidy in YMA medium,
supplemented or not with genistein. All bacterial strains presented mucoid phenotypes in the absence
of inducing-flavonoid, which is indicative of EPS production (Figure S3c). In contrast, in the presence of
genistein, all strains displayed rough appearance, consequence of EPS repression mediated by NodD1
and flavonoids in this strain [17]. Altogether, these results indicate that AHLs are not regulating the
synthesis of these important symbiotic polysaccharides in S. fredii HH103.

Besides to activate EPS synthesis, the QS systems of S. meliloti also promote repression of flagella
synthesis at high population densities, which is related with a lower bacterial motility [22,50]. In order
to determine the role of AHL perception in this process, the swimming motility of the HH103 traI, sinI,
and traI/sinI mutants in Bromfield medium in the absence or presence of genistein was assayed. No
differences were detected in any of the genetic backgrounds analyzed in both conditions after 24 h,
48 h, or 7 days (Figure S4a). On the other hand, another important trait regulated by QS in some strains
of S. fredii is the formation of symbiotic biofilms, required for a successful colonization of legume root,
which is important for the nodulation process [53]. Biofilm formation was assessed by experiments of
adhesion to polystyrene surface of the different of S. fredii HH103 strains after 7 days of growing in
low-phosphate MGM medium supplemented or not with genistein. No significant differences were
detected among strains and conditions (Figure S4b). These results point out that AHLs produced by
LuxI-type synthases of HH103 are neither involved in the control of swimming motility nor in that of
biofilm formation.
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Finally, the influence of the AHL production of HH103 in symbiotic performance was also
investigated. As commented in introduction, S. fredii HH103 nodulates a broad range of legumes,
including both determinate- and indeterminate-nodule forming plants. Thus, the symbiotic phenotype
of HH103 sinI and/or traI mutants was investigated with G. max (determinate nodules) and G. uralensis
(indeterminate nodules) plants (Table S1). None of the mutants showed any significant defect with any
of the two legumes analyzed when compared to the wild-type strain.

3.3. The traR and expR Genes of S. fredii HH103 Are Divided in Two ORFs

The low production of AHLs by strain HH103 as well as their irrelevance in the different traits
analysed prompted us to investigate whether, in contrast to that described for S. meliloti and S. fredii
NGR234, the S. fredii HH103 tra and sin QS systems are not functional. We have demonstrated that TraI
and SinI are functional AHL synthases that account for the production of short- and long-chain AHLs,
respectively, although at very low concentrations. Then, the question that raises is whether the other
elements necessary for the correct functioning of the QS systems, the LuxR-type proteins, were active
in S. fredii HH103. The genetic organization of the tra and sin QS system genes in the S. fredii HH103
genome are shown in Figure 2a. The analysis of the sequence of traR of S. fredii HH103 indicated that this
gene has undergone a 2-bp deletion resulting in an early stop codon and in the formation of two ORFs
overlapping in one nucleotide, psfHH103_463 and psfHH103_462, which code for 152- and 82-amino
acid polypeptides (CEO91664.1 and CEO91663.1), respectively, and are 98.6% and 100% identical to the
corresponding parts of the TraR protein of S. fredii NGR234 (236 amino acids) and 77.7% and 85.4%
identical to the same parts of this protein of S. meliloti Rm41 (234 amino acids). In the other hand, the
chromosomal sinR gene of HH103 (SFHH103_01570) codes for a complete 244 amino acids protein
(CCE96068.1) that is 97.5% and 86.5% identical to the corresponding NgrR (S. fredii NGR234, 244 amino
acids) and SinR (S. meliloti 1021, 245 amino acids) proteins, respectively. This LuxR-type transcription
regulator controls sinI expression in an AHL-independent manner in S. meliloti [54–56]. Instead, the
product of the expR gene, an orphan LuxR-type protein, is the major regulator of AHL-controlled
genes in this bacterium [51,57,58]. Interestingly, the expR gene is also truncated and divided into
two putative ORFs (SFHH103_03432 and SFHH103_03306) that are separated by nearly 140-kb in the
genome of S. fredii HH103. These ORFs codes for 73- and 140-amino acid polypeptides (CCE97798.1
and CCE97923.1), respectively, and are 94.2% and 99.3% identical to the corresponding parts of the
ExpR protein of S. fredii NGR234 (246 amino acids) and 91.3% and 98.5% identical to the same parts
of this protein of S. meliloti 1021 (184 amino acids). Interestingly, sequence comparisons between
full length TraR, SinR, and ExpR proteins from NGR234 and proteins coded by genes present in the
genomes of the 13 S. fredii strains deposited in the public repository Integrated Microbial Genomes &
Microbiomes of the Joint Genome Institute (JGI-IMG) showed that the presence of a truncated traR
gene is a common phenomenon shared by nine S. fredii strains (Table S2), one of them (CCBAU83753)
containing a truncated and a complete version of this gene. In addition, strain USDA205 does not
contain an orthologue of traR in its genome. All the strains analyzed contain a complete sinR gene
(Table S3) whereas expR is only truncated in the genomes of S. fredii HH103 and USDA257 (Table S4).
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acids, respectively. First residue of the C-terminal domains of the reconstructed proteins are in red. 
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Figure 2. (A) Gene neighborhood of the Sinorhizobium fredii HH103 QS genes. In blue luxI
homologous genes. In red: luxR homologous genes. Genomic distance between the psfHH103_463 and
psfHH103_462 ORFs is−1 pb (these genes overlap in one nucleotide), whereas between SFHH103_03432
and SFHH103_03306 genes the distance is 137.109 pb. (B) Multiple sequence alignment of nine LuxR
homologues (reconstructed TraR from Sinorhizobium fredii HH103, TraR from S. fredii NGR234, TraR
from Sinorhizobium meliloti Rm41, SinR from S. fredii HH103, NgrR from S. fredii NGR234, SinR from S.
meliloti 1021, reconstructed ExpR from S. fredii HH103, ExpR from S. fredii NGR234 and ExpR from S.
meliloti 1021). Proteins were aligned using the ClustalW program and manipulated with Boxshade at
EMBnet. Dark and gray boxes indicate identical and similar amino acids, respectively. First residue
of the C-terminal domains of the reconstructed proteins are in red. Residues functions have been
calculated according to those determined for the TraR protein of A. tumefaciens [59]: Residues interacting
with AHL and with DNA fragments are marked in the consensus line with blue and red, respectively;
residues interacting with RNA polymerase are indicated by green in the consensus line; residues in
contact at the dimer interface are marked in yellow in the consensus line.
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3.4. The Terminal Parts of traR and expR Genes Code for Proteins That Conserve the DNA-binding Motives
and the RNA Polymerase-Recruitment Residues

LuxR-type proteins are composed of two functional domains: An amino-terminal (N-term)
domain involved in AHL-binding and a carboxy-terminal (C-term) transcription regulation domain,
which includes a helix–turn–helix (HTH) DNA-binding motif. In the presence of suitable AHLs, the
LuxR-type proteins dimerize and interact with DNA recognizing specific sequences located in the
regulatory regions of the target genes and recruiting the RNA polymerase to enhance the transcription
of the target genes [59]. However, the deletion of the LuxR N-terminal domain results in a protein that
is able to interact with DNA and to activate the transcription of target genes even in the absence of
AHL [60]. Thus, for a more exhaustive analysis of the implication of the separation of the luxR-type
genes in two ORFs, the two full LuxR-type proteins of S. fredii HH103 were reconstructed in silico by
joining the two putative ORFs that would be forming the full traR and expR genes. Multiple sequence
alignment of 9 LuxR-type proteins (including reconstructed proteins) of the Sinorhizobium genera and
comparison with findings of previous studies with the TraR protein of Agrobacterium tumefaciens [59]
allowed the identification of identical and similar amino acid residues; residues interacting with the
AHLs, DNA and RNA polymerase; and residues in contact at the dimer interface of distinct LuxR-type
proteins (Figure 2b). Interestingly, this alignment shows that for both genes of HH103 the two resulting
ORFs respectively contain the full N-terminal (responsible for interaction with AHLs) and C-terminal
(responsible for interaction with DNA) domains. This finding strengthens the possibility that the
“second” ORF of both traR and expR may code for functional LuxR C-term domains that contains the
HTH DNA-binding motive and RNA polymerase-recruitment residues (hereafter TraR C-term and
ExpR C-term proteins).

3.5. EPS Production Genes But Not Motility or Plasmid Transfer Genes Are Highly Expressed at High
Population Densities

According to in silico analysis, the TraR C-term and ExpR C-term proteins maintain both the
DNA-binding and the RNA-recruitment domains. So, could be QS-target genes being activated in an
AHL independent manner in S. fredii HH103? To shed light on this hypothesis, RNA-seq data from
S. fredii HH103 grown in YM medium in the absence of flavonoid obtained in a previous transcriptomic
assay [49] and deposited in public repositories were analyzed in order to check the expression levels
of putative target genes of both TraR C-term and ExpR C-term proteins. As commented above, in
the Sinorhizobium genera both tra and sin/ngr systems regulated plasmid transfer, motility, and EPS
production in an AHL-dependent manner [22]. Annotation of the S. fredii HH103 genome reveals
the existence of different sets of genes coding for proteins involved in these important symbiotic
traits: tra and trb genes code for plasmid conjugal transfer proteins; fli, fla, flg, flh, and mot products
are involved in motility and chemotaxis; and proteins codified by exo genes are responsible for the
synthesis of HH103 EPS [18]. The numbers of transcripts assigned to all these genes as well as their
transcriptional ranking are shown in Table 4. In YM medium at stationary phase (OD600 1.2) in the
absence of inducing flavonoids, the transcripts number average assigned to the tra and trb genes of
the symbiotic plasmid of S. fredii HH103 was 203, which corresponds to a transcriptional ranking of
30.7% (i.e., the 69.3% of HH103 genes present higher transcriptional rates). In the case of chemotaxis
and motility genes, the average number of transcripts assigned to each gene was only 58, being their
transcriptional ranking 17.3%. However, the exo genes accumulated an average of 5824 transcripts per
gene, which indicate that 85.8% of the genes of the HH103 genome are less transcribed than genes
involved in EPS production. These results indicate that, under the tested conditions, S. fredii HH103 is
highly expressing exo genes, which would explain the mucoid phenotype observed in EPS production
assays (Figure S2c). In contrast, both plasmid transfer and motility genes are not highly expressed
under the same conditions, which, for the latter, is in accordance with results obtained in swimming
motility experiments (Figure S3a).
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Finally, RNA-seq analysis for QS system genes strengthen previous findings, since the number
of transcript assigned to traI and sinI were quite low (54 and 82, respectively) whereas both traR and
expR C-term presented higher numbers of assigned transcripts in the tested conditions (541 and 450,
respectively) (Table 4).

Table 4. Number of transcripts assigned to putative quorum sensing (QS)-regulated genes of S. fredii
HH103 and transcriptional ranking in yeast extract mannitol (YM) medium at stationary phase in the
absence of inducing flavonoids.

Gene ID Gene Name Number of
Transcripts

Relative Position (among
7014 Total Number of ORFs)

Transcriptomic
Ranking

Quorum sensing genes

psfHH103d_478 traI 54 5662 19.3

SFHH103_01572 sinI 82 4910 30.0

psfHH103d_461 traM 2208 500 92.9

psfHH103d_462 traR end 541 1629 76.8

psfHH103d_463 traR start 1730 638 90.9

SFHH103_1571 sinR 512 1704 75.7

SFHH103_03306 expR end 450 1863 73.4

SFHH103_03432 expR start 350 2207 68.5

Nodulation genes

psfHH103d_386 nodD1 1579 696 90.1

psfHH103d_126 nodA 75 5090 27.4

psfHH103d_127 nodB 156 3611 48.5

psfHH103d_128 nodC 316 2363 66.3

psfHH103d_129 nodI 86 4819 31.3

psfHH103d_130 nodJ 116 4199 40.1

psfHH103d_131 nolO’ 376 2101 70.0

psfHH103d_132 noeI 186 3281 53.2

psfHH103d_381 nodZ 1022 979 86.0

psfHH103d_380 noeL 571 1562 77.7

psfHH103d_339 nolU 189 3243 53.8

Average 425 2904 58.6

Chemotaxis and motility genes

SFHH103_00293 mcpE 107 4367 37.7

SFHH103_00294 cheX 23 6642 5.3

SFHH103_00295 cheY1 21 6700 4.5

SFHH103_00296 cheA 128 3200 54.4

SFHH103_00297 cheW1 9 6939 1.1

SFHH103_00298 cheR 30 6436 8.2

SFHH103_00299 cheB 46 5931 15.4
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Table 4. Cont.

Gene ID Gene Name Number of
Transcripts

Relative Position (among
7014 Total Number of ORFs)

Transcriptomic
Ranking

SFHH103_00300 cheY2 33 6345 9.5

SFHH103_00301 cheD 30 6437 8.2

SFHH103_00303 fliF 108 4341 38.1

SFHH103_00304 visN 660 1410 79.9

SFHH103_00305 visR 489 1757 75.0

SFHH103_00307 flhB 142 3775 46.2

SFHH103_00308 fliG 45 5958 15.1

SFHH103_00309 fliN 44 5993 14.6

SFHH103_00310 fliM 37 6215 11.4

SFHH103_00311 motA 37 6225 11.2

SFHH103_00313 flgF 29 6454 8.0

SFHH103_00314 fliI 42 6058 13.6

SFHH103_00316 flgB 51 5757 17.9

SFHH103_00317 flgC 16 6819 2.8

SFHH103_00318 fliE 21 6686 4.7

SFHH103_00319 flgG 29 6469 7.8

SFHH103_00320 flgA 29 6470 7.8

SFHH103_00321 flgI 27 6534 6.8

SFHH103_00323 flgH 48 5857 16.5

SFHH103_00324 fliL 44 5991 14.6

SFHH103_00325 fliP 135 3886 44.6

SFHH103_00326 flaC 493 1746 75.1

SFHH103_00327 flaB 592 1516 78.4

SFHH103_00328 flaA 193 3192 54.5

SFHH103_00329 flaD 140 3810 45.7

SFHH103_00331 motB 82 4918 29.9

SFHH103_00332 motC 59 5549 20.9

SFHH103_00333 motD 93 4647 33.7

SFHH103_00336 flgE 84 4865 30.6

SFHH103_00337 flgK 66 5315 24.2

SFHH103_00338 flgL 103 4446 36.6

SFHH103_00339 flaF 61 5498 21.6

SFHH103_00340 flbT 62 5444 22.4

SFHH103_00341 flgD 66 5338 23.9

SFHH103_00342 fliQ 135 3890 44.5

SFHH103_00343 flhA 119 4144 40.9

SFHH103_00344 fliR 75 5092 27.4

SFHH103_00346 flgJ 27 6541 6.7

Average 109 5147 26.6
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Table 4. Cont.

Gene ID Gene Name Number of
Transcripts

Relative Position (among
7014 Total Number of ORFs)

Transcriptomic
Ranking

Exopolysaccharydes genes

SFHH103_01240 exoR 27591 27 99.6

SFHH103_02875 exoN 2678 377 94.6

SFHH103_03541 exoS 777 1237 82.4

SFHH103_03846 exoD 1785 623 91.1

SFHH103_05372 exoP 7993 110 98.4

SFHH103_05373 exoN 2916 422 94.0

SFHH103_05374 exoO 1191 881 87.4

SFHH103_05375 exoM 2698 420 94.0

SFHH103_05376 exoA 4029 270 96.2

SFHH103_05377 exoL 7280 124 98.2

SFHH103_05378 exoK 15966 52 99.3

SFHH103_05380 exoI 278 2537 63.8

SFHH103_05382 exoU 2212 498 92.9

SFHH103_05383 exoX 787 1222 82.6

SFHH103_05384 exoY2 33321 23 99.7

SFHH103_05386 exoF1 5959 160 97.7

SFHH103_05387 exoQ 1783 625 91.1

SFHH103_05388 exoZ 981 1020 85.5

SFHH103_05389 exoB 7200 126 98.2

SFHH103_05659 exoF2 66 5332 24.0

SFHH103_05660 exoY1 123 4088 41.7

SFHH103_05850 exoF3 519 1686 76.0

Average 5824 994 85.8

Plasmid transfer genes

psfHH103d_56 traG 75 5082 27.5

psfHH103d_57 traD 16 6820 2.8

psfHH103d_57_5 traC 20 6721 4.2

psfHH103d_58 traA 260 2638 62.4

psfHH103d_465 trbI 87 4801 31.6

psfHH103d_466 trbH 25 6570 6.3

psfHH103d_467 trbG 23 6643 5.3

psfHH103d_468 trbF 24 6612 5.7

psfHH103d_469 trbL 65 5364 23.5

psfHH103d_470 trbK 17 6777 3.4

psfHH103d_471 trbJ 49 5820 17.0

psfHH103d_472 trbE 68 5265 24.9

psfHH103d_475 trbD 42 6055 13.7



Microorganisms 2020, 8, 68 16 of 23

Table 4. Cont.

Gene ID Gene Name Number of
Transcripts

Relative Position (among
7014 Total Number of ORFs)

Transcriptomic
Ranking

psfHH103d_476 trbC 35 6292 10.3

psfHH103d_477 trbB 60 5531 21.1

SFHH103_06246 traA 244 2740 60.9

SFHH103_06247 traD 48 5878 16.2

SFHH103_06248 traG 116 4200 40.1

SFHH103_03975 traG 176 3396 51.6

SFHH103_03977 traA 1219 861 87.7

SFHH103_03995 traG 362 2158 69.2

SFHH103_03999 traA 1443 746 89.4

Average 203 4862 30.7

3.6. S. fredii HH103 sinI and/or traI Mutants Show Similar Conjugation Rates of Their pSym Than the
Wild-Type Strain

In A. tumefaciens, conjugal transfer of pTi is regulated by the tra QS system [61]. In this work we
have studied whether the tra or the sin QS systems influenced the rate of conjugal transference of the
S. fredii HH103 pSym. For this purpose, we estimated the conjugal transfer rate of the pSym of S. fredii
HH103 and its sinI and/or traI mutant derivatives to A. tumefaciens GMI9023 carrying plasmid pMUS248
as described in Material and Methods. Plasmid pMUS248 contains a transcriptional fusion between a
nodA promoter and a tetracycline resistant gene lacking its own promoter, thus conferring resistance to
tetracycline in the presence of a NodD protein and an appropriate flavonoid [29]. GMI9023 (pMUS248)
transconjugants carrying the pSym of either HH103 or its sinI and/or traI mutants become TcR in the
presence of genistein, a nod gene inducer for S. fredii HH103 [29], thus allowing direct selection of these
transconjugants. By using this approach, the conjugal rates of the pSym of HH103, HH103 sinI, HH103
traI and HH103 sinI/traI were estimated as 1.08 ± 0.28 × 10−7, 1.01 ± 0.30 × 10−7, 0.89 ± 0.41 × 10−7,
and 0.84 ± 0.22 × 10−7, which indicate that neither the absence of sinI nor that of traI have a significant
impact on the conjugation mobility of the HH103 pSym.

3.7. The Symbiotic Plasmid of S. fredii HH103 Is Present in about 3 Copies per Cell with Regard to the
Chromosome

S. fredii HH103 produces short- and long-chain AHLs at very low concentrations. In S. fredii
NGR234 the complete lack of QS molecules results in an elevated copy number of its symbiotic
plasmid [62]. Therefore, copy number of the HH103 pSym on TY medium was determined based on
analysis of DNA extracts in the presence and in the absence of genistein with four different chromosome
primers pairs and four specific plasmid primer sets by quantitative PCR (Table 2). This analysis
indicated that genes belonging to the symbiotic plasmid are ~2.5 ± 0.3-fold and ~3.3 ± 0.2-fold more
abundant than those belonging to the chromosome in the absence and the presence of genistein
respectively. Due to the fact that some cells within the population could have lost the plasmid during
gDNA extraction, we cannot exclude the possibility that some cells could carry even more copies of
this plasmid. These results indicate that the pSym is present in multicopy in S. fredii HH103.

4. Discussion

In the Sinorhizobium genera, five genes, traI, traR, sinI/ngrI, sinR/ngrI, and expR, are essential
for QS regulation. In S. meliloti Rm41 and S. fredii NGR234, TraI is involved in the synthesis of a
3-oxo-C8-HSL, which is recognized by TraR, activating plasmid transfer [63,64]. Besides, to avoid
plasmid conjugation when concentration of AHLs and population densities are low, another protein
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(TraM) competes with AHLs for binding to TraR, inhibiting the activation of plasmid conjugal transfer
genes [65]. In S. meliloti, SinI is responsible for the production of diverse long-chain AHLs, ranging
from C12-HSL to C18-HL with different substituents in the third carbon [54,55,57]. Upstream and
adjacent to the chromosomal sinI gene is present sinR, which encodes a LuxR-type protein that regulates
SinI expression in an AHL-independent manner [49–51]. Instead, the product of the expR gene, an
orphan LuxR-type protein, is the major regulator of long-chain AHL-controlled gene expression in S.
meliloti [51,57,58]. At moderated AHL concentrations, expression of sinI is strongly enhanced by ExpR
in the typical positive feedback-type regulation. However, at very high AHL concentrations, ExpR is
also repressing transcription of the sinR gene, which leads to negative feedback regulation of sinI [66].
In any case, in S. meliloti the presence of long-chain AHLs is necessary for the transcriptional regulation
mediated by ExpR, including the two best-known functions controlled by this QS system: Activation
of EPS synthesis and repression of flagella production [22]. In S. fredii NGR234, the homologous ngr QS
system is also activating the expression of EPS-related genes but repressing chromosomal type IV genes,
which in other bacteria are involved in twitching motility [22]. Besides, most of the ExpR-binding sites
identified in S. meliloti are also present in the genome of NGR234 [56], suggesting that at least in some
extend the SinI-SinR-ExpR regulatory network is conserved between S. meliloti and S. fredii NGR234.
This regulatory network might operate in most of the S. fredii strains whose genomic sequences are
available (thirteen) since all of them contains the three genes, with the exception of strains USDA257
and HH103, which carry a truncated version of expR.

In both S. meliloti and S. fredii NGR234, coordination of the expression of EPS production and
motility could be facilitating the transition from free-living to symbiotic lifestyles. In the soil, when
the bacterial population is low, chemotaxis and motility activation might be advantageous in search
of an appropriate environment or host. However, once in the rhizosphere and due to the presence
of root exudates, the rhizobial population density increases and QS might switch on to coordinate
the repression of flagellar and/or pili production, which could interfere with proper progression of
infection threads or activate plant defenses, and the activation of the production of EPS in order to
facilitate a successful plant invasion [22]. However, in S. fredii HH103, the picture that emerges from
our results is quite different (Figure 3).
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Figure 3. Hypothetic model of transcriptional regulation of quorum sensing (QS) in Sinorhizobium
fredii HH103. Putative regulation of the tra and sin systems is shown. TraM binds to TraR C-term
domain, what inhibits activation of plasmid conjugal transfer genes and synthesis of short-chain AHLs.
ExpR C-term domain is repressing transcription of the sinR gene, which leads to negative feedback
regulation of sinI and to inhibition of synthesis of long-chain AHLs. ExpR C-term domain is activating
the synthesis of exopolysaccharides (EPS) and repressing surface motility in an AHL-independent
manner. The absence of short- and long-chain AHLs increases the plasmid copy number.
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First, despite of the fact that this bacterium also harbors functional luxI-type genes on its
genome (traI and sinI that account for the synthesis of short- and long-chain AHLs, respectively),
the concentration of AHLs in bacterial supernatants even at high population densities was not high
enough to be detected by A. tumefaciens NT1 (pZRL4), which has been described as one of the most
sensitive and versatile AHL biosensors [28]. In NGR234, the complete absence of AHLs triggers a
mechanism that allows this bacterium to initiate the nodulation process in the absence of nod-gene
inducing flavonoids: the copy number of the symbiotic plasmid is increased and consequently the
relative expression of all symbiotic-related genes located in this plasmid is higher, which leads to NF
production in a flavonoid-independent manner [62]. Could a similar mechanism be present in S. fredii
HH103 due to the low production of AHLs? Results displayed in this manuscript support in some
extend this hypothesis, since several copies of the HH013 pSym are present in this strain under the
tested conditions. Besides, it has been recently described that HH103 produces low but detectable
amounts of NF in the absence of inducing-flavonoids [67]. It remains to be elucidated whether this
basal production of NF in S. fredii HH103 might be involved in symbiosis and/or biofilm formation,
since these molecules are also part of the biofilm matrix of S. meliloti [68].

In addition, and according to the low AHLs production detected in HH103, both traI and sinI were
barely expressed at stationary phase, suggesting that the typical positive feedback of the QS systems at
high cellular density is not taking place in S. fredii HH103. In different RNAseq analyses performed
by our group with HH103 and different mutants in symbiotic regulators (nodD1, ttsI, nodD2, nolR,
mucR, and syrM), in the absence and presence of inducers (genistein or Lotus japonicus root exudates)
we could not detect any changes in the expression rate of either sinI or traI [49,67,69,70]. Moreover,
expression studies of the sinI gene carried out with the HH103 sinI::lacZ-GmR mutant revealed that
the expression of this gene remains very low along the symbiotic interactions with soybean and Lotus
burttii in either early and late steps of the nodulation process [70]. All these facts suggest that HH103
QS systems are inactive, most probably due to the mutations present in the luxR-type genes. However,
although the cognate genes coding for the AHL-receptors of both tra and sin QS systems (traR and
expR, respectively) are truncated, each one is divided into two ORFs, and the ones corresponding
to the original C-term contain the complete transcription regulatory domain. Interestingly, deletion
of the LuxR N-term domain in Vibrio fisheri results in a derivative protein that interacts with DNA
and activates the transcription of target genes even in the absence of AHLs [60]. This finding has
led to the hypothesis that in the native LuxR-type regulators, the N-term portion is reducing the
DNA binding affinity of the C-term domain when AHLs are not present [71]. In S. fredii HH103, in
contrast to the transcriptomic values obtained for luxI-type genes, ORFs that are coding for these
C-term portions were highly expressed at high population levels. Therefore, these results point out that
the TraR and ExpR C-term proteins could be expressed and controlling the QS-regulated phenotypes
in an AHL-independent manner in HH103. The analysis of the transcriptomic rankings of putative
ExpR-targets, such as exo genes, supports in some extend this hypothesis, since despite of the low
AHLs concentration at high population densities, genes involved in the biosynthesis of EPS were
highly expressed in contrast to chemotaxis and motility genes. Supporting this finding, the sinI and/or
traI mutants of S. fredii HH103 showed similar mucoidy (indicative of EPS production) and swimming
motility to those of the wild-type strain, which indicates that both phenotypes are occurring in an
AHL-independent manner in this bacterium. In contrast, plasmid transfer genes did not display high
transcriptional ranking, which could be indicating that the TraR C-term protein did not activate this set
of genes under the tested conditions. In fact, we could not detect differences between the wild-type
strain and its traI and/or sinI mutants in their abilities to transfer the symbiotic plasmid. Moreover,
transcriptomic analysis indicated that the gene that codes for the anti-activator protein TraM is among
the top 10% more transcribed genes of S. fredii HH103 under the tested conditions. This fact could
explain why genes involved in plasmid transfer are not being activated by the TraR C-term protein
at high population densities in the absence of AHLs, since TraR and TraM interact with each other
through domains located at their respective C-term domains [65]. Interestingly, this could be a common
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phenomenon among S. fredii strains, since only 4 out of the 13 available S. fredii genomic sequences
contain a complete traR gene. The control of plasmid transfer genes in HH103 might reside in other
transcriptional regulators, among them some LuxR-orphan proteins of HH103 that might be sensing
the AHLs produced by other bacteria.

In summary, we hypothesize that three phenotypes typically regulated by quorum sensing
in sinorhizobia (swimming motility, EPS production and pSym conjugative transfer) have become
AHL-independent in S. fredii HH103. Interestingly, flavonoids and NodD1 appear to have acquired
the control of production of EPS, repressing its production [17], which might facilitate progression
thought the infection threads and avoid plant defense responses at least in soybean, since lack of EPS
production by S. fredii HH103 is not only non-detrimental but even beneficial for symbiosis with this
host legume [72]. Remarkably, the same situation could be taking place for chemotaxis and motility
phenotypes since, in contrast to that described for other Sinorhizobium strains, we have recently found
that in the presence of inducing flavonoids HH103 activates surface motility in a NodD1-dependent
manner [73]. Thus, in HH103, the production of EPS and the non-activation of surface motility might
be linked to free-living lifestyle since it has been described that EPS provide protection against different
stresses such as desiccation or the presence of antimicrobial compounds and have a role in biofilm
formation [74,75], which is an opposite behavior to bacterial motility. Overall, in S. fredii HH103 the
regulatory way mediated by NodD1 and flavonoids seems to have replace quorum sensing systems in
the control of some physiological traits that are important for the transition between free-living and
symbiotic lifestyles. Further efforts are needed to shed light to this hypothesis.
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