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Abstract: Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such
as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol
fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms.
In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order
to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30%
glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth
of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those
obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However,
the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to
pure glycerol and glucose used as main carbon sources.

Keywords: renewable biomass; used kitchen oil; crude glycerol; organic acids; Candida zeylanoides;
fermentations

1. Introduction

Green biofuels have gained the attention of researchers in the last decades, not only because of
the imminent exhaustion of the fossil fuels, but also due to the renewable biomass’ potential to be
converted into bio-combustibles with high efficiency [1,2]. Biofuels, and particularly biodiesel, can be
successfully produced from biomass through catalytic reactions [3–5]. Biodiesel, which is an important
exponent of eco-friendly biofuels, is produced in large quantities around the globe and especially
in Europe, which is the leader in the context of biodiesel production market [6,7]. One of the major
advantages of biodiesel is given by its non-toxicity and its minimal greenhouse gas emissions [8].

Biomass is presented as a renewable resource for bioenergy and biochemical production [9,10].
It mostly consists of wood wastes, agricultural crops and their waste derivatives, municipal solid
wastes, animal wastes, and residues deriving from food and aquatic plant processing industries;
all these can be sources of biogenic and renewable biomaterials and biofuels [9,11–16]. From the
economical point of view, recycled oils and greases resulting from the food sector represent a feasible
alternative source of renewable biomass for the biodiesel industry [9,17]. Massive quantities of used
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kitchen oils and greases are generated worldwide, and in technologically-advanced countries in
particular, their disposal is causing important environmental issues [18]. Reusing the used kitchen oils
via biotechnological processes with the purpose of producing biofuels, biomaterials, and biochemicals
is a step forward in the reduction of environmental pollution caused by their random discharge [19].
Moreover, using recycled kitchen oils in the biofuels industry as feedstock material instead of edible
oils (e.g., canola, soybean, sunflower, palm oils) might avoid the competition between the exploitation
of lands for food versus energy [19–22].

The triglycerides from vegetal or animal sources can be efficiently converted into biodiesel
through a variety of procedures, such as direct mixtures with solvents, micro-emulsions, pyrolysis,
and transesterification [23–26]. The biodiesel phase consisting of fatty acids methyl/ethyl esters is mostly
achieved through transesterification using various catalysts [27]. The transesterification reaction and
the quality of the final products depend significantly on the catalyst type (alkaline (sodium hydroxide,
sodium methoxide, potassium hydroxide) vs. acidic (sulfuric acid, sulphonic acid, hydrochloric acid)
vs. enzymatic (lipase)) and its concentration [20,24,28–30]. During transesterification, the ester bonds
between fatty acids and glycerol break down, and the free fatty acids bind to other alcohol molecules
present in the reaction medium. At the end of the transesterification process, the reaction mixture
contains an amalgam of fatty acids, methyl/alkyl esters, and glycerol [31]. Regardless of the procedure
used in the manufacturing of biodiesel, extensive amounts of by-products (e.g., crude glycerol) are
generated, and the surplus of this fraction presents environmental challenges associated with its
disposal [19,32,33].

In the biotechnological context, crude glycerol represents a valuable matrix that can be exploited
for the bio-production of chemicals with health [5,34] or industrial potential [26,35–38]. Bacteria, fungi,
yeasts, and algae can metabolize biodiesel-derived crude glycerol and convert it into organic acids,
propane-diols, carotenes, poly-unsaturated fatty acids, proteins, lipids, etc. [5,26,34,38,39]. Fungal
and yeast strains such as Aspergillus, Rhizopus, Yarrowia or Candida are mostly cultivated for their
ability to transform the crude glycerol fraction into bio-chemicals with food applicability: organic acids
(citric, succinic, malic acids), low caloric polyols (arabitol, erythritol, mannitol), or single-cell oils [40].
Multiple studies have been conducted on crude glycerol using yeasts such as Candida or Yarrowia to
produce feedstock chemicals such as citric and succinic acids [41] under steady-state conditions and
under different grades of aeration [42,43]. Some of the Yarrowia and the Candida species (Yarrowia
lipolytica, Candida tropicalis, Candida guilliermondii, Candida parapsilopsis, Candida oleophila, Candida
zeylanoides) are well-known as adaptable microorganisms to fats, oils, fatty acids or hydrocarbons
containing medium [40,43] because of their ability to metabolize hydrophobic substrates [44,45].

In the context of pollution reduction, crude glycerol derived from biodiesel production using
recycled kitchen oils represents a suitable medium for cultivating microorganisms such as Candida spp.
The main purpose of this work was to evaluate the adaptation mechanisms of C. zeylanoides ATCC
20367 cells to a cultivation medium that contains only crude glycerol as an energy source and their
potential to bio-synthesize citric and succinic acids. Crude glycerol obtained from recycled kitchen oil
by alkali transesterification was used as a single energy substrate, and analytical grade glycerol and
glucose were used as comparators for cell viability and metabolites production.

2. Materials and Methods

2.1. Materials

Except for crude glycerol fraction, all the culture media components were of analytical grade and
purchased from VWR International (Radnor, Pennsylvania, PA, USA).

The crude glycerol fraction was obtained from recycled vegetable cooking oil through an alkali
transesterification process. The fried sunflower oil collected from the household was mixed with
methanol and NaOH. The inferior phase consisting of crude glycerol was collected after 48 h [46] and
used as a nutrient substrate for batch fermentations. Before the addition to fermentation medium,
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the pH of the crude glycerol fraction was adjusted to 7 by adding a few drops of 2M HCl, and it
was measured with a laboratory pH meter, model InoLab. The crude glycerol fraction was sterilized
separately at 121 ◦C for 20 min.

2.2. Microorganism and Culture Media

C. zeylanoides ATCC 20367 purchased from American Type Culture Collection (Manassas, Virginia,
VA, USA) was used in the present work for all the experiments. The yeast strain was maintained on
yeast malt extract agar plates (at 1 L distilled water: yeast extract 3 g/L, malt extract 3 g/L, dextrose
10 g/L, peptone 5 g/L, agar 20 g/L) at 4 ◦C and renewed periodically every 2–3 months.

Culture media components and cultivation conditions were adapted after Takayama et al. [47].
The inoculums representing 10% of the culture were prepared by transferring 107 cfu/mL into 500 mL
shake flasks with buffers containing 200 mL of culture media having the components mentioned in
Table 1. The shake flasks were incubated for 2 days at 30 ◦C, pH 6 ± 0.2, and 200 rpm. The fermentation
process conducted at the bioreactor level contained the same components except for CaCO3.

Table 1. Media components for C. zeylanoides ATCC 20367 growth on pure glycerol, crude glycerol,
and glucose.

Nutrients Batch CG Batch PG Batch Gl

n paraffin (mL/L) 50 50 -
Pure glycerol (g/L) - 30 0.5

Crude glycerol (g/L) 30 -
Glucose (g/L) - - 30
NH4Cl (g/L) 5 5 5

KH2PO4 (g/L) 0.5 0.5 0.5
MgSO4 (g/L) 0.5 0.5 0.5

CaCO3 (g/L) * 80 80 10
MnSO4 × 4H2O (mg/L) 2 2 2
ZnSO4 × 7H2O (mg/L) 2 2 2
FeSO4 × 7H2O (mg/L) 10 10 10
CuSO4 × 5H2O (µg/L) 50 50 50

Thiamine-HCl (µg/L) ** 100 100 100

CG, crude glycerol; PG, pure glycerol; Gl, glucose. * was sterilized separately and added only in the inoculum
media. ** was added to the fermentation broth after sterilization at 121 ◦C through sterile filtration (0.45 µm).

2.3. Bioreactor Batch Fermentation

All experiments were performed in a 5 L bioreactor (Eppendorf, BioFlo 320, one unit, Hamburg,
Germany) containing 2 L of working media. The inoculums were added in sterile conditions.
The bioreactor was equipped with pH and temperature sensors and a rotation speed control.
Temperature, pH, and rotations were maintained constant at 30 ◦C, 6.00 ± 0.2, and 400 rpm, respectively.
The pH was adjusted automatically by adding 45% NaOH. The fermentation process ran for 163 h in
aerobic conditions. Filtered air (through 0.20 µm filters, Macherey-Nagel) was continuously added
into fermentation broth by a peristaltic pump (Watson Marlow 520 S, Cornwall, England) settled at
10 rpm and 158 mL/min. From time to time, sterilized silicone oil was added as an antifoaming agent.
Samples were collected to perform specific tests at regular time intervals.

2.4. Assays

2.4.1. Determination of the Fatty Acids from Processed and Unprocessed Vegetable Oil

The fatty acids content from vegetable oil before and after processing within the kitchen
was analyzed by GC. The fatty acids profile of the total lipids was determined by acid-catalyzed
transesterification by using 1% sulphuric acid in methanol [48,49]. The methylated fatty acids were
determined with a gas chromatograph coupled to a mass spectrometer (model PerkinElmer Clarus
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600 T GC-MS; PerkinElmer, Inc., Shelton, CT, USA) [50]. A 0.5 µL sample was injected into a 60 m ×
0.25 mm i.d., 0.25 µm film thickness SUPELCOWAX 10 capillary column (Supelco Inc., Darmstadt,
Germany). The operation conditions were as follows: injector temperature 210 ◦C; helium carrier gas
flow rate 0.8 mL/min; split ratio 1:24; oven temperature 140 ◦C (hold 2 min) to 220 ◦C at 7 ◦C/min
(hold 23 min); electron impact ionization voltage 70 eV; trap current 100 µA; ion source temperature
150 ◦C; mass range 22−395 m/z (0.14 scans/s with an intermediate time of 0.02 s between the scans).
The fatty acids content was identified by comparing their retention times with those of known standards
(37 components FAME Mix, Supelco no. 47885-U, Darmstadt, Germany) and the resulting mass spectra
to those in the database (NIST MS Search 2.0). The amount of each fatty acid was expressed as a
percentage of total fatty acid content.

2.4.2. Crude Glycerol Analysis by FTIR

Crude glycerol fraction was analyzed by FTIR (Shimadzu IR Prestige-21, Kyoto, Japan) equipped
with an attenuated total reflectance (ATR) module against petroleum ether as the background.
The spectra were recorded on a wavelength range of 600–4000 cm−1 at a resolution of 4 cm−1 and
64 scans for a spectrum.

2.4.3. Biomass and Cell Viability

Biomass growth was established by measuring the cell dry weight (CDW); 10 mL of the culture
broth was filtered through 0.20 µm filters, which were further washed twice with double distilled
water and dried at 104 ◦C for 8 h.

Yeast cell viability was determined by diluting 1 mL of fermentation sample in 9 mL of sterile
saline solution (0.8% NaCl). Then, 100 µL of different dilutions were inoculated on yeast malt extract
agar plates and incubated for almost 2 days at 30 ◦C. The viability of C. zeylanoides cells (log10 cfu/mL)
was established by plate counting [51]. For microscopic examination of yeast cells, a loop of inoculated
fermentation media was put on a glass laboratory lamella, dyed with methylene blue, and examined at
400×magnification [42,52].

2.4.4. Organic Acids and Substrate Consumption (Glycerol, Glucose) Determination

Citric and succinic acids were determined using HPLC (Agilent 1200, Santa Clara, CA, USA) with
an Aclaim OA (5 µm, 4 × 150 mm, Dionex, Waltham, MA, USA) reversed-phase chromatographic
column coupled with UV detector, solvent degasser, quaternary pumps, column thermostat, and manual
injector (Agilent Technologies, Santa Clara, CA, USA). The chromatographic column was eluted for
10 min with 50 mM NaH2PO4, pH 2.8, with a flow rate of 0.5 mL/min, at 20 ◦C. The chromatograms
were measured at 210 nm.

Glycerol consumption was determined by derivatizing the sample after the method proposed by
Imbert et al. [53], as presented in Figure 1, and then analyzed by HPLC. The analytical system consisted
of an HPLC Agilent 1200 unit containing a quaternary pump, a solvent degasser, an autosampler,
a UV-Vis photodiode detector (DAD) coupled with single quadrupole mass detector (MS, Agilent 6110),
equipped with electrospray ionization source (ESI) (Agilent Technologies, California, Santa Clara, CA,
USA), and controlled by Agilent ChemStation software. The ESI detection in positive ionization mode
was done using the following work conditions: capillary voltage 3100 V, 350 ◦C, nitrogen flow 7 L/min,
m/z 100–500 full-scan. The interest compounds separation was performed with an Eclipse XDB C18
column (5 µm, 4.6 × 150 mm I.D.) (Agilent Technologies, California, Santa Clara, CA, USA) using the
20 mM NH4HCO2 mobile phase (A), pH 2.8, and (B) CH3CN/NH4HCO2 (90/10, v/v) at a flow rate
of 0.3 mL/min at 25 ◦C. The separation started with 50% B and increased up to 100% B for 10 min,
and these conditions were maintained for 1 min. After 30 s, the original conditions were maintained
for 15 min.
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Figure 1. Samples derivatization flowchart adapted after Imbert et al. [53]. Glucose consumption was
measured with an enzymatic test kit from Boehringer Mannheim-R-Biopharm. Biomass and metabolites
production yields (Y) were calculated by using the formula [38]. Y (g/g) = Product concentration
(g/L)/Initial substrate concentration (g/L).

3. Results and Discussion

3.1. The Fatty Acids Profile from Processed and Unprocessed Vegetable Oil

The profile of fatty acids content from vegetable oil before and after being processed within the
kitchen was identified. The results are presented in Figure 2. The recycled kitchen oil that was subjected
to transesterification contained a high amount of (9Z,12Z)-octadeca-9,12-dienoic acid (74.74%). As can
be seen from Figure 2, before being thermally processed (e.g., frying), the profile of fatty acids in
vegetable oil showed an elevated concentration of (9Z)-octadecenoic acid (92.10%). During the frying,
the concentration of the major compound decreased [(9Z)-octadecenoic acid], while the content of
(9Z,12Z)-octadeca-9,12-dienoic acid increased. This might have been associated with the elevated
temperatures of frying ranging from 130 to 180 ◦C, which could have facilitated the conversion of
(9Z)-octadecenoic acid to (9Z,12Z)-octadeca-9,12-dienoic acid [18].
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Figure 2. The fatty acids profile in vegetable oil before and after processing. UVO, unprocessed
vegetable oil; RVO, recycled vegetable oil.

3.2. Crude Glycerol Obtaining Process

Crude glycerol was obtained from recycled kitchen oil through methanol transesterification in
the presence of NaOH as the catalyst. The content of glycerol in the crude glycerol fraction was 30%,
as determined by HPLC. The crude glycerol phase appeared as a dark yellow viscous solution at room
temperature (23–25 ◦C) and as a compact solidified mass at low temperatures (<18 ◦C) (Figure 3).
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Figure 3. The crude glycerol obtaining process through transesterification.

The presence of glycerol in the crude glycerol phase was shown by FTIR spectra (Figure 4),
where the functional groups associated with glycerol, —OH bonds, were indicated by the presence of
the large peak at 3358 cm−1. Moreover, the sharp peaks shown at 2924 and 2852 cm−1 represented C—H
stretching that could be linked with the presence of polyalcohols, especially glycerol. The presence of
bands at 1460 to 1436 cm−1 indicated C—O—H stretching connected with polyalcohols. The C—O
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groups associated with the presence of glycerol were suggested by the sharp peak at 1037 cm−1. In the
crude glycerol phase, different quantities of impurities such as soaps, salts, or fatty acids were present.
For instance, the high-pitched peak situated at 1741 cm−1 indicated the presence of C=O bonds specific
to carboxylic acids or esters of fatty acids. The band at 1560 cm−1 showed the presence of COO—

groups particular to soaps or salts, which, in this case, may have been attributed to the catalyst involved
in the transesterification reaction [54,55].
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3.3. C. zeylanoides Growth in Different Culture Media

Numerous strains of Candida spp. have been industrially exploited for their beneficial usages in the
food industry, such as C. zeylanoides, Candida etchellsii, Candida intermedia, Candida maltosa, and Candida
versatilis [56]. Some of these microorganisms are well known as competent producers of organic acids,
especially lactic, citric, isocitric, succinic, tartaric, or malic acids [47,57–60]. These strains are able to
metabolize various sources of carbon (e.g., glycerol, glucose, fructose, galactose, mannose, mannitol,
raffinose, ribose, and sucrose) [41], but some of them cannot metabolize other nutrient sources such as
arabinose, cellobiose, maltose, melezitose, melibiose, rhamnose, salicin, trehalose, or xylose [42].

In this study, C. zeylanoides ATCC 20367 grew efficiently and developed full body cells in cultivation
media that contained crude glycerol derived from recycled cooking oil, with the growth curves—namely
viability and biomass formation—being similar to those obtained for pure glycerol or glucose as sole
carbon sources. As is known from the literature [44,61], the growth of a particular yeast strain such
as Candida or Yarrowia spp. is dependent on carbon concentration, nitrogen sources, aeration grade,
and temperature. Moreover, when fermentation processes are conducted in stirred tank bioreactors,
the mixing control plays an important role in cell growth due to the oxygen transfer rate to the
fermentation broth [62]. In this context, for the present experimental work, the mixing was kept
constant at 400 rpm, while a peristaltic pump was continuously bubbling filtered air (158 mL/min) in
the cultivation broth for the entire fermentation process.

Even though the glycerol content in the crude glycerol fraction was low (30% in this case), the yeast
cells grew successfully and developed full adult bodies after 48 h of cultivation in inoculum medium.
The yeast cells from inoculum were observed under microscope light (Figure 5).
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Figure 5. C. zeylanoides ATCC 20367 after 48 h in inoculum fermentation medium that contained crude
glycerol under microscopic light. The blue stained dots represent viable cells, while the transparent
shapes are the dead cells. The big yellow circles represent lipid droplets from the crude glycerol fraction.

At the moment of inoculation, the yeast cell viability in crude glycerol medium was 6.53 ± 0.24
(log10) cfu/mL. By 90 h of cultivation, the biomass had doubled, and the yeast viability had reached
12.86 ± 0.62 (log10) cfu/mL. The viability and the biomass formation were not affected by the presence
of possible impurities in the crude glycerol fraction. Moreover, as can be observed in Figure 6A, the cell
viability and the biomass formation were similar to those obtained for pure glycerol (Figure 6B) and
for glucose (Figure 6C) as main nutrient sources. In the case of yeast cells grown on crude glycerol,
their viability reached the maximum point at 93 h of cultivation, which corresponds to complete
glycerol consumption from the fermentation media.

The yeast cells viability (Figure 6A) slightly decreased until the end of the process, but the biomass
quantity was still increasing after 163h of cultivation. The biomass formation yield of C. zeylanoides
ATCC 20367 on crude glycerol reached a maximum value of 0.98 g/g after 163h, while the yields
obtained for pure glycerol and glucose were 0.21 g/g and 0.31 g/g, respectively (Table 2). The biomass
formation yield of this particular strain was higher as compared with other yeast species cultivated on
biodiesel derived glycerol, such as a wild type of Saccharomyces cerevisiae that has recorded a maximum
yield of 0.56 gBiomass/gSubstrate [63]. A comparison between the C. zeylanoides ATCC 20367 growth on
crude glycerol, pure glycerol, and glucose is illustrated in Figure 7.
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Table 2. The maximum yields of biomass and metabolites formation of C. zeylanoides ATCC 20367
grown on crude glycerol, pure glycerol, and glucose.

Yield g/g Batch CG Batch PG Batch Gl

YBiomass/Substrate 0.98 0.21 0.31
YCitric acid/Substrate 0.06 0.06 0.05
YSuccinic acid/Substrate 0.06 0.48 1.2

CG—Crude Glycerol; PG—Pure Glycerol; Gl—Glucose.
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Considering the results registered for the biomass formation when glucose was used as a nutrient
source, our results were significantly higher compared with those reported by Kamzolova and
Morgunov (2017) [64], who cultivated three different species of C. zeylanoides (VKM Y-6, VKM Y-14,
VKM Y-2324) on glucose. They achieved a maximum biomass concentration of 3.71 g/L after six
days of fermentation when the strain C. zeylanoides VKM Y-6 was used [64], while in our experiment,
the biomass concentration exceeded 8 g/L when C. zeylanoides ATCC 20367 was grown on glucose for
almost six days (163 h) (Figure 6C).

The elevated yields for both biomass and citric acid when crude glycerol was used (Table 2) could
have been attributed to the presence of fatty acids in crude glycerol fraction (Figure 4), which stimulated
the enzymatic activity of the lipophilic yeast cells, generating a higher production of metabolites
or biomass [65,66]. As Morgunov et al. (2013) [65] implied, the utilization of waste glycerol for
the cultivation of Y. lipolytica strain NG40/UV7 increased the citric acid formation yield with 40.63%
compared with the results obtained for pure glycerol [65].

3.4. Succinic and Citric Acids Bio-Synthesis by C. zeylanoides ATCC 20367

Both citric and succinic acids are small organic acids synthesized during TCA cycles by multiple
microorganisms [26,60,65,66] and which can be obtained from crude glycerol by using microbes such
as yeast and fungal strains [44,67,68]. Until now, little was known about the assimilation mechanism
of the crude glycerol fraction by the yeast cells and the biosynthesis of organic acids. As Morgunov
and Kamzolova (2015) stated [67], the crude glycerol fraction that consists of both glycerol and
different amounts of fatty acids can be metabolized either together or separately. For the synthesis of
organic acids from TCA cycle (e.g., citric and succinic acids) starting from crude glycerol as the main
carbon source, specific enzymes are stimulated [65,69] such as glycerol kinase, isocitrate lyase, citrate
synthase, aconitate hydratase, NAD- and NADP-dependent isocitrate dehydrogenases glycerol kinase,
isocitrate lyase, citrate synthase, aconitate hydratase, and NAD- and NADP-dependent isocitrate
dehydrogenases [67]. When glycerol or glucose is used as a nutrient source for yeast strains such
as Candida or Yarrowia, many other metabolites can be synthesized (e.g., fumaric acid, pyruvic acid,
α-ketoglutaric acid, erythritol, mannitol, etc.) by stimulating/inhibiting specific enzymes or by limiting
particular biogenic microelements [64,66,69,70]. Moreover, the organic acids bio-production, especially
citric and succinic acids, is closely related to air saturation and nitrogen-limited conditions when pH
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values are maintained over 4.5 [44,71,72]. In the present study, the biosynthesis of organic acids (citric
and succinic acids) differed considerably because of the carbon source used, as is presented in Tables 3–5.
The highest values of organic acids concentrations were observed for glucose (Table 5), while the lowest
quantities were observed for crude glycerol (Table 3). Our results related to citric acid concentration
were close to those reported by Mirończuk et al. [70], who obtained 6.7 ± 3.2 g/L in flask-shake
cultivation and 1.4 ± 0.42 g/L at the batch bioreactor level by using different strains of Y. lipolytica on
pure glycerol-containing media. The differences between the organic acids production when glycerol
or glucose is used might be due to the fact that yeast strains such as Candida or Rhodosporidium [39,42]
are glucophilic strains. The metabolism of glycerol versus glucose involves a different enzymatic
package, which leads to the formation of organic acids [39,71].

Table 3. Results obtained for C. zeylanoides ATCC 20367 grown on crude glycerol at pH 6. The shown
data represent the mean values of three biological replicates, and the standard deviation (±) is under
5%.

Time (h) Viability
Log10 ufc/mL Biomass g/L Citric Acid g/L Succinic Acid g/L Residual

Glycerol g/L

0 6.53 ± 0.24 0.7 ± 0.02 0.35 ± 0.01 0.28 ± 0.00 9.48 ± 0.45
24 8.88 ± 0.34 0.82 ± 0.04 0.46 ± 0.02 0.43 ± 0.01 7.57 ± 0.37
48 10.80 ± 0.42 0.99 ± 0.05 0.47 ± 0.02 0.44 ± 0.02 4.31 ± 0.21
66 11.48 ± 0.51 1.25 ± 0.03 0.47 ± 0.02 0.45 ± 0.02 3.28 ± 0.16
69 12.30 ± 0.56 1.31 ± 0.04 0.47 ± 0.00 0.45 ± 0.02 1.30 ± 0.05
72 12.41 ± 0.62 1.40 ± 0.02 0.47 ± 0.01 0.46 ± 0.01 1.00 ± 0.05
75 12.70 ± 0.62 2.07 ± 0.01 0.49 ± 0.02 0.47 ± 0.01 0.10 ± 0.00
90 12.86 ± 0.62 2.56 ± 0.11 0.52 ± 0.02 0.48 ± 0.02 0.02 ± 0.00
93 12.90 ± 0.66 2.76 ± 0.10 0.52 ± 0.01 0.48 ± 0.02 0.00 ± 0.00
96 12.84 ± 0.51 3.03 ± 0.15 0.53 ± 0.00 0.49 ± 0.02 -
99 12.77 ± 0.57 4.24 ± 0.13 0.55 ± 0.02 0.53 ± 0.02 -
120 11.00 ± 0.46 4.86 ± 0.15 0.63 ± 0.02 0.55 ± 0.02 -
163 11.18 ± 0.55 9.38 ± 0.26 0.66 ± 0.02 0.60 ± 0.02 -

Table 4. Results obtained for C. zeylanoides ATCC 20367 grown on pure glycerol at pH 6. The shown
data represent the mean values of three biological replicates, and the standard deviation (±) is under
5%.

Time (h) Viability
Log10 ufc/mL Biomass g/L Citric Acid g/L Succinic Acid g/L Residual

Glycerol g/L

0 5.48 ± 0.21 1.70 ± 0.02 0.41 ± 0.02 0.33 ± 0.01 32.22 ± 1.01
24 8.11 ± 0.31 1.93 ± 0.05 0.65 ± 0.02 1.27 ± 0.02 20.22 ± 1.00
48 9.67 ± 0.40 2.45 ± 0.10 1.02 ± 0.03 3.48 ± 0.10 7.42 ± 0.35
66 12.83 ± 0.58 2.58 ± 0.11 1.34 ± 0.05 6.31 ± 0.23 -
69 12.92 ± 0.58 2.5 ± 0.12 1.40 ± 0.06 7.23 ± 0.38 -
72 13.32 ± 0.62 2.62 ± 0.12 1.66 ± 0.03 10.20 ± 0.33 5.60 ± 0.27
75 13.42 ± 0.62 2.65 ± 0.12 1.66 ± 0.03 9.99 ± 0.32 -
90 13.48 ± 0.61 2.83 ± 0.13 1.64 ± 0.05 9.83 ± 0.44 -
93 13.52 ± 0.66 3.48 ± 0.13 1.79 ± 0.06 9.75 ± 0.45 -
96 13.82 ± 0.62 4.25 ± 0.14 1.96 ± 0.07 12.66 ± 0.56 5.01 ± 0.22
99 13.91 ± 0.66 4.43 ± 0.11 1.93 ± 0.05 12.22 ± 0.35 -

120 10.84 ± 0.52 4.46 ± 0.15 1.95 ± 0.06 12.43 ± 0.61 3.61 ± 0.17
163 10.54 ± 0.48 6.80 ± 0.24 2.00 ± 0.07 15.66 ± 0.66 0.45 ± 0.01
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Table 5. Results obtained for C. zeylanoides ATCC 20367 grown on glucose at pH 6. The shown data
represent the mean values of three biological replicates, and the standard deviation (±) is under 5%.

Time (h) Viability
Log10 ufc/mL Biomass g/L Citric Acid g/L Succinic Acid g/L Residual

Glucose g/L

0 6.00 ± 0.11 1.17 ± 0.02 0.23 ± 0.01 0.28 ± 0.00 28.35 ± 1.41
24 8.86 ± 0.17 2.57 ± 0.11 0.45 ± 0.01 0.59 ± 0.02 24.84 ± 1.18
48 10.53 ± 0.37 3.19 ± 0.12 2.41 ± 0.09 18.81 ± 0.80 19.06 ± 0.92
66 12.80 ± 0.58 4.06 ± 0.20 2.92 ± 0.10 29.76 ± 1.00 -
69 12.49 ± 0.49 4.09 ± 0.20 2.94 ± 0.12 31.02 ± 1.02 -
72 12.00 ± 0.42 4.25 ± 0.12 2.94 ± 0.14 31.03 ± 1.00 9.22 ± 0.32
75 12.53 ± 0.53 4.39 ± 0.11 3.01 ± 0.15 34.24 ± 1.52 -
90 12.53 ± 0.61 4.43 ± 0.22 1.59 ± 0.06 16.36 ± 0.80 -
93 11.70 ± 0.55 4.44 ± 0.20 1.42 ± 0.02 8.09 ± 0.20 -
96 12.95 ± 0.56 4.74 ± 0.11 1.07 ± 0.04 3.62 ± 0.10 2.66 ± 0.10
99 12.69 ± 0.44 5.76 ± 0.19 1.57 ± 0.04 5.67 ± 0.11 -

120 10.95 ± 0.27 6.80 ± 0.20 1.37 ± 0.05 5.71 ± 0.15 1.01 ± 0.02
163 10.77 ± 0.33 9.00 ± 0.29 1.63 ± 0.07 8.71 ± 0.28 0.04 ± 0.00

The low content of glycerol in the crude glycerol fraction impacted the organic acids production
by C. zeylanoides (Table 3).

Succinic acid is one of the organic acids with a major role as a monomer for the production
of a number of polymers [73]. It is mostly bio-synthesized at high concentrations by different
microorganisms from glucidic substrates such as glucose, fructose, lactose, maltose, etc. [73].
Even though the main carbon source is glycerol or glucose, the succinic acid biosynthesis by yeast
strains such as Candida and Yarrowia is limited by the oxygen present in the culture medium, because a
specific enzyme such as succinate dehydratase catalyzes the oxidation of succinate to fumarate [72].
Cultivated on pure glycerol, C. zeylanoides biosynthesized up to 15.66 g/L of succinic acid after 163 h
of cultivation (Table 4). In our case, for the succinic acid biosynthesis by C. zeylanoides ATCC 20367,
glucose was the appropriate substrate for increased concentrations production (Table 5) in a time
interval of 75 h. After this interval, the succinic acid production abruptly decreased until the end of the
process, a fact that could be explained by its conversion to other intermediates of the TCA cycle, organic
acids such as fumaric, malic, or α-ketoglutaric acids [73,74]. Compared with literature, our results
after 75 h of cultivating C. zeylanoides ATCC 20367 on media containing glucose were comparable with
those achieved by Yuzbashev et al. [75], who cultivated a genetically engineered strain of Y. lipolytica
on a mixture of glucose and glycerol. They obtained a maximum concentration of 45 g/L succinic acid
after 168 h using shake flask fermentation [75].

In order to emphasize to the industry sector the terms of costs and the economic feasibility,
we strongly recommend, considering the present findings, the co-production of biodiesel and valuable
compounds such as citric and succinic acids in the one-pot synthesis process. Therefore, it is expected
that biodiesel industries may better direct their by-product (crude glycerol), thus avoiding a growing
environmental problem and providing an extra source of income.

4. Conclusions

Recycled kitchen oils are a cheap source of reusable biomass for the manufacturing of renewable
biofuels such as biodiesel. The crude glycerol fraction that remains after transesterification constitutes
a valuable nutrient source for microorganisms such as C. zeylanoides. In this study, C. zeylanoides ATCC
20367 was cultivated for 163 h on a crude glycerol-containing medium with a low content of glycerol,
and its viability was maintained at high values until the glycerol content was depleted after 93 h.
Candida’s viability and biomass formation rate were similar to those achieved for batch fermentations
with pure glycerol or glucose as a single carbon source. In cultivation media containing crude glycerol,
due to the lower quantity of glycerol, C. zeylanoides ATCC 20367 produced lower amounts of citric and
succinic acids as compared with pure glycerol and glucose. The fact that this particular strain grows
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efficiently on lipophilic substrates such as raw glycerol derived from biodiesel represents a promising
perspective for future investigations of crude glycerol fractions in order to obtain valuable chemicals
(e.g., organic acids) with high yields.

The results presented within this paper contribute to the scientific background by highlighting the
importance of some investigated parameters, such as viability. The elevated viability of the C. zeylanoides
cells when it was cultivated on crude glycerol indicated that this particular strain is flexible and adapts
its metabolism to the growing environment, leading to a step forward for future studies of yeast
metabolism and their potential to synthesize valuable compounds. Moreover, the viability results
from this research contribute to the fundamental academic research considering the utilization of yeast
strains in biotechnological processes.
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