Supplementary Materials:

A

> pCK306
pAS001-020

B

C

Figure S1. Efficiency of terminators in E. coli strains DH10B and MG1655. E. coli strains (A) DH10B and (B) MG1655 containing plasmids pAS001-002, pAS004-020 (terminator between rhaBAD promoter and RBS of YFP-encoding gene) were cultured in LB media supplemented with kanamycin and $0 \mathrm{mg} / \mathrm{ml}$ L-rhamnose (white bars) or $0.6 \mathrm{mg} / \mathrm{ml}$ L-rhamnose (black bars). Cells containing pCK324 (lacking rhaBAD promoter and therefore no YFP) and pCK306 (the parental vector with no terminator and therefore fully inducible with L-rhamnose) were used as controls. The fluorescence intensity of 10,000 cells (arbitrary units) from each culture was measured by flow cytometry after 6 h . Error bars shown are the standard deviation of the mean for three independent biological replicates. Key for SBOL glyphs used in figure: right-angled arrow represents a promoter;

T represents a terminator; semi-circle represents a ribosome-binding site (RBS); coloured blocks represent coding sequences or genes. Origin of each terminator in brackets after plasmid name: E. coli, synth (synthetic), 6803 (Synechocystis sp. PCC 6803), T21 (bacteriophage T21), M13 (bacteriophage M13).

A

B
Photoautotrophic Uninduced

D
Photoautotrophic Induced

C

Mixotrophic
Uninduced

E
Mixotrophic Induced

Figure S2. The effect of terminator insertion upstream of chromosomally-integrated DNA on transcriptional read-through from chromosomal promoters, at 192 h . (A) Detail showing the insertion of terminators into integration plasmid pCK 306 upstream of the rhaBAD promoter. The resulting constructs $\mathrm{pCK} 351, \mathrm{pCK} 353, \mathrm{pCK} 354$ and pCK 355 were integrated into the Synechocystis genome adjacent to the $n d h B$ gene. (B) To test for transcriptional insulation from chromosomal promoters after integration, Synechocystis cells containing either pCK351, 353, 354 or 355 (each with one of four terminators inserted upstream of rhaBAD promoter) were cultured in BG11 media supplemented with kanamycin and no L-rhamnose, in photoautotrophic conditions and constant light. The fluorescence intensity (arbitrary units) of 10,000 cells measured after 192 h using flow cytometry and compared to wild-type and Synechocystis cells lacking YFP entirely and cells containing pCK306 (no terminator, rhaBAD promoter, YFP). (C) Equivalent experiment to (B) but strains cultured in BG11 supplemented with 5 mM D-glucose (mixotrophic growth). (D) The same strains of Synechocystis were cultured in BG11 media supplemented kanamycin and L-rhamnose to a final concentration of $0.6 \mathrm{mg} / \mathrm{ml}$ in photoautotrophic conditions and constant light. The fluorescence intensity (arbitrary units) of 10,000 cells measured after 192 h using flow cytometry and compared to wild-type and Synechocystis cells (lacking YFP entirely) and cells containing pCK306 (no terminator, rhaBAD promoter, YFP). (E) Equivalent experiment to (D) but strains cultured in BG11 supplemented with 5 mM D-glucose (mixotrophic growth). Error bars shown are the standard deviation of the mean for three independent biological replicates. Key for SBOL glyphs used in figure: right-angled arrow represents a promoter; T represents a terminator; semi-circle represents a ribosome-binding site (RBS); coloured blocks represent coding sequences or genes.

Figure S3. Growth of Synechocystis cells transformed with terminator plasmids, pAS001-pAS020. Synechocystis cells containing integrated terminator constructs from one of pAS001-002, pAS004-020 (terminator between rhaBAD promoter and RBS of YFP-encoding gene) or pCK306 (control, no terminator) were cultured in BG11 media supplemented with kanamycin and $0.6 \mathrm{mg} / \mathrm{ml} \mathrm{L}$ rhamnose in photoautotrophic conditions and constant light; and the optical density at 750 nm was monitored over time. Error bars represent the standard deviation of the mean for three independent biological replicates.

Figure S4. Growth of Synechocystis cells transformed with insulated plasmids pCK351, pCK353, pCK354 or pCK355. Wild-type (WT) Synechocystis cells, or cells containing integrated terminator constructs from one of pCK 351 , $\mathrm{pCK} 353-355$ plasmids (each with one of four Rho-independent terminators inserted upstream of the rhaBAD promoter) or pCK 306 (control, no terminator) were cultured in BG11 media supplemented with kanamycin and 0 or $0.6 \mathrm{mg} / \mathrm{ml}$ L-rhamnose in photoautotrophic conditions and constant light; and the optical density at 750 nm was monitored over time. Error bars represent the standard deviation of the mean for three independent biological replicates.

Supplementary Materials and Methods

Plasmid Construction

A table of all plasmids and oligonucleotides (Table S1) is provided. Terminators were introduced as follows. Each terminator sequence was split in two at the hairpin-loop sequence and each part was included at the 5^{\prime} end of oligonucleotides that were then used to amplify pCK306. PCR fragments were then ligated by blunt-end ligation using the New England Biolabs site-directed mutagenesis kit and sequence verified.

Table S1. Plasmids and oligonucleotides used in this study.

Name	Details
pCK306	Medium copy plasmid (p15A), with 2054 nucleotides of homology to the Synechocystis sp. PCC 6803 chromosome, allowing integration of DNA after the first 34 nucleotides of ssl0410 (adjacent to $n d h B$), antibiotic resistance gene kanR encoding an aminoglycoside phosphotransferase, the rhaBAD promoter from E. coli, a synthetic RBS and eYFP, the E. coli rhaS RBS and gene inserted downstream of the kanR gene. [1]
pAS001-20	Detailed in Table 1
pCK351	As pCK306 but with terminator ECK120034435 inserted upstream of rhaBAD promoter
pCK353	As pCK306 but with terminator ECK120015170 inserted upstream of rhaBAD promoter
pCK354	As pCK306 but with terminator ECK120010799 inserted upstream of rhaBAD promoter
pCK355	As pCK306 but with the ilvBN terminator inserted upstream of rhaBAD promoter
oligoAS001	ACTGCAAGGTAGTGGACAAGACCGGCGGTCTTAAGTTTTTTGGCTGAATACGACCAGTC TAAAAAG Used in construction of pAS001
oligoAS002	AATGCGGTGGACAGGATCGGCGGTTTTCTTTTCTCTTCTCAAATGAATCGGGTAAGTTTA TAATATAC Used in construction of pAS001
oligoAS003	AGGTGCGGGCTTTTTTCTGTGTTTCCTACGACCAGTCTAAAAAG Used in construction of pAS002
oligoAS004	GACAGTGCGGGCTTTTTTTTTCGACCAAAGGATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS002
oligoAS007	TCTGGAATTTGGTACCGAGTACGACCAGTCTAAAAAG Used in construction of pAS004
oligoAS008	AAAGAGACGCTGAAAAGCGTCTTTTTTCGTTTTGGTCCATGAATCGGGTAAGTTTATAAT ATAC Used in construction of pAS004
oligoAS009	TCGGGAGGCCTCTTTTCTGGAATTTGGTACCGAGTACGACCAGTCTAAAAAG Used in construction of pAS005
oligoAS010	AAGGGGGGCCTTTTTTCGTTTTGGTCCATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS005
oligoAS011	TCAGCGTCTTTTTTCGAAAATTTGGTACCGAGTACGACCAGTCTAAAAAG Used in construction of pAS006

oligoAS012	AAAGCGTCTTTTTTCGTTTTGGTCCATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS006
oligoAS013	TCAGCGTCTTTTTTTTTTTTTTTGGTACCGAGTACGACCAGTCTAAAAAG Used in construction of pAS007
oligoAS014	AAAGCGTCTTTTTTCGTTTTGGTCCATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS007
oligoAS015	TTTGGGAGGCCTTTTTTCGAAAATACGACCAGTCTAAAAAG Used in construction of pAS008
oligoAS016	TCGGGGGGCCTTTTTTATTGATAACAAAAATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS008
oligoAS017	TCGACTGAGCCTTTCGTTTTATTTGATGCCTGGTACGACCAGTCTAAAAAG Used in construction of pAS009
oligoAS018	AAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACAC TGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAATGAATCGGGTAAGTTTATAATATA C Used in construction of pAS009
oligoAS019	TCAGTCGCCTTAAAAATCAGTTACGACCAGTCTAAAAAG Used in construction of pAS010
oligoAS020	TGAGTCGCCTTTTTTTTGTCTATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS010
oligoAS021	AGCGGCCTTTTTAGTTAGATCTACGACCAGTCTAAAAAG Used in construction of pAS011
oligoAS022	CTGCGGCCTTTTTTCTTTTCACTATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS011
oligoAS023	AAGCGGGTTTTTTCGAAAATTGTTACGACCAGTCTAAAAAG Used in construction of pAS012
oligoAS024	CGGCGGGTTTTTTTATAGCTAAAAATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS012
oligoAS025	ATCTTCCGGGGGCTTTCTCATGCGTTTACGACCAGTCTAAAAAG Used in construction of pAS013
oligoAS026	CACCTTCCGGGGGCTTTTTTATTGCGCATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS013
oligoAS027	ACTCTGTCGCCTTTTTTCCTGACTCATAACTACGACCAGTCTAAAAAG Used in construction of pAS014
oligoAS028	AATCTGTCGCCTTTTTTCTTTGCTTGCTTTATGAATCGGGTAAGTTTATAATATAC Used in construction of pAS014
oligoAS029	TTCGACTGAGCCTTTCGTTTTATTTGATGCCTGGTACGACCAGTCTAAAAAG Used in construction of pAS015
oligoAS030	AGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCATGAATCGGGTAAGT TTATAATATAC Used in construction of pAS015
oligoAS031	AAACCTCCCTGGGATTTTATGAGAAAAGTGGTAGTCGGTCTACTAAACCTACGACCAGT

	CTAAAAAG
	Used in construction of pAS016
oligoAS032	CGGCCTCCCTTTTTTTCACTTGCTAAGCTCTCTTTCGTTTATGAATCGGGTAAGTTTATAAT ATAC
	Used in construction of pAS016
oligoAS033	AGAGTCACTAACGGCAGCTTATGCGAATAGTGTTGCTACTTGCTCAATTACGACCAGTCT AAAAAG
	Used in construction of pAS017
oligoAS034	TAAGTTGCAACGGTGGCTTTTTTTATATGAATCGGGTAAGTTTATAATATAC
	Used in construction of pAS017
oligoAS035	AAGGAGCCTTTAATTGTATCGGTTTATCAGCTTGCTTTTACGACCAGTCTAAAAAG
	Used in construction of pAS018
oligoAS036	TTGGAGCCTTTTTTTTTGGAGATTTTCAACATGAAAAAATTATTATTATGAATCGGGTAA
	GTTTATAATATAC
	Used in construction of pAS018
oligoAS037	TCGGTGCGGGGGTCTTTACGACCAGTCTAAAAAG
	Used in construction of pAS019
oligoAS038	AAGGTCCGGGGGTTTTTTTTATGAATCGGGTAAGTTTATAATATAC
	Used in construction of pAS019
oligoAS039	AAGCGGGTTTTTACGTATACGACCAGTCTAAAAAG
	Used in construction of pAS020
oligoAS040	CGGCGGGTTTTTACTTTATGAATCGGGTAAGTTTATAATATAC
	Used in construction of pAS020

Supplementary References

1. Kelly, C.L.; Taylor, G.M.; Hitchcock, A.; Torres-Méndez, A.; Heap, J.T. A Rhamnose-Inducible System for Precise and Temporal Control of Gene Expression in Cyanobacteria. ACS Synth. Biol. 2018, 7, 1056-1066.
