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Abstract: The Zika virus disease, also known as Zika fever is an arboviral disease that became epidemic
in the Pacific Islands and had spread to 18 territories of the Americas in 2016. Zika virus disease
has been linked to several health problems such as microcephaly and the Guillain—Barré syndrome,
but to date, there has been no vaccine available for Zika. Problems related to the development of a
vaccine include the vaccination target, which covers pregnant women and children, and the antibody
dependent enhancement (ADE), which can be caused by non-neutralizing antibodies. The peptide
vaccine was chosen as a focus of this study as a safer platform to develop the Zika vaccine. In this
study, a collection of Zika proteomes was used to find the best candidates for T- and B-cell epitopes
using the immunoinformatics approach. The most promising T-cell epitopes were mapped using
the selected human leukocyte antigen (HLA) alleles, and further molecular docking and dynamics
studies showed a good peptide-HLA interaction for the best major histocompatibility complex-II
(MHC-II) epitope. The most promising B-cell epitopes include four linear peptides predicted to be
cross-reactive with T-cells, and conformational epitopes from two proteins accessible by antibodies
in their native biological assembly. It is believed that the use of immunoinformatics methods is a
promising strategy against the Zika viral infection in designing an efficacious multiepitope vaccine.

Keywords: Zika virus; peptide vaccine; epitope; immunoinformatics; molecular docking; molecular
dynamics

1. Introduction

Zika Virus is an arbovirus of the genus Flavivirus known for causing Zika disease/fever in humans.
Zika virus originates from Africa [1,2], and it has been around for a long time in Africa and South
Asia [3,4]. Since human infections only happened sporadically with minimal to no symptoms, Zika
remained largely overlooked until the 2007 outbreak at Yap Island in the Pacific Ocean [3]. It then
continued to spread eastward while accumulating mutations that gave rise to some serious health
problems, including microcephaly and the Guillain—-Barré syndrome [1,4-7]. In late 2014, Zika entered
America through Brazil, and promptly caused a major outbreak, reaching many countries in South and
Central America, the Caribbean and several states within the United States [3,4,8,9]. In 2016, there
were 205,578 probable Zika cases in Brazil [10]. From January 2015 to November 2016, there were 304
cases of microcephaly with a confirmed link to the Zika infection [11].

Although Zika is a potentially serious disease, there has been no medication or vaccine for Zika.
Current treatments like rest, administration of fluids, and analgesics [3,4] only deal with the resulting
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symptoms. To directly target the virus, several Zika vaccines are currently under development, using
various parts of the virus as their basis [12]. Some of them have reached clinical or preclinical trial
stages, with one DNA-based vaccine currently in its second phase clinical trial [12]. Safety becomes the
main concern in creating a Zika vaccine, considering pregnant women and infants are in the vulnerable
population and at risk of antibody-dependent enhancement (ADE) upon entry of a related Flavivirus.
ADE is the immunogenic mechanism for more severe virus infection, for example, secondary Dengue
virus infections. Antibodies targeted for the virus envelope proteins are supposed to neutralize the
virion by blocking it from binding to the receptors of fragment-crystallizable (Fc) on the surface of
certain cells. If the affinity of the antibody from a primary infection is too low for a different serotype
of the virus, the virion is not neutralized, and the secondary infection is increased [13]. ADE might
arise when the production of reactive, non-neutralizing antibodies help the propagation of a related
virus strain by facilitating antigen entry [14], and it has been observed in the dengue infection [15].

The peptide vaccine is seen as a safer platform for vaccine development. By only using the parts of
a protein that can elicit an immune response, unnecessary components that are potentially antigenic can
be eliminated. In the case of Zika, the CD8+ T-cell activity, a target of this vaccine, has been shown to play
a protective role against ADE in the dengue infection [16,17]. Immunoinformatics approaches have been
proven suitable for accurately determining 18 peptides from the ZIKV envelope containing predicted
HLA-I T-cell epitopes and investigated T-cell cross-reactivity between ZIKV-infected individuals and
DENV-vaccinated subjects by IFNy ELISPOT [18]. Several in silico studies have searched epitopes
on Zika, but most tended to focus on finding CD8+ T-cell epitopes, with a limited amount of further
analyses like molecular docking and molecular dynamics [16,19-24]. A part of the reason for the
popularity of CD8+ T-cells as a target is the more developed MHC-I epitope prediction methods [25].
The overall design of this study was to use the Zika protein sequence data to obtain candidate epitopes
for CD4+ T-cell, CD8+ T-cell, and B-cell (linear epitopes), and also Zika 3D protein structures to find
conformational B-cell epitope candidates in silico. The findings were verified by molecular docking
and molecular dynamics analyses.

2. Materials and Methods

2.1. Preparation of Zika Polyprotein Sequences

Polyprotein sequences for Zika viruses were obtained from the NCBI database (http://www.
ncbi.nlm.nih.gov/). The 39 American sequences were obtained from the BioProject accession:
PRJNA344504 [8].

2.2. Preparation and Visualization of Three-Dimensional Protein Structures

Three-dimensional (3D) protein structures with ID codes were required for Zika proteins and HLA
molecules (PDB ID for MHC-I receptors: 2GIT, 2X40, 5TXS, 3LKN, 1QQD; and MHC-II receptors: 1UVQ,
4MD5, 1A6A, 1BX2, 5V4M) were obtained from the Protein Databank (PDB) (http://www.rcsb.org/pdb/).
In addition, some of these proteins would not be readily available and require modeling. For proteins
to be modeled, a 3D structure of a template protein was downloaded instead. Template-based protein
structures were decided based on their correlation to the target protein, sequence similarity, and model
quality. Visualization of protein structures was done by the software DS Visualizer [26] and PyMol [27].

2.3. CD8+ T-cell Epitope Prediction

The protein sequence in the FASTA format was used as input for the prediction tools. The prediction
was done using NetCTLpan1.1 [28] which uses the ANN algorithm used in NetMHCpan [29], combined
with predictions of proteasomal cleavage from the NetChop [30] and TAP transport efficiency [31].
For validation, MHC-I Binding Prediction tools from the Immune Epitope Database (IEDB) (http:
//tools.iedb.org/mhci/) were employed by using the recommended method. The recommended
method combines prediction results from several prediction methods into one consensus result when
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possible [32]. Prediction methods used from IEDB’s collection were NetMHCpan 3.0 [29,33], NetMHC
4.0 [34,35], SMM [36] and Combinatorial Library [37].

2.4. CD4+ T-cell Epitope Prediction

The protein sequence in the FASTA format was used as input for the prediction tools. The
prediction was done at IEDB (http://tools.iedb.org/mhcii/) by using the recommended method. The
IEDB recommended it combines the results from several prediction methods to obtain one consensus
result when possible [38]. Prediction methods used from IEDB'’s collection were the Combinatorial
Library [37], SMM-align [39], NN-align [40], Sturniolo [41] and NetMHClIIpan 3.1 [42]. Validation
was done using PREDIVAC [43] for HLA-DR epitopes and NetMHClIpan 3.2 [44] for HLA-DQ and
DP epitopes. PREDIVAC uses the concept of specificity determining residues in predicting peptide
binding [43].

2.5. T-cell Epitope Shortlisting

The predicted T-cell epitopes were then subjected to a series of analyses. Analysis of the
pMHC-I- T-cell receptor (TCR) binding was done for MHC-I epitopes using the IEDB Class I
Immunogenicity Predictor (http://tools.iedb.org/immunogenicity/) [45], where non-immunogenic
epitopes (negative-scoring) were eliminated. The peptide toxicity analysis was done using
ToxinPred [46]. Following that, the epitopes were compared against an expanded pool of Zika
polyprotein sequences, consisting of 39 initial sequences and 15 new sequences (Table S1, Supplementary
file) from South East Asia, French Polynesia and Mexico, to check for their level of conservation at
their respective positions across the sequences.

The population coverage analysis was then done on conserved epitopes. A list of HLA alleles that
would bind to each epitope was gathered. The program NetMHC 4.0 [34,35] was used for identifying
MHC-I epitopes, and NetMHCII 2.3 [44] was used for identifying MHC-II epitopes. Epitopes were
tested for all available HLA-A, B, C, DR, DP, and DQ alleles. The epitope: HLA pair list was then used
to estimate population coverages for nine regions: North America, Central America, South America,
South Asia, South East Asia, West Indies, Oceania, Central Africa, and West Africa by using the tool
provided by IEDB (http://tools.iedb.org/population/) [47].

Following the population coverage analysis, ten best epitopes for each HLA class were gathered.
A cutoff of 80% averaged coverage was used, then the numbers of strong (SB) and weak binders
(WB) were considered. To give higher weight on strong binders, WB was given half the value of
an SB. Peptide antigenicity was checked by comparing each epitope to the complete sequence that
ran through the EMBOSS antigenic [48] and looking for the presence of antigenic residues. Lastly,
to prevent autoimmune responses, BLASTp [49] was performed for each epitope against human
proteome at default settings. Epitopes with 100% sequence similarity, one indel or one mutation from
the corresponding human sequence were eliminated.

2.6. Linear and Conformational B-cell Epitope Prediction

Prediction for linear epitopes was done using BepiPred-2.0 [50] and LBtope [51]. BepiPred-2.0
was trained using the Random Forest algorithm to find epitope residues from a dataset of epitopes
and non-epitopes in crystal structures [50], and LBtope was trained using various methods including
the SVM and Nearest Neighbor on various datasets [51]. The dataset LBtope_confirm was used
in the epitope prediction, all entries in this dataset had been reported by at least two studies [51].
For BepiPred-2.0, residues scoring above ~0.5 were considered epitope, and for Lbtope, residues
with %probability above ~60 were considered epitope. The minimal length of a linear epitope
was set to be six, following the typical minimum epitope length of Zika epitopes listed in IEDB
(http://www.iedb.org) [52].

To predict conformational epitopes, three-dimensional Zika protein structures were obtained
either directly from PDB or through modeling. The prediction was done using DiscoTope 2.0 [53]
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by uploading the protein PDB file and specifying the chain(s) to be used. DiscoTope 2.0 combines
sequence information with spatial information in finding epitope residues [53].

2.7. B-cell Epitope Shortlisting

Similar to the T-cell, consensus epitopes were passed through toxicity, conservancy, and antigenicity
tests, then their similarity to human proteins was checked using BLASTp [49]. In similarity checking,
epitopes with identity above 90% with a part of human proteome were eliminated.

2.8. Modeling of Protein Structures

All modeling was done using MODELLER 9.19 [54]. For the homology modeling, template
proteins were first obtained by the help of “build_profile()” command or searching in PDB. After
obtaining a template structure, the target sequence was aligned to the template using the command
“salign()”, and the model was built using “automodel()”. Generated 3D structures were then validated
using Errat [55], ProQ [56], Verify3D [57] and MolProbity [58].

Modeling for proteins with minimal (laa) difference from the target sequence was done by
changing only the residue of interest while leaving the other residues rigid. MODELLER would then
optimize the new residue.

2.9. Molecular Docking Simulation

PDB structures of both the epitope (ligand) and MHC were used in docking. Epitope 3D structures
were generated using PEP-FOLD3 [59] by inputting their amino acid sequence. AutoDock Vina 1.1.2 [60]
was employed to perform docking simulations, with the inputs of both PDB files and docking parameters.

Docking preparation was done in AutoDock Tools [61]. Firstly, protein orientation was adjusted
such that minimum xyz dimensions for the peptide binding site could be achieved. Protein was given
polar hydrogens, and ligand torsions were enabled for all rotatable bonds, except for the amide bonds.
After that, a grid box was set to be large enough to accommodate the peptide ligand (at least 30 A x 15
A x 15 A in size). Docking was done using default parameters, save for exhaustiveness = 16.

2.10. Molecular Dynamics Simulation

A molecular dynamics simulation was performed to study the stability of docked peptide-MHC
complexes. Docked epitopes were complexed with their HLA receptors and became input for MD
simulation performed by GROMACS 2018 [62,63].

The force field AMBER99sb-ILDN [64] was used with the TIP3P water model [65]. The simulation
condition was 310 K, 1 bar, and 0.15 M NaCl to mimic the physiological condition. The simulation box
was a dodecahedron with an additional 1.2 nm space from the edge of the protein. The atom neighbor
list was searched using the Verlet cutoff method [66], and electrostatic forces were calculated using the
smooth PME method [67] with a cutoff distance of 1 nm. Minimization was done using the steepest descent
down to 1000 kJ/mol.nm. Bond lengths for all atoms were constrained using the LINCS algorithm [68].
Equilibration was done by restraining heavy atom (non-H) positions. Temperature equilibration was done
using the v-rescale thermostat [69] for 100 ps, followed by the pressure equilibration for 500 ps using the
Berendsen thermostat (2 fs timestep). Finally, position restraints were lifted; barostat was switched to
Parrinello-Rahman [70,71]; and the production simulation was run for 20 ns (2 fs timestep).

3. Results

3.1. Preparation of Zika Polyprotein Sequence for Epitope Screening

Metsky et al. [9] uploaded 110 genome sequences of circulating Zika viruses in the Americas
(American’s Zika lineage) alongside their translated protein sequences, under the BioProject accession
PRJNA344504. A sequence pool was created from 39 polyprotein sequences that contained no long
stretches of gap (Table S1, Supplementary file). These sequences came from six countries/states:
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Dominican Republic, Colombia, Florida, Puerto Rico, Brazil, and Honduras. From the sequence pool,
one consensus sequence was generated by preferring Brazilian sequences, since the strains circulating
in Brazil are the most established. Sporadic mutations (occurring random or in scattered mutations)
were reverted to their corresponding consensus residues as new sequences, and localized mutations
(regular mutation) were reverted to their corresponding Brazilian sequences. This sequence is 3242
amino acid long and available in Diagram S1 (Supplementary file).

3.2. Selection of HLA Alleles in T-cell Epitope Screening

The HLA alleles used in this study are summarized in Table 1. In total, a pool of 13 HLA class I
alleles for HLA-A and B was created. Out of the 13 alleles, nine alleles have been commonly found in
Indonesia and four alleles have been reported to have a protective effect against dengue. For class
II, a pool of 12 alleles for HLA-DR and DQ was created, consisting of 10 common alleles and three
protective alleles. In cases where the allele subtype was not known, 01 was used to represent that allele.
To form the binding pocket of HLA class II molecules, chain A and B need to be combined. However,
due to the monomorphic nature of HLA-DRA [72], the recombination of chain A and B was only done
for the five HLA-DQ alleles, resulting in a set of 13 class Il HLA molecules.

Table 1. Human leukocyte antigen (HLA) alleles for T-cell epitope mapping the common and protective
to dengue virus (DENV).

HLA Class HLA Allele Common Protective References
HLA-A*02:01 v [73]
HLA-A*03:01 v [74]
HLA-A*11:01 v [73]
HLA-A*24:02 v [73]
HLA-A*24:07 v [73]
HLA-A*33:01 v [75]

I HLA-A*33:03 v [73]
HLA-B*15:02 v [73]
HLA-B*15:13 v [73]
HLA-B*18:01 v [74]
HLA-B*35:01 v [74,76]
HLA-B*35:05 v [73]
HLA-B*44:03 v [73]

HLA-DRB1*03:01 N [73]
HLA-DRB1*04:01 v [77,78]
HLA-DRB1*07:01 v v [73,78,79]
HLA-DRB1*09:01 v [80]
HLA-DRB1*12:02 v [73,79]
HLA-DRB1*15:01 v [73]

1 HLA-DRB1+*15:02 v [73,79,81]
HLA-DQA1*01:01 v [79]
HLA-DQA1*01:02 N [79]
HLA-DQA1*06:01 v [79]
HLA-DQB1#03:01 v [79,81]
HLA-DQB1*05:01 v [79,81]

3.3. Prediction of T-cell Epitopes Recognized by MHC-I and MHC-II

Two predictors were used in both finding MHC-I epitopes (HLA-A and B) and MHC-II (HLA-DR
and DQ) to generate consensus epitope-HLA pairs. Two hundred and seventy seven epitope-HLA
pairs were discovered for MHC-I, and 95 pairs for MHC-II. By ignoring HLA, there were 175 unique
peptides for class I and 67 for MHC-II. To ensure the epitopes would work well as a vaccine component,
the quality of these epitopes was then further evaluated by running them through immunogenicity,
toxicity, conservation and population coverage tests. Ten of the best epitopes for MHC-I and II each
were obtained. After further antigenicity and autoimmunity testing, nine MHC-I epitopes (Table 2)
and eight MHC-II epitopes (Table 3) were selected for molecular docking study.
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Table 2. HLA alleles for T-cell epitope mapping.

Pos  Protein Epitope NA SA SAS SEA Oce WI WAf CAf CA Avg! Auto-Immunity 2

2310 NS4B AIYAALTTF 81.62 63.67 7525 8147 7814 66.07 7572 8591 297 75.98
1488 NS2B FAAGAWYVY 8184 7323 7647 7499 56.09 75.05 7811 80.77 7.02 74.57
2862 NS5 IAMTDTTPY 7299 50.65 69.71 7512 6286 7110 64.16 74.85 6.44 67.68
664 Env MMLELDPPF 9211 8951 77.07 91.02 8326 8529 8411 89.86 5.70 86.53

46 Capsid MVLAILAFL  89.18 8156 7470 6325 59.63 81.05 8753 9337 7.95 78.78
1744 NS3 RYMTTAVNV  80.88 70.87 7655 78.60 8171 41.77 7954 81.32 2.19 7391
507 Env WFHDIPLPW 7492 6836 6035 80.50 7953 53.02 69.01 70.19 3.75 69.49
2996 NS5 WYMWLGARF 7449 6756 5778 7788 7546 59.09 7034 70.83 1.39 69.18
2356 NS4B YAWDFGVPL 9713 9259 90.73 9252 8457 8190 9471 94.86 2.98 91.13
2997 NS5 YMWLGARFL 89.75 86.09 7798 7890 6937 5485 9041 84.46 0.00 78.98

I Average numbers for major histocompatibility complex-I (MHC-I) epitopes do not include Central America. 2 O—Pass. X—Does not pass; may cause autoimmunity. Note:
Region abbreviations: NA—North America, CA—Central America, SA—South America, SAS—South Asia, SEA—Southeast Asia, Oce—Oceania, WI—West Indies, WAf—West Africa,
CAf—Central Africa. Population coverage numbers are in percentage.

OO0OO0OO0OO0OOOOO0O

Table 3. Shortlisted ten major histocompatibility complex-II (MHC-II) epitopes, with coverage values and autoimmune induction potential.

Pos Protein Epitope NA CA SA SAS SEA Oce WI WAf CAf Avg SB WB SB+(WB/2) Auto-Immunity’!
84 Capsid FKKDLAAML  100.0099.98 99.78 99.82 89.63 98.77 60.73 99.73 99.83 94.25 10 9 14.5 O
2445 NS4B IAVAVSSAI 99.46 100.0099.79 99.29 96.87 99.21 99.13 99.82 97.47 99.00 11 9 15.5 O
1398 NS2B IEMAGPMAA  100.00 100.00 100.0099.72 99.44 99.93 99.70 99.94 99.71 99.83 7 7 10.5 O
2382 NS4B ILLVAHYM 99.95 99.19 98.50 97.04 74.51 9490 71.01 87.61 9244 90.57 5 11 10.5 O
2396 NS4B  LQAAAARAA  100.0099.99 99.91 99.35 98.89 99.91 97.86 99.42 99.29 99.40 11 2 12 X
3287 NS5 LYFHRRDLR  99.94 99.05 96.53 96.46 62.07 90.11 69.54 89.41 93.30 8849 9 3 10.5 O
2335 NS4B  SLMAMATQA  99.00 99.93 99.64 98.43 98.56 99.37 99.94 99.95 99.13 99.33 11 7 14.5 O
557 Env TALAGALEA  99.74 100.00100.0098.00 99.19 99.80 99.32 99.51 98.91 99.39 10 2 11 X
2309 NS4B WAIYAALTT  99.81 100.0099.89 98.86 99.79 99.83 98.60 99.61 98.61 99.44 6 11 11.5 O
427 Env YRIMLSVHG  99.95 9292 96.84 97.70 86.77 97.30 88.96 98.29 95.73 9494 11 5 13.5 O

1 O—Pass, X—Does not pass; may cause autoimmunity. Note: Region abbreviations: NA—North America, CA—Central America, SA—South America, SAS—South Asia, SEA—Southeast
Asia, Oce—Oceania, WI—West Indies, WAf—West Africa, CAf—Central Africa. Population coverage numbers are in percentage.
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3.4. Docking of T-cell Epitopes to MHC Molecules

Nine selected epitopes for MHC-I and eight selected epitopes for MHC-II were used for the
molecular docking study. Each epitope was paired with an appropriate HLA molecule predicted
to strongly bind the epitope. By looking at the NetMHC and NetMHCII results alongside the
initial screening results, one HLA was selected to be paired with each epitope based on the
binding quality, allele frequency in Southeast Asia, and prediction reliability (for NetMHCII).
Some class II HLA structures were not available in PDB and had to be modeled. Structures for
HLA-DQA1*05:01-DQB1*03:03, HLA-DQA1*02:01-DQB1*03:03 and HLA-DRA/DRB1*09:01 were
generated using the homology modeling, while DRA/HLA-DRB1*15:02 that has only one residue
difference from its reference structure was point mutated to its receptor. The PDB structures used to
model these HLAs are listed in Tables 4 and 5, whereas validation of the resulting structures can be
seen in Table S2 (Supplementary file).

Table 4. Summary of docking results of epitope with MHC-I.

Protein Peptide HLA Receptor Blt:ﬁég;g/il;;rgy Ki #H Bond
Capsid MVLAILAFL A*02:01 2GIT -9 452 %1077 9
NS5 YMWLGARFL A*02:01 2GIT -9.3 2.78 x 1077 8
NS4B YAWDFGVPL A*02:01 2GIT -10.3 5.48 x 1078 7
NS3 RYMTTAVNV A*24:02 2X40 -8.9 532 %1077 9
NS5 WYMWLGARF  A*24:02 2X40 -7.5 5.16 x 107 7
NS4B ATIYAALTTF B*15:01 5TXS -9.9 1.05 x 1077 12
NS2B FAAGAWYVY B*35:01 3LKN -10.1 7.58 x 1078 9
NS5 IAMTDTTPY B*35:01 3LKN -9.8 1.23 x 1077 8
Env WFHDIPLPW C*04:01 1QQD -11 1.76 x 1078 8

Table 5. Summary of docking results of epitope with MHC-II.

Binding Energy

Protein Peptide HLA Receptor ! (kcal/mol) Ki #H Bond
NS4B TAVAVSSAI DQA1*05:01/DQB1*03:03 10VQ* -6.8 1.61 x 1072 4
NS2B IEMAGPMAA  DQA1*05:01/DQB1*03:03 10VQ* -6.3 3.62 x 1075 4
NS4B SLMAMATQA  DQA1%02:01/DQB1*03:03 10VQ* -7.3 7.14x 1076 6

Env YRIMLSVHG DRB1*11:01 4MD5* -7.3 7.14x 1076 9
NS5 LYFHRRDLR DRB1*03:01 1A6A -8.5 1.02x 1070 12
NS4B IILLVAHYM DRB1*15:01 1BX2 —-6.5 2.62x107° 6

Capsid ~ FKKDLAAML DRB1*09:01 5V4M* -8 229 x 107° 5

NS4B WAIYAALTT DRB1*15:02 5V4M* -10.4 4.66 x 1078 7

! The receptor with an asterisk sign (*) indicates that the structure was used as a template in modeling.

The AutoDock Vina uses its scoring function to calculate inter-atomic interactions and the
difference of the Gibbs free energy (AG) value, which depicts the binding energy between the protein
and ligand [60,82]. This value can be converted into an inhibition constant (K;) by using the formula:

Ki = e(%)

)
where R and T are the gas constant and temperature, respectively. A lower binding energy and
inhibition constant indicate a stronger bond between the epitope and HLA.

Peptide docked poses are displayed in Figure 1, and docking summaries are displayed in
Tables 4 and 5. The bolded entries WFHDIPLPW for MHC-I and WAIYAALTT for MHC-II had the
lowest binding energies and inhibition constants (Ki) in their respective groups, indicating the best
binding interactions.
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Figure 1. Conformations of epitopes when docked to a strongly binding HLA. (a) MHC-I epitopes; (b)

MHC-II epitopes.
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3.5. Molecular Dynamics Simulations

The stability of HLAs and peptide epitopes were tested by 20 ns MD simulation. As a comparison,
the same simulation was also done for the unbound form of the receptors. The RMSD analysis for
WEFHDIPLPW-HLA-C*04:01 (Figure 2a) showed that the stability was reached at about 10 ns for the
complex structure, indicated by a plateauing RMSD value. The unbound HLA seemed to have not
reached stability. The RMSD analysis for WAIYAALTT-HLA-DRA/DRB1*15:02 (Figure 2b) also showed
a rather stable RMSD in the bound structure, whereas RMSD of the unbound structure appeared to

increase slowly.

—Receptor-ligand Receptor

—Receptor-ligand Receptor 0.35

|
0.3 \‘l ‘;]
0.25 | i My M ) |
Mol

0.1
0.1

5
o

RMSD (nm)
RMSD (nm)

w

0 2 4 6 8 10 12 14 16 18 20
t (ns)

(@) (b)

Figure 2. RMSD fluctuation within 20 ns MD simulation. (a) Epitope WFHDIPLPW with HLA-C*04:01;
(b) epitope WAIYAALTT with HLA-DRB1*15:02.

Root mean square fluctuation (RMSF) values depict the degree of movement of each residue.
In both cases (WFHDIPLPW and WAIYAALTT), the overall RMSF appeared higher for the unbound
structure, indicating a lower stability (Figure 3). The last nine residues in the complex RMSF belong to
the epitope (Figure 4). WFHDIPLPW had a rather high RMSF (about 1.4-2.9 A, average 2.04 A), while
WAIYAALTT had a lower RMSF (average 1.11 A) with residues one to seven having RMSF lower than
1A (Figure 4). It could be inferred that residues one to seven of WAIYAALTT had been docked well,

resulting in minimum changes (movements) and low RMSF values.
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Figure 3. Residual RMSF after 20 ns simulation. (a) Epitope WFHDIPLPW with HLA-C*04:01; (b)
epitope WAIYAALTT with HLA-DRB1*15:02.

0.25

RMSF (nm)
RMSF
S

0.15

0.1

0.05



Microorganisms 2019, 7, 226 10 of 27

0.35
0.35

)

o
G

to

RMSF (nm)

E(m 0.15
-4
0.1 0.1
0.05 0.05
0 0
0 2 4 6 8 10
Residue 0 2 4 ) 6 8 10
Residue
(a) (b)
Figure 4. Residual RMSF after 20 ns simulation only for epitope residues. (a) WFHDIPLPW;

(b) WAIYAALTT.

Lastly, the radius of gyration (Rg) analysis depicts structure density by calculating the atomic root
mean square deviation (RMSD) from a center of mass [83]. A protein changing the conformation would
thus display a changing Rg value. Rg values for WFHDIPLPW-HLA-C*04:01 tended to stabilize around
2.3 A while in the unbound structure Rg seemed to yet stabilize after 20 ns (Figure 5). Rg values for
WAIYAALTT-HLA-DRB1*05:02 both in the bound and unbound structure appeared rather stable with
a slightly declining trend for the unbound structure. However, the unbound Rg was lower, implying a

more compact structure (Figure 5).
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Figure 5. The radius of gyration (Rg) within 20 ns MD simulation. (a) Epitope WFHDIPLPW with
HLA-C*04:01; (b) epitope WAIYAALTT with HLA-DRB1%*15:02.

The conformational analysis revealed several changes in the bound ligand WFHDIPLPW after
20 ns of MD simulation (Figure 6). The docked structure shows residues two to three (FH), forming
the kink in the ligand structure (Figure 6b). After 20 ns of MD simulation, the kink was observed in
residues seven to nine (LPW) (Figure 6¢). MD simulation also opened the ligand -COOH end part of
the receptor (mainly Lys80 and Lys146) and the -NH; end, which was closed by Arg62 and Trp167 [84]

(Figure 6c).
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Figure 6. Conformational changes in MD simulation of WFHDIPLPW-HLA-C*04:01. (a) HLA-C*04:01
(PDB ID: 1QQD) bound with consensus epitope from pool sequencing (QYDDAVYKL); (b) epitope
WFHDIPLPW docked to HLA-C*04:01; (c) epitope WFHDIPLPW bound to HLA-C*04:01 after 20 ns
MD simulation. Epitope residues one to nine are numbered. Residues Arg62, Lys80, Lys146, Trp167 are
labeled and colored yellow.

Fleischmann et al. [85] reported that strongly binding epitopes tend to tighten the gap in the HLA
molecule. According to the atoms used by Fleischmann et al. [85], d1 was defined as the distance
between CA of Tyr85 and Thr138 (HLA-C*04:01) and d2 as the distance between CA of Asp74 and
Ala149 (HLA-C*04:01). Following 20 ns MD simulation on WFHDIPLPW-HLA-C*04:01, d1 increased
from 9171 A to 10,041 A and d2 from 21,132 A to 21,773 A.
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In the case of WAIYAALTT, the MD simulation for 20 ns slightly shifted the position of Trp1l
outward from the pocket with both hydrophobic rings still inside, and Ala2 was now closer to chain B,
resulting in closer residue one to two conformations to the crystal structure (Figure 7a,c). Residues
four and seven were also still located in the lateral pocket, and residues five and eight still pointed
upward. The main difference was observed for Thr9, which dissociated itself from the HLA pocket
and Thr8 that helped in accommodating the dissociation of Thr9.

Figure 7. Conformational changes in MD simulation of WAIYAALTT- to HLA-DRA/DRB1*15:02.
(a) Nine-mer core of a self-epitope from chain «3 type IV collagen (ISLWKGEFSF), bound to
HLA-DRA/DRB1*15:01 (PDB ID: 5V4M); (b) epitope WAIYAALTT docked to HLA-DRA/DRB1*15:02
(modeled from 5V4M); (c) epitope WAIYAALTT with HLA-DRA/DRB1*15:02 after 20 ns MD simulation.
HLA chains « colored green and 3 blue.

3.6. Prediction of B-cell Linear Epitopes

An epitope search was performed for all Zika proteins: C, prM and M, E, Ns1, NS2A, NS2B,
NS3, NS4A, 2K, NS4B, and NS5. Two programs were employed to search for B-cell linear epitopes. A
list of consensus epitopes was first generated by combining the two prediction results. A total of 42
consensus epitopes were gathered. Among these, no epitopes were present for NS2A/B, NS4A, and 2K.
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The highest epitope densities were observed in NS1, NS3, and NS5. The list of consensus epitopes is
available in Table S5 (Supplementary file).

Similar to T-cell epitopes, toxicity, conservancy and antigenicity tests, were performed on consensus
epitopes, then their similarity to human proteins was checked. The results for these tests can be seen in
Table S5. After the elimination process, 22 epitopes were found to be non-toxic, conserved, having
antigenic residues and non-autoimmunity-inducing are displayed in Table 6.

Table 6. Linear epitopes that passed toxicity, conservancy, antigenicity and autoimmunity tests.

Protein  Position Length Peptide !
ptM 56 10 LDEGVEPDDV
84 20 KKGEARRSRRAVTLPSHSTR
M 25 7 YTKHLIR
89 15 QYVCKRTLVDRGWGN
E 146 8 SQHSGMIV
216 7 EWFHDIP
428 9 AWDFGSVGG
28 13 WRDRYKYHPDSPR
NS1 141 8 KECPLKHR
338 11 RKEPESNLVRS
6 7 DVPAPKE
27 7 TRRLLGS
NS3 65 11 LDPYWGDVKQD
82 9 PWKLDAAWD
594 11 WMDARVCSDHA
34 15 EVCREEARRALKDGV
153 9 SPEVEEART
247 17 PRRPVKYEEDVNLGSGT
NS5 353 9 QRVFKEKVD
363 7 RVPDPQE
414 24 FEEEKEWKTAVEAVNDPRFWALVD
598 9 QDQRGSGQV
! Underlined residues are predicted as antigenic. Epitope residues for MHC-I are colored in red, and for MHC-TI

in blue.

Lastly, each epitope was checked for the presence of a T-cell epitope residue, which will increase
its quality as a vaccine epitope. The filtered epitopes were compared against epitopes for the 13 HLA
alleles (both MHC-I and II) that had passed immunogenicity (MHC-I only), toxicity and conservancy
tests. Epitopes EWFHDIP (E), WRDRYKYHPDSPR (NS1), and DVPAPKE (NS3) were found to share
epitopic residues with MHC-I, whereas epitopes LDPYWGDVKQD and WMDARVCSDHA from NS3
shared epitopic residues with MHC-II.

3.7. Prediction of B-cell Conformational Epitopes

Initially, a PDB search for tertiary Zika protein structures was performed. The only usable tertiary
structures came from proteins C, E, prM and M, NS1, N52B, NS3 protease, NS3 helicase and NS5. No
tertiary structure that could be used as a template for proteins NS2A, NS4A and NS4B was found. To
use the American consensus sequence, proteins prM, NS3 (protease and helicase domains) and NS5
were modeled using homology modeling and NS1 using point mutation H1R. The list of proteins,
reference structures and modeling methods are presented in Table 7. For structures generated using
homology modeling, their validations can be seen in Table 56 (Supplementary file).

Epitope prediction was first performed in its monomeric form, and then if possible as a biological
assembly. The complete list of epitopes can be found in Table 8. The location of epitope residues for
proteins E and NS1 is illustrated in Figure 8.
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Table 7. Accession, origin and isolation year for Zika polyprotein sequences used to obtain
consensus sequence.

Protein PDB ID
C 5YGH
E 5IRE
pt™M 4B03 via homology modeling
M 5IRE
NS1 5GS6 via point mutation: HIR
NS2B 5YOF
NS3 (protease domain) 5YOF via homology modeling
NS3 (helicase domain) 5VI7 via homology modeling
NS5 5U0B via homology modeling

(b)

Figure 8. Conformational epitopes mapped to their respective proteins. Epitope residues are colored
yellow. Epitopes only found in the monomeric structure are colored red, and epitopes only found in
the multimeric structure are colored blue. (a) E protein (from above) in the form of E-M heterodimer.
The chain used to find monomeric epitopes are colored green, transmembrane domains are colored
pink and M proteins are colored tan; (b) NS1 protein as a dimer. The chain used to find monomeric
epitopes are colored green, the beta-roll domain is colored pink.
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Table 8. Predicted Zika conformational epitopes.

Protein

Epitope Residues !

C
E

NS1

ptM

NS2B

NS3-P
NS3-H

NS5

Chain A*: PRO26, PHE27, LYS74, LYS75, ASN96, ALA97, ARG98

Chain C: ASN52, SER129, GLU133, THR156, ALA229, ASP230, THR231, GLY232, ASP278, GLY279,
ALA280, THR405, ILE407

Chain E*: ASN52, TRP101, GLY102, GLY109, GLU133, THR156, ALA229, ASP230, THR231, GLY232,
ASP278, GLY279, ALA280, GLN350, THR406, ILE407

Chain A*: PHES, SER9, LYS10, LYS11, ASP30, ARG31, LYS116, SER121, TYR122, ASP157, GLY190,
LYS191, GLU192, GLU205, LYS206, ASN207, ASP208, THR209, TRP210, ASP234, GLY235, GLU237,
GLU238, SER239, HIS253, GLU258, ALA303, SER304, GLY305, GLU315, PRO341, SER343, ASN344
Chain B: TYR122, GLY235, GLU237, GLU238, SER239, GLU258, ALA303, SER304, GLY305, GLU315,
SER343

HIS82, HIS83, LYS84, LYS85, GLY86, GLU87, ALA8S, ARG89, ARG90, SER91, ARG92, ARG93,
ALA94, VAL95, THR96, LEU97, PRO98, SER99, HIS100, SER101, THR102, ARG103, LYS104, LEU105,
GLN106, THR107, ARG108, SER109, GLN110, THR111, TRP112, LEU113, GLU114, SER115, ARG116,
GLU117, TYR118, THR119, LYS120, HIS121

ALA1, THR 3, LEU4, PROS5, SER6, HIS7, SERS, THR9, ARG10, LYS11, LEU12, GLN13, THR14,
ARGI15, SER16, GLN17, THR18, TRP19, LEU20, GLU21, SER22, ARG23, GLU24, TYR25, THR26,
LYS27

ASP50, MET51, TYR52, ILE53, GLU54, ARG55, ALA56, GLY57, ASP58, ILE59, THR60, TRP61,
GLU62, LYS63, ASP64, ALA65, GLU66, VAL67, THR68, GLY69, ASN70, SER71, PRO72, ARG73,
GLU80, GLY82

ARG13, ARG14, LEU15, LEU16, GLY17, GLY46, GLU47, ASP51, LYS104, ASP105, GLU156
ARG147, ASP148, ASP152, SER153, ASN154, SER155, PRO156, ILE157, MET158, ASP159, THR160,
SER180, GLY181, LYS182, LYS223, HIS224, GLN225, GLU226, LYS243, ASP245, GLY285, ARG286,
ASN287, PRO288, ASN289, LYS290, PRO291, GLY292, ASP293, TRP405, HIS408, GLY409, GLU410,
LYS411

ALA10, ASN13, GLN14, MET15, SER16, ALA17, LEU18, GLU19, PHE20, TYR21, SER22, TYR23,
LYS24, LYS25, SER26, GLY27, GLY103, PRO104, GLY105, GLN234, LEU237, GLY238, MET240,
ASP241, GLY242, PRO243, ARG244, ARG245, PRO246, VAL247, LYS248, TYR249, SER264, CYS265,
ALA266, GLU267, ALA268, ASN270, MET271, LYS272, GLU279, ARG282, ALA286, GLU287,
THR288, TRP289, PHE290, PHE291, GLU293, TYR297, ARG298, THR299, TRP300, ALA301, TYR302,
GLY304, TYR306, GLU307, ALA308, PRO309, THR310, SER313, ALA314, ASP342, THR343, THR344,
GLN348, VAL351, PHE352, LYS353, GLU354, LYS355, VAL356, ASP357, THR358, ARG359, VAL360,
PRO361, ASP362, LYS384, HIS385, MET452, GLY453, GLN459, LYS466, GLY467, SER468, ARG469,
ARG521, ILE522, PRO523, GLY525, ARG526, ALA533, GLY534, LEU578, LYS583, GLY584, LYS585,
THR586, GLU625, GLU628, MET629, GLN630, TRP633, LEU634, ARG636, ARG637, GLU639,
ASN643, GLN646, SER647, ASP669, ASP670, ARG671, HIS674, LYS687, ASP688, THR689, GLN690,
GLU691, TRP692, LYS693, PRO694, THR696, ASP699, ASN700, HIS715, LEU716, LYS717, ASP718,
GLY719, ARG720, SER721, ILE816, GLU817, GLU818, ASP820, MET822, GLU823, ASP824, LYS825,
THR826, PRO827, THR829, GLY838, LYS839, ARG840, GLY850, ARG852

1 For proteins checked in their multimeric form, the chain used in finding monomeric epitopes are marked by
*. Epitopes found only in the monomeric structure are colored red, while epitopes found only in the multimeric
structure are colored blue.

4. Discussion

4.1. Prediction of T-cell Epitopes Recognized by Class I and Il MHC

After acquiring pathogenic gene mutations, the Zika virus reached America and caused an
outbreak in the naive population [5-7]. To start the screening of epitopes, an amino acid sequence is
required (see Figure 1). In this study, sequences from the Zika virus currently circulating in America
were used to find the sequence used in screening.

The specificity of each HLA's epitope recognition [72] means that the selection of correct HLA
molecules can affect the success of epitope screening. In this study, various HLAs common in Indonesia
were used to screen for T-cell epitopes. Indonesia as a tropical country, has a very suitable climate for
Zika mosquito vectors. Introduction of the more recent and dangerous American strains to this area
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can potentially trigger an outbreak. An example of this kind of introduction was in Singapore from a
traveler returning from Brazil in 2016, although it did not trigger an outbreak [86].

Some HLAs have been associated with protection or vulnerability to certain diseases; examples
include Dengue type 2 protective HLAs HLA-DRB1*04 and HLA-DRB1*07 that have been reported to
have lower frequencies in the patient population than the healthy population [78]. Including protective
HLAs in epitope screening are expected to return more essential epitopes for pathogen neutralization.
Unfortunately, reports that associate certain HLAs with protection or vulnerability to Zika are not
yet available.

Screening for T-cell epitopes was done for all 26 MHC-I and II HLA molecules. A peptide was
said to be epitope for its respective HLA if it was predicted to bind strongly to the HLA molecule. Two
predictors were used in both finding class I MHC epitopes (HLA-A and B) and class II (HLA-DR and
DQ) to generate consensus epitope-HLA pairs.

Consensus epitopes were then passed through several tests to ensure their quality as a
vaccine component. For class I MHC, epitope immunogenicity was firstly evaluated. In this case,
immunogenicity is defined as the ability of a peptide-MHC-I complex to bind with a T-cell receptor [40].
Peptide bound to MHC has specific residues facing outwards, giving a larger contribution to the
interaction with TCR [45,87]. Toxicity was then assessed. Certain peptides can give a toxic reaction
when administered by inhibiting certain biological functions [88]. After that, the epitope conservation
analysis was done by considering the high specificity of MHC molecules and continuous mutation of
viruses. It means a peptide used in a vaccine needs to be conserved among the various strains of the
virus. An extended polyprotein sequence pool covering wider geographical area was generated to
evaluate epitope conservancy. Epitopes were then put through the IEDB population coverage test [47]
for regions vulnerable to Zika. This was done because HLA molecules are highly polymorphic with
high peptide specificities [72], but their coding allele frequencies differ across various populations. To
ensure the effectiveness of a vaccine in the general population, epitopes must be able to activate the
desired immune response for the majority of the targeted population.

When checking coverage for MHC-I, coverage numbers for Central America were very low
(Table 4), and thus excluded when calculating averages. When checking for the MHC-II coverage, both
chains were included and counted separately, resulting in bloated coverage numbers.

Epitopes were then screened for the presence of antigenic residues. While this method is usually
aimed towards B-cell epitope screening, T-cell epitopes may also come from digested B-cell epitopes [72].
Therefore, the T-cell epitope in an antigenic region is expected to have better potential of becoming
a good epitope. Finally, high similarity between the epitope and parts of human proteins may raise
concerns of an autoimmune response [89]. To minimize the risk of an autoimmune response, epitopes
were subjected to BLASTp [49] against a human proteome.

The remaining peptides have passed various tests to ensure their quality as a vaccine component.
The peptides are predicted to be able to strongly interact with MHC molecules, and be physicochemically
and biologically suitable for use in humans to safely elicit the desired immune response. The coverage
analysis over various geographic regions also means that these peptides would be suitable for use in a
larger population.

4.2. Molecular Docking of T-cell Epitopes to MHC Molecules

Mirza et al. [22] described the drawback in using rigid body docking, where both the receptor and
ligand are not allowed to change their conformation. Since the peptides were modeled in unbound
conformation, they tended to interact with themselves, forming folds or helices which shouldn’t
be present in the bound conformation. These secondary structures were preserved in the docked
structures from Mirza et al. [22]. However, since ligand flexibility was allowed in this study, a linear
conformation could be found, solving the inherent problem associated with rigid body docking.

The structure of HLA used will affect the epitope docking result. To obtain the desired docking
conformation, holo structures of receptors were used, with the assumption that in real conditions, both
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the HLA and epitope will adopt conformations similar to the holo structure. Most bound MHC ligands
also have a similar conformation [72,90]. Therefore, bound ligands in receptor/reference structures were
used to evaluate the correctness of docking results by visual inspection of backbone and side chains.

From nine docked conformations returned by AutoDock Vina [60], one conformation closest to
the reference ligand was selected for analysis. Unfortunately, AutoDock Vina [60] returned highly
varying conformations with many having a folded structure. This was more evident in MHC-II, where
on average only one out of nine conformations could be considered similar to the reference (data
not shown). The overall lack of docking quality may be caused by the program itself that is more
specialized for docking of small ligands [60]. On the other hand, the high flexibility of peptides makes
it a great challenge to produce a correct docking result [91,92].

In the case of MHC-II, receptors from homology modeling had an overall lower quality when
compared to their reference structures (Table S2, Supplementary file), and since they were not modeled
together with the ligand, some features of their binding sites could have been lost. The prediction
accuracy for MHC-II epitopes is also still low [93], while the high prediction accuracy for MHC-I has
been reported [94]. The poorer results for the MHC-II docking could also come from falsely predicted
epitopes. Two particular cases are IEMAGPMAA and ILLVAHYM, where no conformation close to the
reference ligand could be found. ILLVAHYM was even docked to a non-modeled receptor.

Inter-protein interactions are dominated with non-covalent interactions [95]. Hydrogen bond
plays a significant role in stabilizing the ligand in its receptor, and its strength among non-covalent
interactions makes it a main parameter in observing receptor-ligand interactions. Interestingly, the
amounts of hydrogen bonds for these epitopes are still lower than many other epitopes.

More detailed analysis of each interaction is required to obtain a more accurate interpretation.
The complete list of hydrogen bonds for all epitopes is available in Tables S3 and S4. Some atoms
shared hydrogen bonds with several other atoms. Further inspection on WFHDIPLPW revealed two
hydrogen bonds shared by one atom, while AIYAALTTF with 12 hydrogen bonds had seven hydrogen
bonds shared by three atoms. The same phenomenon could not be observed for LYFHRRDLR (MHC-II,
12 hydrogen bonds) that only had two hydrogen bonds shared by one atom. Another important
parameter to consider is the interaction distance that affects its strength. Directions of hydrogen bonds
also make for interesting considerations since they influence the strength of the hydrogen bond [96].
Overall, these factors, including forces other than hydrogen bonds, are considered in the calculation of
binding energy. The two epitopes with lowest binding energies WFHDIPLPW and WAIYAALTT were
thus selected for further analysis by molecular dynamics simulation.

4.3. Molecular Dynamics Simulations

In the context of epitope searching, molecular dynamics (MD) simulation can be used to observe
the stability of a peptide-MHC complex and evaluate the quality of the epitope [85,97]. Overall, MHC
molecules showed higher stability when bound to its ligand (epitope). Considering that the original
crystal structures were of holo conformation, the higher degree of changes in unbound HLAs can be
partially explained by the search of a new conformation, which would be their native apo structure.

When correctly bound to HLA, a typical nonameric peptide would have the residue in each
position interact with the HLA molecule in a manner specific to that HLA (an example is shown
in Figure 6a) [72,90]. A known HLA-peptide complex structure can thus be used to evaluate the
experimental epitope structure in the same/very similar HLA based on the position and orientation
of each residue. The analysis of the crystal structure of HLA-Cw#4 and its epitope (1QQD) showed
that the peptide ligand had been known to be buried in positions one to three, seven and nine, with
residues one, two, seven, and nine buried deep inside four pockets formed by the HLA molecule,
whereas residues four and eight are the most exposed for interaction with receptor KIR2DL1 [84].
Residues three to four are also known to form a kink on the ligand structure [84], whereas the docked
structure revealed residues two to three (FH) forming the kink (Figure 6b), which moved to residues
seven to nine (LPW) following the MD simulation (Figure 6¢). One possible reason being His3 that was
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facing outward in the docked structure. The opening of the receptor structure was also unexpected, as
the closed ends of the class I HLA function to restrict most epitopes to eight to ten aa in length [72].
The opening of the -COOH end part of the receptor might be explained by the high density of residues
seven to nine (LPW). The opening of the receptor structure was also shown by increasing d1 and d2
values, indicating a non-optimally bound epitope.

Looking at the characteristics of each residue, Trp1 is a large nonpolar residue, while HLA-Cw4 is
known to accommodate smaller polar residues like Serine and Glutamine at position 1 [84]. Phenylalanine
at position 2 is very similar to Tyrosine (Figure 7a), which both contain a hydrophobic ring. As expected,
Phe2 was also buried deep in the same pocket as Tyr2 (Figure 7b,c). A small lateral pocket can accommodate
smaller amino acids for residue three [38], but the side chain of His3 pointed upward, both before and
after MD (Figure 7b,c). Residue seven is supposed to be buried in a pocket, but Leu? pointed outward and
Pro8 inward (Figure 7b,c), contrary to the crystal structure (Figure 7a) where residue seven is buried and
eight exposed [84]. The pocket for residue nine is hydrophobic and was filled by Tryptophan. Following
the MD simulation, the HLA residues Lys80 and Lys146 separated, and Tyr9, despite still facing inward
was positioned higher (closer to the surface) (Figure 7c). Overall, it appeared that the ligand tended to
separate itself from the HLA molecule, most visibly in residues six to eight, leaving Phe2 as the main
anchor residue after 20 ns of MD simulation. However, it is not yet known whether this phenomenon was
caused by incorrect epitope residues or improper docking result.

As for WAIYAALTT, the receptor structure HLA-DRA/DRB1*15:02 was obtained by the V115G
point mutation of chain B of HLA-DRA/DRB1*15:01 (PDB ID: 5V4M) [98]. The conformational analysis
was done using the template structure. Amino acids of residues one, four, seven, and nine were
reported to be buried in HLA pockets, working as main anchors [98]. In the docked structure, Trp1 and
Trp9 were buried, and Tyr4 and Leu7 pointed toward the lateral pocket as described [98] (Figure 8b).
The similar orientations of ligand residues indicate a good docking result.

The discharge of residue nine from its pocket possible indicates an incompatibility with interacting
HLA residues. Threonine itself is a polar amino acid, which goes against the accepted residues in the
ninth position, Phe, Leu, Val, and Ile, all nonpolar [98]. During the simulation, Thr9 might have gone
up to interact with water molecules. The dramatically change in the Thr9 position also explains the
high RMSF values in residues eight and nine (Figure 5b).

All things considered, the docked epitope WAIYAALTT is sufficiently good for residues one to
eight when docked to HLA*C:04:02. However, residue nine should not have been polar. Whether
threonine in the ninth position makes this epitope, a bad epitope is yet to be determined. In this respect,
however, the simulated structures from the result of each 20 ns of MD simulation analyses cannot be
conclusive but open the way to further research developments.

4.4. Prediction of B-cell Linear Epitopes

Several programs have been developed to predict B-cell epitopes from a protein sequence.
Unfortunately, the prediction capabilities of these programs are still rather poor [50]. The linear B-cell
epitope was searched for on all Zika proteins. Despite not all proteins being readily exposed for
binding with the antibody, an epitope search for non-naturally-exposed proteins would still be useful
for physiological laboratory testing, as was done by Saisawang et al. [99].

Interestingly, the removal of pr sequence altered BepiPred-2.0 scoring for the M protein, giving
rise to a new epitope previously undetected in prM. Care should be taken regarding the completeness
of the sequence given for BepiPred-2.0.

The elimination method used in this study had several shortcomings where longer epitopes
tended to be eliminated in the conservancy test, and shorter epitopes tended to be eliminated in the
autoimmunity test. Even so, mitigating these problems would require a variation of epitope lengths,
such as trimming into several parts or inclusion of neighboring residues. While in vaccine/antibody
design modifications may be required, each epitope was treated as one peptide for simplicity reasons.
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Despite no epitope having both MHC-I and II epitope residues, five epitopes that share epitopic
residues with MHC have better potential as a good linear epitope due to cross-recognition by T-cells.
Of particular interest are those recognized by CD4+ T-cells that help in B-cell activation [72]. Among
these epitopes, care should be taken before employing DVPAPKE for use in humans, as BLASTp
found only one residue difference; lysine from its human counterpart arginine, which are both similar
(hydrophilic and positively charged). A conservative mutation, as in this case, would result in minimal
characteristic change [100]. Peptide extension might solve this issue.

In conclusion, all 22 filtered consensus epitopes have the potential to become a linear epitope
for B-cells. Among them, five epitopes, EWFHDIP (E), WRDRYKYHPDSPR (NS1), DVPAPKE (NS3),
LDPYWGDVKQD (NS3) and WMDARVCSDHA (NS3) are the most potential candidates owing to
the presence of T-cell epitope residues. Care should, however, be taken for DVPAPKE for its high
similarity to the human protein.

4.5. Prediction of B-cell Conformational Epitopes

Despite conformational epitopes making up 90% of B-cell epitopes [101], predicting these epitopes
is much more difficult due to the need of the protein tertiary structure. To create a vaccine for humans,
the main target proteins are those naturally exposed for interaction with B-cell antibodies. In addition,
the organization of proteins can change depending on the condition. In virions, the E protein is an
exposed protein that plays a role in cellular entry [102]. Before maturation, prM-E complexes form
trimeric spikes [102,103]. In mature virions, following a successful prM cleavage, these M-E complexes
take on a dimeric arrangement on the surface of the virus, embedded at their transmembrane domains
(shown in Figure 8a) [104]. Another protein, NS1, is the only nonstructural protein secreted out of
the cell [105], allowing antibody attachment. Inside cells, NS1 forms dimers but secreted NS1 forms
hexamers in the configuration of three dimers [105]. In both forms, the beta-roll domain (shown in
Figure 8b) is not exposed because it associates with the membrane or is hidden inside, forming a
hydrophobic core [105]. This information means antibodies are unlikely to bind to the ‘underside” of
proteins E (which contains the transmembrane domain) and NS1 (which contains the beta-roll domain),
particularly in humans. Aside from proteins E and NS1, C also forms a dimer, and its presence as a
monomeric and trimeric protein has been reported [106]. Even though in laboratories, the research
environment can be manipulated, in human applications, information regarding how the proteins
associate becomes essential. Therefore, in epitope prediction, more focus was given to proteins E and
NS1 that can be naturally bound by antibodies.

The search for E protein epitopes was done for both its monomeric and E-M heterodimer forms
and reported in Figure 8a. Chain E was used to represent monomeric epitopes since it returned to more
epitope positions. Glycosylation in Asn154 has been reported to play a role in vivo Zika infectivity
by inhibiting the production of reactive oxygen, which plays a role in mosquito immunity [106].
Unfortunately, glycosylation data did not affect scoring. Thus, its effect could not be observed. In
human applications, E proteins exposed for antibody binding will mostly be found on the virion
surface in the form of an E-M heterodimer [104]. Hence these heterodimer epitopes can be focused on
vaccine/antibody design. It should also be noted that E proteins are packed with the side containing
the transmembrane domain (Figure 8a, pink) facing inward, hidden from the reach of antibodies [104].

Most known Zika antibody-antigen complex structures come from the E protein [107], so it
is interesting to compare the epitopes predicted by DiscoTope with the empirical data available.
Compared with available antibody-antigen structures, the E fusion loop region, which was predicted
as the epitope only in the monomeric structure, is also a target for a flavivirus broadly neutralizing
antibody 2A10G6 [108]. Some antibodies like Z20 and ZIKV-117 have been reported to work on the
dimeric form of the E protein, attaching themselves across both monomers [109,110]. Predicted epitope
residues Asp320-Gly232 are also part of the ZIKV-117 binding site [109], and residue Gly232 is a part
of the Z20 binding site [110]. However, these antibodies still have extensive interactions with many
surrounding residues. Lastly, domain III (labeled in Figure 8a) is also known to be a binding site for
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several antibodies [111,112]. Only one residue (GIn350) was predicted as the epitope in this domain,
which is known to interact with antibody Z006 [111]. As is the case with Z20 and ZIKV-117, this residue
is only a part of a much larger interaction site. Due to the large surface area of antibodies, antigens
can be expected to interact with antibodies in several residues. In the latter three cases, the predicted
epitopic residues are not located at the ‘center” of the actual epitopes.

The NSI1 protein was also checked in both its monomeric and dimeric form (Table 8, Figure 8b).
As with the E protein, this protein can also be found outside of cells, in the form of hexamers, which
model can be found in [104]. For the creation of the vaccine/antibody, the side containing beta-roll
domain (Figure 8b, pink) will be hidden and unlikely for antibody binding [105]. Interestingly, two
epitopes Asp157 and Glu258 were present in the dimeric but not monomeric structure. Asp157 is
positioned close to the 3-roll and 3-ladder of the other chain, and the appearance of Glu258 may be
caused by the wing of the other chain. In both cases, these epitopes appeared because of the presence
of new neighboring residues previously absent in the monomeric structure.

Aside from the two proteins accessible extracellularly under natural conditions, the epitope search
for other proteins, such as nonstructural proteins, is also interesting for its usefulness in laboratory
testing. The epitope search for the C protein revealed several epitopes found only in its monomeric
form, whereas no epitope was detected for its multimeric form (Table 8. The prM protein spans across
the entire E protein and the consecutive epitopic residues form a long stretch (Table 8). This stretch
might not be a true epitope since the E protein was not accounted for during prediction. The M protein
in the form of the E-M heterodimer did not have any epitope, but by itself, a long stretch of epitopic
residues was found (Table 8). This epitope is located at the end of the long stretch of the prM epitope.
The structure for NS2B was obtained from a complexed structure with the protease domain of dengue
NS3 [113]. NS2B is a cofactor of the NS3 protease and circles the protein [113], similar to the case
of prM; the long ‘stretch” was also identified as the epitope (Table 8). In the presence of NS3 it is
also probable that this epitope will disappear. Epitope residues for the NS3 protease and helicase are
available in Table 8. Unfortunately, the complete structure of NS3 has not been determined, forbidding
the epitope search on the full protein structure. Epitopes for the last protein NS5 are displayed in
Table 8. This protein gave the most epitopic residues, partly from its large size.

Epitope prediction using DiscoTope 2.0 [114] uses spatial information to predict epitopic residues.
The predicted epitopes tend to be in the more exposed areas. The structural unit used will also
influence prediction results since some residues will become available/unavailable for interaction
with antibodies. For the application in humans, it is important to select the correct structural unit in
predicting conformational epitopes. The epitopic regions potential as antibody targets, or can be said to
activate B-cells for proteins E and NS1 in their extracellular forms have been predicted. Some predicted
epitopic residues in the E protein have also been confirmed to interact with antibodies [108-111].
Additionally, B-cell epitope residues have been predicted for proteins C, prM, M, NS2B, NS3 protease
and helicase, and NS5. A similar study of immunoinformatics approach in the development of the
novel peptide vaccine using T- and B-cells highly conserved epitopes of Zika envelope glycoprotein
showed positive results as a potential vaccine [53].

Further investigation on how the immunogenic peptide could induce T-cell responses by
Paquin-Proulx et al. (2017). An interesting result showed that T-cell cross-reactivity could give
a positive impact on the ZIKV infection in vitro. Paquin-Proulx et al. successfully demonstrated
that the ZIKV CD4+ T-cell response induced by DENV vaccination could promote the appearance
of cross-reactive antibodies mediating ADE. However, a better understanding of the interactions
between the ZIKV and DENV immunity, such as induction by vaccination or by natural infection,
will be necessary to provide safe and efficient vaccines [115]. Several studies have reported how
the computational prediction of antigenic peptides were successfully validated experimentally to
combat HIV-1, malaria parasites and leishmaniasis, a vector-borne parasitic disease [116-118]. In
validating the predicted epitopes, it is suggested to integrate genomics with proteomics approaches to
represent a valid strategy in refining the antigen characterizations as well as give the useful insights on
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abundance and subcellular localization of pathogenic antigens [119]. These predicted epitopes need
further investigation by synthesizing and evaluating in vitro using the cell culture or rodent model to
determine the impacts of immunity to ZIKV.

5. Conclusions

By only using necessary peptides, the peptide vaccine is expected to minimize risks associated
with unnecessary antigens. Furthermore, using in silico methods to screen for the best candidates can
significantly reduce the time and materials spent in laboratories. In this study, the in silico search has
been performed to find peptides that can potentially trigger the immune system, and be a component
of the Zika vaccine. For the T-cell, the search method was adjusted for certain regions and their
surrounding populations. Potential epitopes for both MHC-I and MHC-II have been screened for from
the complete Zika protein sequence. Docking and molecular dynamics simulations have also been
performed on the most promising epitopes. Regrettably, MD results were unsatisfactory for the best
MHC-I epitope, WFHDIPLPW, which was probably caused by an improper starting docked structure.
MD results for the best MHC-II epitope WAIYAALTT were quite promising apart from the harmful
effect of one residue’s polarity.

Coverage analysis does not account for HLA allele pairing, whereas for some HLA both chains
are required to confer their specificity. Finding the frequencies of the allele pairs (chain A and B) is the
ideal solution, but it is difficult to do. In this case, the epitope search using globally common alleles
might give a better result.

The linear and conformational epitopes of the B-cell have been successfully mapped. Several
promising B-cell epitopes that have been verified by physicochemical modeling have been reported
in this study. Most promising among them are EWFHDIP from the E protein, WRDRYKYHPDSPR
from the NS1 protein, and DVPAPKE, LDPYWGDVKQD and WMDARVCSDHA from the NS3
protein, which are also predicted as T-cell epitopes. Of particular interest are LDPYWGDVKQD
and WMDARVCSDHA since they would also be recognized by T helper cells which play a role in
B-cell activation. Caution should be taken before using DVPAPKE for its similarity to a part of the
human proteome.

Conformational epitopes for the B-cell have also been searched for, for proteins C, E, prM, M, NS1,
NS2B, NS3 (protease and helicase domains) and NS5. Particular attention was given to the proteins
E and NSI1 that can be found as an extracellular matrix under native conditions. These proteins are
the primary antibody targets in the human body. This study also considered the change in epitope
residues when a protein is in its monomeric or multimeric form.
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polyprotein sequence.
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