

Supplementary Figure S1. Gel electropherogram of virulence-related gene amplicons from the 14 *Aeromonas* isolates used in this study. Virulence genes showing positive amplicons are only shown and red numbers indicate positive amplicons, respectively. *Aeromonas* strains were arranged in the following order: 1, *A. hydrophila* KN-Mc-1R1; 2, *A. hydrophila* KN-Mc-1R2; 3, *A. cavieae* KN-Mc-1R3; 4, *A. hydrophila* KN-Mc-2R1; 5, *A. cavieae* KN-Mc-3R1; 6, *A. hydrophila* KN-Mc-4N1; 7, *A. hydrophila* KN-Mc-5R2; 10, *A. hydrophila* KN-Mc-6U21; 11, *A. dhakensis* KN-Mc-6U2; 12, *A. hydrophila* KN-Mc-6U22; 13, *A. hydrophila* KN-Mc-10N1; 14, *A. rivipollensis* KN-Mc-11N1; N, negative control; M, SiZer[™]-100 plus DNA marker (Intron Biotech, Seongnam, Republic of Korea).

Gene	Primer sequence (5' to 3')	Ref	
Bacterial identification (Product size (bp))			
16C DNIA (14/4)	F(27F): AGAGTTTGATCMTGGCTCAG	Universal	
165 TKINA (1466)	R(1492R): TACGGYTACCTTGTTACGACTT	primer	
·····R (-1100)	F(gyrB3F): TCCGGCGGTCTGCACGGCGT	[1]	
gyrb (≈1100)	R(gyrB14R): TTGTCCGGGTTGTACTCGTC	[1]	
$m_0 P(F(0))$	F(Pasrpob-L): GCAGTGAAAGARTTCTTTGGTTC	[2]	
гров (380)	R(Rpob-R): GTTGCATGTTNGNACCCAT	[2]	
Virulence-associated genes (Product size (bp))			
A at (121)	F: CCTATGGCCTGAGCGAGAAG	[2]	
Act (451)	R: CCAGTTCCAGTCCCACCACT	[3]	
aorT(525)	F: GGCGCTTGGGCTCTACAC	[4]	
uex 1 (555)	R: GAGCCCGCGCATCTTCAG	[4]	
<i>Alt</i> (320)	F: AAAGCGTCTGACAGCGAAGT	[5]	
All (520)	R: AGCGCATAGGCGTTCTCTT	[0]	
accV(710)	F: ATGGACGGCGCCATGAAGTT	[6]	
usev (710)	R: TATTCGCCTTCACCCATCCC	[0]	
asn A (350)	F: CACCGAAGTATTGGGTCAGG	[3]	
<i>uspr</i> (000)	R: GGCTCATGCGTAACTCTGGT	[5]	
Ast (504)	F: ATCGTCAGCGACAGCTTCTT	[5]	
13t (30 1)	R: CTCATCCCTTGGCTTGTTGT	[0]	
BfnA (251)	F: CCGCAGGTGTGATGTTTTAC	[7]	
	R: TGCGGTGTTATTGTTTGCT	[7]	
BfnC(233)	F: ATGCCAAAGCTGACTGGTCT	[7]	
<i>Djp</i> G (200)	R: GACATGATTCCCGTTATAAA	[7]	
fla A (608)	F: TCCAACCGTYTGACCTC	[8]	
<i>Juu</i> 1 (000)	R: GMYTGGTTGCGRATGGT	[0]	
lafA (737)	F: CCAACTTYGCYTCYMTGACC	[5]	
	R: TCTTGGTCATRTTGGTGCTY	[0]	
str-1 (180)	F: ATAAATTGCCATTCGTTGACTAC	[9]	
<i>ow</i> 1 (100)	R: AGAACGCCCACTGAGATCATC	[2]	

Supplementary Table S1. List of PCR primers used in this study.

	stx-2 (255)	F: GGCACTGCTTGAAACTGCTCC	[9]					
		R: TCGCCAGTTATCTGACATTCTG	[-]					
	vasH (1.652)	F: GCTCTAGACCGGTGAACCCATCAAGCGCGTCCACT	[10]					
		R: TCCCCCCGGGCTGGTGGCCAGCAGCAGAGGCAATA	[10]					
Anti	microbial-resistance genes (Product size (bp))							
	tet A (211)	F(tetAF): GCTACATCCTGCTTGCCTTC						
		R(tetAR): GCATAGATCGCCGTGAAGAG						
	tetB (391)	F(ClassB tetAF): TCATTGCCGATACCACCTCAG						
T*		R(ClassB tetAR): CCAACCATCATGCTATTCCATCC						
	tet((897)	F(ClassC tetAF): CTGCTCGCTTCGCTACTTG	[11]					
	<i>(0)</i>	R(ClassC tetAR): GCCTACAATCCATGCCAACC	[11]					
	tatD(844)	F(ClassD tetAF): TGTGCTGTGGATGTTGTATCTC						
	leiD (044)	R(ClassD tetAR): CAGTGCCGTGCCAATCAG						
	tatE (714)	F(ClassE tetAF): ATGAACCGCACTGTGATGATG						
	letL (744)	R(ClassE tetAR): ACCGACCATTACGCCATCC						
	$\alpha_{\rm H} = \Lambda (662)$	F(ASGYRA1): CCATGAGCGTGATCGTAGGA						
	89774 (003)	R(ASGYRA2): CTTTGGCACGCACATAGACG	[12]					
	man C (419)	F(ASPARC3): CAGCGGCGCATCATCTAC	[12]					
	<i>parc</i> (418)	R(ASPARC4): GGATATCGGTGGCCATGC						
01	A1 ha AC (E80)	F(qnrAm-F): AGAGGATTTCTCACGCCAGG						
Q	<i>qnrA1</i> to <i>qnrA6</i> (380)	R(qnrAm-R): TGCCAGGCACAGATCTTGAC						
	$\mathbf{P}(1) = \mathbf{P}(1) \mathbf{P}(1)$	F(qnrBm-F): GGMATHGAAATTCGCCACTG	[10]					
	qnrB1 to qnrB6 (264)	R(qnrBm-R): TTTGCYGYYCGCCAGTCGAA	[13]					
	aux C1 to aux C2 (128)	F(qnrSm-F): GCAAGTTCATTGAACAGGGT						
	qnr51 to qnr52 (428)	R(qnrSm-R): TCTAAACCGTCGAGTTCGGCG						
T*		F(5'-CS): GGCATCCAAGCAGCAAG	[1.4]					
1	Class 1 integron (0.7~3.0 k)	R(3'-CS): AAGCAGACTTGACCTGA	[14]					
	CTV M 1 ((89))	F(CTXGp1-F): TTAGGAARTGTGCCGCTGYA						
	C1X-M-1 group (688)	R(CTXGp1-R): CGATATCGTTGGTGGTRCCAT						
	CTV M 2 means (404)	F(CTXGp2-F): CGTTAACGGCACGATGAC						
	C1X-M-2 group (404)	R(CTXGp2-R): CGATATCGTTGGTGGTRCCAT						
	(T_{1})	F(CTXGp9-F): TCAAGCCTGCCGATCTGGT						
	C1X-M-9 group (561)	R(CTXGp9-R): TGATTCTCGCCGCTGAAG	[4 =]					
		F(TEM-F): CATTTCCGTGTCGCCCTTATTC	[15]					
	1 EM (800)	R(TEM-R): CGTTCATCCATAGTTGCCTGAC						
		F(SHV-F): AGCCGCTTGAGCAAATTAAAC						
	SHV (713)	R(SHV-R): ATCCCGCAGATAAATCACCAC						
		F(OXAA-F): GGCACCAGATTCAACTTTCAAG						
Di	OXA-A variants (564)	R(OXAA-R): GACCCCAAGTTTCCTGTAAGTG						
B.	MOX-1, MOX-2, CMY-1, CMY-8 to -11 (520)	F(MOXMF): GCTGCTCAAGGAGCACAGGAT						
		R(MOXMR): CACATTGACATAGGTGTGGTGC						
	LAT-1 to -4, CMY-2 to -7, BIL-1 (462)	F(CITMF): TGGCCAGAACTGACAGGCAAA						
		R(CITMR)· TTTCTCCTGAACGTGGCTGGC						
	DHA-1 to -2 (405)	F(DHAMF): AACTTTCACAGGTGTGCTGGGT						
		R(DHAMR): CCGTACGCATACTGGCTTTGC						
	ACC (346)	F(ACCMF): AACAGCCTCAGCAGCCGGTTA	[16]					
		R(ACCMR): TTCGCCGCAATCATCCCTAGC						
	MIR-1, ACT-1 (302)	F(EBCMF): TCGGTAAAGCCGATGTTGCGG						
	, , , ,	R(EBCMR): CTTCCACTGCGGCTGCCAGTT						
	FOX-1 to -5b (190)	F(FOXMF): AACATGGGGTATCAGGGAGATG						
	× /	R(FOXMR): CAAAGCGCGTAACCGGATTGG						
	1 4 (=====		[4 [2]]					

* T, tetracycline; Q, quinolones; I, integrons; B, β-lactams; C, carbapenems.

	Strains													
	KN-Mc- 1R1	KN-Mc- 1R2	KN-Mc- 1R3	KN-Mc- 2R1	KN-Mc- 3R1	KN-Mc- 4N1	KN-Mc- 4N3	KN-Mc- 5R1	KN-Mc- 5R2	KN-Mc- 6U2	KN-Mc- 6U21	KN-Mc- 6U22	KN-Mc- 10N1	KN-Mc- 11N1
ONPG	+	+	+	+	+	+	+	-	-	+	+	+	+	+
ADH	+	+	+	+	+	+	+	+	+	+	+	+	+	+
LDC	+	+	-	+	-	+	+	+	+	+	+	+	+	-
ODC	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CIT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H_2S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
URE	-	-	-	-	-	-	-	-	-	-	-	-	-	-
TDA	+	+	+	+	+	+	+	+	+	+	+	+	+	+
IND	+	+	+	+	+	+	+	+	+	+	+	+	+	+
VP	+	+	-	+	-	+	+	+	+	+	+	+	+	-
GEL	+	+	+	+	+	+	+	+	+	+	+	+	+	-
GLU	+	+	+	+	+	+	+	+	+	+	+	+	+	-
MAN	+	+	+	+	+	+	+	+	+	+	+	+	+	+
INO	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SOR	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RHA	-	-	-	-	-	-	-	-	-	+	-	-	-	-
SAC	+	+	+	+	+	+	+	+	+	+	+	-	+	+
MEL	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AMY	-	-	+	-	+	+	+	-	-	-	-	-	-	-
ARA	+	+	+	+	+	+	+	+	+	+	-	+	+	+

Supplementary Table S2. Biochemical characterization of *Aeromonas* spp. used in this study.

ONPG; β-galactosidase, ADH; arginine dihydrolase, LDC; lysine decarboxylase, ODC; ornithine decarboxylase, CIT; citrate utilization, H₂S; H₂S production, URE; urease, TDA; tryptophane deaminase, IND; indole production, VP; Voges–Proskauer, GEL; gelatinase, GLU; glucose, MAN; mannitol, INO; inositol, SOR; sorbitol, RHA; rhamnose, SAC; saccharose, MEL; melibiose, AMY; amygdalin, ARA; arabinose.

Reference

- Yanez, M.A.; Catalán, V.; Apraiz, D.; Figueras, M.J.; Martinez-Murcia, A.J. Phylogenetic analysis of members of the genus *Aeromonas* based on *gyrB* gene sequences. *Int J Syst Evol Microbiol.* 2003, *53*, 875–883. https://doi.org/10.1099/ijs.0.02443-0 PMID: 12807216.
- Korczak, B.; Christensen, H.; Emler, S.; Frey, J.; Kuhnert, P. Phylogeny of the family *Pasteurellaceae* based on *rpoB* sequences. *Int J Syst Evol Microbiol.* 2004, 54, 1393–1399. <u>https://doi.org/10.1099/ijs.0.03043-0</u> PMID: 15280320.
- Soler, L.; Figueras, M.J.; Chacón, M.R.; Vila, J.; Marco, F.; Martinez-Murcia, A.J.; Guarro, J. Potential virulence and antimicrobial susceptibility of *Aeromonas popoffii* recovered from freshwater and seawater. *FEMS Immunol Med Microbiol.* 2002, 32, 243-247. <u>https://doi.org/10.1111/j.1574-695X.2002.tb00560.x</u> PMID: 11934570.
- Braun, M.; Stuber, K.; Schlatter, Y.; Wahli, T.; Kuhnert, P.; Frey, J. Characterization of an ADPribosyltransferase toxin (AexT) from *Aeromonas salmonicida* subsp. *salmonicida*. *J Bacteriol*. 2002, *184*, 1851-1858. <u>https://doi.org/10.1128/jb.184.7.1851-1858.2002</u> PMID: 11889090.
- Aguilera-Arreola, M.G.; Hernández-Rodríguez, C.; Zúñiga, G.; Figueras, M.J.; Castro-Escarpulli G. *Aeromonas hydrophila* clinical and environmental ecotypes as revealed by genetic diversity and virulence genes. *FEMS Microbiol Lett.* 2005, 242, 231–240. <u>https://doi.org/10.1016/j.femsle.2004.11.011</u> PMID: 15621443.
- Chacón, M.R.; Soler, L.; Groisman, E.A.; Guarro, J.; Figueras, M.J. Type III secretion system genes in clinical Aeromonas isolates. J Clin Microbiol. 2004, 42, 1285-1287. <u>https://doi.org/10.1128/jcm.42.3.1285-1287.2004</u> PMID: 15004096.
- Sechi, L.A.; Deriu, A.; Falchi, M.P.; Fadda, G.; Zanetti, S. Distribution of virulence genes in *Aeromonas* spp. isolated from Sardinian waters and from patients with diarrhoea. <u>*I Appl Microbiol.*</u> 2002, *92*, 221-227. <u>https://doi.org/10.1046/j.1365-2672.2002.01522.x</u> PMID: 11849349.
- Sen, K.; Rodgers, M. Distribution of six virulence factors in *Aeromonas* species isolated from US drinking water utilities: a PCR identification. <u>*I Appl Microbiol.*</u> 2004, 97, 1077-1086. <u>https://doi.org/10.1111/j.1365-2672.2004.02398.x</u>
- 9. Paton, A.W.; Paton, J.C. Detection and characterization of Shiga toxigenic *Escherichia coli* by using multiplex PCR assays for *stx*₁, *stx*₂, *eaeA*, enterohemorrhagic *E. coli hlyA*, *rfb*o111, and *rfb*o157. *J Clin Microbiol*. **1998**, *36*, 598-602. PMID: 9466788
- Suarez, G.; Sierra, J.C.; Sha, J.; Wang, S.; Erova, T.E.; Fadl, A.A.; Foltz, S.M.; Horneman, A.J.; Chopra, A.K. Molecular characterization of a functional type VI secretion system from a clinical isolate of *Aeromonas hydrophila*. *Microb Pathog*. 2008, 44, 344-361. <u>https://doi.org/10.1016/j.micpath.2007.10.005</u> PMID: 18037263.
- <u>Nawaz, M.; Sung, K.; Khan, S.A.; Khan, A.A.; Steele, R</u>. Biochemical and molecular characterization of tetracycline-resistant *Aeromonas veronii* isolates from catfish. <u>*Appl Environ Microbiol*</u>. 2006, 72, 6461-6466. <u>https://doi.org/10.1128/AEM.00271-06</u> PMID: 17021193.
- Giraud, E.; Blanc, G.; Bouju-Albert, A.; Weill, F.X.; Donnay-Moreno, C. Mechanisms of quinolone resistance and clonal relationship among *Aeromonas salmonicida* strains isolated from reared fish with furunculosis. *J Med Microbiol.* 2004, *53*, 895-901. <u>https://doi.org/10.1099/jmm.0.45579-0</u> PMID: 15314197.
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.J.; Nordmann, P. Multiplex PCR for detection of plasmidmediated quinolone resistance *qnr* genes in ESBL-producing enterobacterial isolates. *J Antimicrob Chemother*. 2007, 60, 394-397. <u>https://doi.org/10.1093/jac/dkm204</u> PMID: 17561500.
- 14. Lee, M.F.; Peng, C.F.; Lin, Y.H.; Lin, S.R.; Chen, Y.H. Molecular diversity of class 1 integrons in human isolates of *Aeromonas* spp. from southern Taiwan. *Jpn J Infect Dis.* **2008**, *61*, 343-349. PMID: 18806339.
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. *J Antimicrob Chemother*. 2010, 65, 490-495. <u>https://doi.org/10.1093/jac/dkp498</u> PMID: 20071363.
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. *J Clin Microbiol.* 2002, 40, 2153-2162. <u>https://doi.org/10.1128/jcm.40.6.2153-2162.2002</u> PMID: 12037080.
- Wu, C.J.; Chen, P.L.; Wu, J.J.; Yan, J.J.; Lee, C.C.; Lee, H.C.; Lee, N.Y.;, Chang, C.M.; Lin, Y.T.; Chiu, Y.C.; Ko, W.C. Distribution and phenotypic and genotypic detection of a metallo-β-lactamase, CphA, among bacteraemic *Aeromonas* isolates. *J Med Microbiol.* **2012**, *61*, 712-719. PMID: 22322339.