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Abstract: Prokaryotes have an essential gene—gyrase—that catalyzes negative supercoiling of
plasmid and chromosomal DNA. Negative supercoils influence DNA replication, transcription,
homologous recombination, site-specific recombination, genetic transposition and sister chromosome
segregation. Although E. coli and Salmonella Typhimurium are close relatives with a conserved set of
essential genes, E. coli DNA has a supercoil density 15% higher than Salmonella, and E. coli cannot
grow at the supercoil density maintained by wild type (WT) Salmonella. E. coli is addicted to high
supercoiling levels for efficient chromosomal folding. In vitro experiments were performed with four
gyrase isoforms of the tetrameric enzyme (GyrA2:GyrB2). E. coli gyrase was more processive and
faster than the Salmonella enzyme, but Salmonella strains with chromosomal swaps of E. coli GyrA lost
40% of the chromosomal supercoil density. Reciprocal experiments in E. coli showed chromosomal
dysfunction for strains harboring Salmonella GyrA. One GyrA segment responsible for dis-regulation
was uncovered by constructing and testing GyrA chimeras in vivo. The six pinwheel elements and
the C-terminal 35–38 acidic residues of GyrA controlled WT chromosome-wide supercoiling density
in both species. A model of enzyme processivity modulated by competition between DNA and the
GyrA acidic tail for access to β-pinwheel elements is presented.

Keywords: DNA topology is investigated that involves two types of DNA coiling; the first type
is right-handed coils that Watson/Crick DNA strands adopt by winding around each other every
10.6 base pairs, the second type involves coiling of the double strands around each other in either a
left handed (−) or right handed (+) direction; DNA gyrase is an enzyme with two protein subunits;
GyrA and GyrB that catalyzes (−) supercoiling at the expense of ATP hydrolysis; gamma delta (γδ)
resolvase is a site-specific recombinase from the γδ transposon the that utilizes (−) supercoils to
delete a DNA sequence that is flanked by 100 bp Res sites; gyrase processivity refers to the number of
reaction cycles one enzyme carries out in a single DNA binding event; the Q10 rule states that reaction
rates double for every 10◦ C increase in temperature; the GyrA C-terminal domain (CTD) includes
a long DNA binding section that has 6 pinwheel elements plus a short 35–38 amino acid terminus
called the tail; RNA polymerase (RNAP); the E. coli and Salmonella condensin is a multi-protein
complex composed of three proteins, MukB, MukE, and MukF that compacts chromosomal DNA

1. Introduction

Species differences pose serious problems for research in drug design, in developing therapeutic
treatments for many human diseases, and for advancing gene therapy protocols that are safe for
humans [1]. The basic differences between a man and mouse often involve yet-to-be defined
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biochemical pathways and responses in the species-specific innate immunological repertoire.
With institutional funding’s emphasis on translational medicine and systems biology of all the
“omics” (proteomics, transcriptomics, metabalomics and phenomics), little attention is being directed
at understanding “core biochemistry” in different species, different cell types and different genetic
backgrounds. Species differences in “core biochemistry” can be studied in “simple” bacteria [2].
In 2007, Champion discovered multiple unexpected differences between E. coli and Salmonella [3].
Four significant mysteries include: 1) Different phenotypes for the identical mutation in GyrB;
2) Different phenotypes for mutants in the MukB subunit of the condensin complex; 3) Toxicity
of Salmonella GyrB when it is expressed at low levels in E. coli; 4) Significant differences in the supercoil
density of plasmid and chromosomal DNA in cells growing on Luria Broth (LB) at all temperatures
showed that E. coli is a “high supercoil organism.” The aim of our work is to explain how supercoil
differences are established throughout the chromosome in E. coli and Salmonella and to define the
enzymatic mechanism(s) that coordinates pathway flow of transcription, translation, and protein
folding for cells of each organism during exponential growth.

DNA supercoiling has long been considered to be a global regulatory factor in bacterial gene
expression [4–6]. Three bacterial topoisomerases play critical roles in equilibrating supercoiling
and DNA entanglements caused by replication and RNA transcription [7–9]. Topo I, a type IA
topoisomerase, removes negative supercoiling in a cofactor-independent reaction that protects DNA
from forming toxic R-loops caused by RNA invasion of DNA at hyper-supercoiled regions [10,11].
Gyrase replenishes (–) supercoils depleted downstream of operons [9,12] and Topo IV untangles
and decatenates DNA strands and removes (+) supercoils generated during DNA replication and
segregation [13–15].

Mutations that reduce the supercoil density (σ) of E. coli DNA by only 15% are toxic and
alter the efficiency and/or fidelity of DNA replication [16], chromosome segregation [17,18],
RNA transcription [19,20], homologous and site-specific recombination [16] and gene transposition
reactions [21–23]. In sharp contrast, wild type (WT) Salmonella Typhimurium grows naturally at an
average supercoil density 15% lower than E. coli [3] and Salmonella grows and produces well-formed
colonies in strains having a complete loss of diffusible chromosome supercoiling [9,12].

We dissected the mechanism that produces these confusing results by analyzing the four E. coli
and Salmonella isoforms of the gyrase tetramer. Each isoform was tested in vitro by measuring supercoil
rates and endpoints on a high affinity plasmid substrate. The four isoforms were then tested in vivo in
Salmonella, and chromosome supercoil densities at 10 positions around the genome were evaluated. The
in vivo results proved GyrA to be a prime player. By making E. coli–Salmonella chimeras, we identified
a critical gyrase control point. The carboxy terminus of GyrA acts like a rheostat to regulate the
unique species-specific supercoil needs of highly transcribed and translated regions in chromosomes
of both species.

2. Materials and Methods

2.1. Strains and Cloning

All strains used here were made in our lab for this work and are listed in Table S1. The WT
gyrA and gyrB genes from E. coli (NH3612) and Salmonella (NH3358) were cloned into pLIK-HK
plasmid (New England Biolabs, Ipswitch NY USA) using ligation-independent cloning protocol
(LIC protocol) described by Stols et al [24]. Each cloned protein was fused to an N-terminal 6-histidine
tag that was removed by recombinant TEV protease (Sigma Aldrich, St Louis MO, USA) digestion
during purification.

2.2. Growth Rate Measurements and Resolution Assays

The cell doubling times of WT and mutant strains were measured in early-mid log phase between
the optical cell densities at 600 nm of 0.01 and 0.4. Each strain was tested in triplicate, starting from
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three independent colonies grown overnight in fresh LB containing 5 g NaCl, 5 g Yeast Extract, and 10 g
Tryptone dissolved in 1 L of water. Cells from fresh overnight cultures were diluted 100-fold in fresh
LB, and doubling times are reported ± 1 standard deviation from the mean.

To measure resolution efficiencies, log-phase cultures grown at 30◦C in LB were tested at a cell
density of 50 Klett units. An aliquot (0.1 mL) of each culture was incubated at 42 ◦C in a shaking
water bath for 10 min to induce resolvase expression and then was diluted with 2 mL of LB + Cm for
overnight incubation at 32 ◦C. The next day, 100 µL aliquots of 10−6 dilutions of each sample and an
un-induced control were plated on NCE glucose minimal medium containing chloramphenicol plus
5-bromo-4-chloro-3-indolyl-D-galactosidase (X-gal) plus 100 µM IPTG [8]. Each data point represents
the average ± 1 standard deviation of three independent cultures from which at least 200 colonies
were analyzed for LacZ deletions.

2.3. Enzyme Purification

Gyrase subunits were cloned using pLIK-HK plasmids (New England Biolabs, Ipswitch, NY,
USA) [25] and were expressed in E. coli BL21 pLysS [26]. Cells grown in 60 L batches at 30 ◦C to a
cell optical density of 0.5 at 650 nm were induced by adding isopropyl β-D-1-thiolgalactoside (IPTG)
to a final concentration of 1 mM Cells harvested after three hours were rapidly chilled to 4 ◦C and
concentrated by centrifugation. Each growth harvest was resuspended in ten 60 mL batches in buffer
containing 50 mM Tris-HCl, pH 8.0, 10% glycerol, 1 mM EDTA, 1 mM dithiothreitol (DTT) and frozen
at -50◦ for future use. Lysis in a French pressure cell was followed by removal of cell debris by
centrifugation. Streptomycin sulfate (40% solution) was added to a final concentration of 4%, and
mixtures were stirred at 4 ◦C for 30 min. After centrifugation for 30 min in a Beckman J21 rotor at
10,000 rpm, solid ammonium sulfate was added to the supernatant at a final concentration of 70%
saturation. The ammonium sulfate pellet was suspended and dialyzed in Ni-NTA column loading
buffer. Chromatography on Qiagen Ni-NTA resin (Qiagen, Redwood City, CA, USA) was carried
out using buffers provided by the resin supplier. Proteins were loaded onto a Ni-NTA column in
phosphate buffer (pH 8.0) containing 10 mM imidazole; the column was washed in buffer containing
20 mM Imidazole; and gyrase subunits were removed from the column by a step elution in phosphate
buffer (pH 8.0) containing high imidazole (250 mM). The 6-His affinity tag was removed by TEV
protease digestion, and each gyrase subunit was applied to a second Ni-NTA column, where it passed
through the resin in 10 mM imidazole buffer. This step eliminated proteins without a HIS tag that
bind to the resin. Gyrase subunits were further purified by gel filtration through a Sephacryl S-200
column (Sigma Aldrich, St. Louis MO, USA) in 0.2 M KPO4, pH 7.4, 10% glycerol. Fractions with
the highest specific supercoiling activity were dialyzed into storage buffer (50 mM Tris-HCl pH 8.0,
100 mM KCl, 1 mM DTT, and 50% glycerol) and stored at −20 ◦C. Enzyme reconstitution was done by
mixing 76 pmol GyrA with 38 pmol of GyrB in 100 µL of storage buffer.

2.4. Biochemical Methods

Preliminary experiments were always carried out in which serial dilutions of the each GyrA-GyrB
pair to be tested was serially diluted, pre-incubated with relaxed DNA for 30 min at 30 ◦C, and then
incubated after ATP addition for 90 s. The highest dilution that supercoiled all the relaxed substrate
was then used for time course studies on the same day. The reason that GyrB is the limiting subunit
is that it is present in cells at half the concentration of GyrA [27]. Temperature sensitive (TS) GyrB
preparations are especially troublesome; they are easily denatured by transfers out of and back into a
−20 ◦C freezer and must often be purified fresh for critical experiments.

Supercoiling reactions were carried out in G-buffer containing 35 mM Tris-HCl pH 7.4, 18 mM
potassium phosphate pH 7.4, 1 mM DTT, 10 mM MgCl2, 50 µg/mL bovine serum albumin, 5 mM
spermidine-HCl, and 0.4 µg/mL yeast tRNA [27]. Pre-tested gyrase ensembles and relaxed pMP1000
plasmid DNA were mixed in G-buffer and incubated for 30 min at 30 ◦ C to form stable gyrase-DNA
complexes [28,29]. Supercoiling was initiated by mixing in ATP at a final concentration of 1.2 mM,
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and reactions were quenched with EDTA (10 mM) pH 8.0 and 0.1% SDS. Single dimension agarose
gels with 0.48 µM chloroquine were run at 47 V for 20 h, and two-D gels were run for 15 hours at 47 V
in the presence of 0.48 µM chloroquine in the first dimension and 20 µM chloroquine in the second.
Gel bands were transferred to Zeta-Probe® GT Genomic Tested Blotting Membranes from Bio-Rad®

(Hercules, CA, USA). Southern blot hybridization was done using Roche® DIG High Prime DNA
Labeling and Detection Starter Kit II (Sigma Aldrich, St. Louis, MO, USA).

2.5. Genetic Methods

The gyrA and gyrB genes of E. coli were introduced into the S. Typhimurium chromosome using
the λ red “recombineering” system [30]. To select for recombinant gyrB and gyrA genetic exchange,
a module encoding resistance to kanamycin or chloramphenicol was inserted within 1 kb of each E. coli
and S. Typhimurium gyrase gene. The drug cassette and linked GyrA or GyrB genes were amplified
for recombination into recipient chromosomes as described previously [3,31]. Supercoil sensors were
moved into Salmonella by P22 transduction as described previously [32].

3. Results

3.1. Supercoiling Assays of WT and Interspecies Forms of Gyrase

The amino acid differences between gyrA and gyrB of E. coli and Salmonella are illustrated in
Figure 1. Salmonella is the reference sequence, and horizontal black lines show positions that differ
in the E. coli homologues. Both GyrB proteins are 804 amino acids long, and Salmonella GyrA has
738 residues, which is 3 longer than E. coli GyrA at 735. GyrA includes 4 conserved structural domains
with critical structure/function roles that extend to all known prokaryotic and eukaryotic type II
topoisomerases. The last 35 amino acids of E. coli GyrA are essential for supercoiling activity in E. coli
gyrase, but this region varies widely in different bacterial species and is not considered required for
supercoiling by M. tb [33,34] or B. subtilis gyrase [35].
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tyrosine (Y122*), the blue Tower domain, the brown coiled-coil domain that forms the C-gate, and the 
blue C-Terminal domain containing six pinwheel elements that fold into a spherical DNA binding 
surface. The red C-terminal acidic tail has many differences including the length of 38 residues in 
Salmonella compared to 35 in E. coli. (B) GyrB encodes the yellow ATPase domain that forms the ATP-
gate, the green topoisomerase-primase (TOPRIM) domain that coordinates Mg++ binding, and a C-
terminal GyrA interaction domain. Positions in GyrA and GyrB that encode different amino acids are 
shown as black hatches along the Salmonella map. 

Figure 1. Conservation of protein sequences in E. coli and Salmonella gyrase and location of functional
domains. (A) The GyrA protein is shown with the purple WHD domain, which contains the catalytic
tyrosine (Y122*), the blue Tower domain, the brown coiled-coil domain that forms the C-gate, and the
blue C-Terminal domain containing six pinwheel elements that fold into a spherical DNA binding
surface. The red C-terminal acidic tail has many differences including the length of 38 residues in
Salmonella compared to 35 in E. coli. (B) GyrB encodes the yellow ATPase domain that forms the
ATP-gate, the green topoisomerase-primase (TOPRIM) domain that coordinates Mg++ binding, and a
C-terminal GyrA interaction domain. Positions in GyrA and GyrB that encode different amino acids
are shown as black hatches along the Salmonella map.
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Supercoiling reactions are most efficient when gyrase binds to rare “strong” DNA sequences
that promote processive reactions. The highest affinity gyrase DNA site known is the strong gyrase
site (SGS) from the center of phage Mu [36,37]. Gyrase forms a complex with SGS DNA that has a
dissociation half-life >40 h, and ensembles formed in the absence of ATP can be purified by Sepharose
exclusion chromatography [29]. Addition of ATP to pre-formed complexes leads to maximal plasmid
supercoiling within 60 s with a supercoil end point greater than that present in plasmid DNA isolated
from WT cells where σ equals (−) 0.069 (Figure 2). Single-molecule rotor bead experiments confirm
that a single gyrase bound to the Mu-SGS catalyzes processive bursts of >100 supercoils (50 cycles) per
min [38].
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Figure 2. In vitro assays for supercoiling processivity in enzymes reconstituted from E. coli and
S. typhimurium subunits. (A) The map of plasmid pMP1000 includes the nuB101 mutation of the phage
Mu SGS that supports processive supercoiling reactions. (B) Southern blot patterns of plasmid DNA
incubated with gyrases for different times (sec.) Supercoiled, relaxed, and linear pMP1000 plasmid
was loaded in lanes 1–3 as markers. The positions of bands with linking numbers increasing from the
relaxed substrate to −12 are shown by red dashes in lane 4; topoisomers higher than −13 reverse and
move faster down the gel at positions marked with red dashes between lanes 2 and 3. DNA with higher
supercoiling than the in vivo supercoiled species moves beyond the position of −24 *. Blue letters
designate E. coli gyrase subunits; red letters designate S. typhimurium gyrase subunits.

Quantitative supercoiling speed and supercoil endpoints were measured in vitro with
gyrase-DNA complexes bound to the relaxed plasmid pM1000, which has the Mu nuB103 SGS cloned
into a pUC19 poly-linker. Progression from relaxed to supercoiled conformations after ATP addition
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was measured by electrophoresis in two agarose gel systems containing chloroquine phosphate.
Both systems resolve all 25 supercoil steps from relaxed to the fully supercoiled in vivo endpoint.
The chloroquine concentration in the gel in Figure 2 removes half of the 25 (−) supercoils from
naturally supercoiled pUC19 DNA and introduces 13 (+) supercoils into relaxed plasmid DNA under
gel electrophoresis conditions; the corresponding (+) and (–) supercoil isoforms run near each other in
the gel. The initial products of supercoiling move higher in the gel up to an ∆Lk value of −12, which is
near nicked DNA (steps are indicated by red dashes in lane 2 and 4). DNA with ∆Lk values > −13
moves progressively faster toward the bottom of the gel, and hyper-supercoiled species run faster than
supercoiled DNA marker isolated directly from WT E. coli (Figure 2).

Supercoil characteristics of WT E. coli and WT Salmonella gyrase (A2Ec-B2Ec and A2ST-B2ST) were
also compared with transgenic isoforms A2Ec-B2ST and A2ST-B2Ec (Figure 2). Reactions (100 µL)
assembled on ice in G-buffer with 230 fmol of relaxed pMP1000 were incubated at 30 ◦C for 30 min
to form stable gyrase-DNA complexes [28]. ATP was stirred into each reaction at 1.2 mM, and 10 µL
aliquots were withdrawn and stopped by addition of SDS at 5 s, 10 s, 20 s, 40 s, and 80 s time points.
Samples loaded onto an agarose gel with 0.5× TBE and 0.48 µM chloroquine phosphate were subjected
to electrophoresis at 47 V for 20 h. DNA bands representing single topoisomers were visualized from
DNA Southern blots.

Time-course clusters for all forms of gyrase are shown in Figure 2. E. coli gyrase all blue
(A2Ec-B2Ec) is the first cluster. At 5 s, a band overlaps the position of native supercoiled DNA in
lane 1. This indicates a linking number change (Lk) of −24 (red hatch marks beside lanes 2 and 3).
Thus, a single gyrase bound to one SGS site supercoils DNA in vitro at five supercoils/sec in dilute
solution at 30◦C. This agrees with single molecule rotor bead experiments, assuming a Q10-related
2-fold rate increase for reactions carried out here at 30◦C compared to the 20◦C room temperature
of rotor bead experiments [38]. At the 10 s time point, a cluster of hyper-supercoiled DNA bands
migrate further down the gel than supercoiled species in a native supercoiled plasmid control lane 1
(σ = −0.069).

The second cluster had the weakest enzyme. E. coli GyrA and Salmonella GyrB starts very slowly
with relaxed DNA remaining near the starting position for >10 s. It required 20 s to generate a
supercoiled population near the density of native plasmid and hyper-supercoiling required nearly 80 s.
The other transgenic combination of Salmonella GyrA and E. coli GyrB in cluster 3 was a better enzyme.
This form had kinetics similar to Salmonella gyrase in cluster 4. Most DNA reaches the hyper-supercoil
zone by 40 s. Since supercoil free energy is an exponential function of linking number [39,40], E. coli
gyrase is clearly more powerful than Salmonella gyrase and both transgene combinations when assayed
using the pMP1000 substrate.

To confirm the kinetic rate of 5 supercoils/s, each enzyme was re-tested in 5 s assays where all
products are displayed in a 2D gel that unambiguously resolves each topoisomer from relaxed to the
hyper-supercoiled state of −30 (Figure 3). The central relaxed topoisomer is marked with a red dot
in panel A, and supercoil steps above the dot by band counting are marked at −15, −20, and −25
in panels B–F. Figure 3C shows the 5 sec assay for E. coli AEc2-BEc2. Every complex does not initiate
supercoiling immediately after ATP addition, so relaxed DNA bands are present along with a complete
distribution of topoisomers to the −30 position. Salmonella gyrase AST2-BST2 (Figure 3F) yielded DNA
product at −25, but the distribution lags behind the E. coli enzyme. The transgenic combination of
AEc2-BSt2 (Figure 3D) is again the worst combination, with most DNA remaining at the fully relaxed
positions. The transgenic form ASt2-BEc2 (Figure 3E) showed a pattern similar to Salmonella gyrase in F.
Overall, the power relationship was AEc2-BEc2 > ASt2-BSt2 -> ASt2-BEc2 >> AEc2-BSt2.
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native partners and chimeric enzymes reconstituted with mixed S. typhimurium and E. coli subunits.
The profile of Top1 relaxed DNA substrate and native supercoiled pMP1000 plasmid are shown in
panels (A and B) respectively. Panels (C–F) show supercoil profiles of 5 s supercoiling reactions carried
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3.2. In Vivo Chromosome Supercoiling in Transgenic Salmonellae

In vitro results in Figures 2 and 3 show that E. coli gyrase is faster and/or more powerful than
Salmonella gyrase. This result alone could explain the higher sustained in vivo supercoil DNA levels
for E. coli compared to Salmonella. To test this prediction, transgenic Salmonella strains were created
by exchanging E. coli homologues for Salmonella genes using phage lambda red recombineering.
Sequence analysis of PCR-amplified chromosomal DNA confirmed the genetic structure of each strain.
All strains grew on LB plates incubated at 30 ◦C and 42 ◦C. Because transgenic GyrBST expression
is deleterious for E. coli [3], we tested each transgenic Salmonellae for a detectable growth phenotype
by measuring cell doubling times. Three independent colonies of each test strain were incubated in
shaking liquid LB cultures at 30◦, and the A600 was measured by Klett, which allows rapid sampling
with minimal manipulation for each measurement. WT Salmonella (NH6303) doubling time was
40 ± 1 min (Table 1). Salmonella with either a gyrBEc transgene (NH6304) or a gyrAEc allele (NH6281)
had a small but measurably slower doubling time of 43 ± 1 min. The transgenic replacement with
both gyrAEc and gyrBEc had the slowest doubling time of 44 ± 1 min.

Due to a small but measurable impact of each transgene on cell division, we measured supercoil
densities at 10 positions in the Salmonella chromosome. Strains were constructed with each gyrase
isotype to analyze in vivo chromosomal supercoiling. This technique exploits the supercoil-dependent
resolvase deletion reaction for a 9 kb lacZ operon module placed at different loci (see Figure S1) and
detects supercoil changes over a 100-fold range [9,32].
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Table 1. Doubling times of S. Typhimurium and E. coli strains with different gyrase subunits and
chimeric gyrases containing GyrA fusions to whole CTD or 1/2 CDT domains of Salmonella gyrA.

Strain GyrA GyrB Doubling Time (min) on LB 30 ◦C

S.Tm NH6303 S. Tm S. Tm 40 ± 1
S. Tm NH6304 S. Tm E. coli 43 ± 1
S.Tm NH6281 E. coli S.Tm 43 ± 1
S.Tm NH6292 E. coli E. coli 44 ±1
S.Tm NH6390 E. coli <1/2 CTD S.Tm> S.Tm 40 ± 2
S.Tm NN6392 E. coli <CTD S.Tm> S. Tm 40 ± 1
S.Tm NH6391 E. coli <CTD S.Tm> E. coli 39 ± 1
E. coli NH1013 E. coli E. coli 39 ± 1
E. coli NH6386 S. Tm E. coli 60 ± 3
E. coli NH6451 S. Tm <CTD E. coli> E. coli 41 ± 1
E. coli NH6453 S. Tm <32 aa E. coli Tail> E. coli 37 ± 1

3.3. Supercoiling in gyrBEc Transgenics

The replacement of Salmonella gyrB with E. coli gyrB resulted in changes from WT (Figure 4).
However, rather than uncovering a uniform change at all locations, differences from WT supercoil
levels varied by location. The chromosome was a patchwork of independent supercoil domains
that did not change uniformly. We calculated a Mutation Impact Factor number (MIF) for each
locus (Tables S2–S4) which compares the resolution efficiency of the transgenic strains versus the
WT. For example, at Cs57.65 (upstream of the rrnG operon) the excision efficiency for WT (NH6257)
69 ± 11% increased to 89 ± 3% (MIF = 130) in the transgenic NH6271. This represents a 30% increase in
deletion frequency. Downstream of the rrnG transcription terminator at Cs 57.64, resolution occurred
in 31 ± 11% of WT NH6258, and the transgenic rate was 50 ± 7% (MIF = 160) in NH6272. At position
Cs 85 the supercoil sensor lies immediately upstream of the ATP operon, which encodes 9 integral
membrane proteins that generate ATP using the proton motive force across the cytoplasmic membrane
for energy. The WT Salmonella recombination rate of 66±6% NH6259 rose to 78 ± 1% (MIF = 120)
for NH6273. Thus, at these positions a transgenic E. coli GyrB increased supercoil density of the
Salmonella chromosome.

But other locations had supercoiling losses. At Cs9 the WT resolution rate of 49 ± 17% in NH6265
dropped to 29 ± 8% (MIF = 59) NH6279), and near dif site at Cs 33 the WT rate of 34 ± 9% for NH6265
fell to 13 ± 3% (MIF = 38) in NH6277. The average resolution efficiency (58 ± 15%) for WT was the
same for averaged sum at 10 locations in the gyrBEc replacements (57 ± 22%). But the global average
did not reflect a mass action supercoiled structure; local supercoil environments behaved differently
and high transcription regions GyrBEc increased supercoil density (black numbers) above the level of
WT (red numbers).
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Figure 4. In vivo resolution assays of Salmonellae with precise chromosomal swaps of E. coli GyrA
and GyrB subunits exploited supercoil reporters in six chromosome macrodomains. Macrodomain in
Salmonella genome segments correspond to the six macrodomains of the E. coli chromosome: Ori-green;
Right; Unstructured - black; Right, red; Ter, purple with black hatches showing matS sites; Left Domain,
blue; Left unstructured domain, black. Resolution efficiencies at 10 positions are shown for: Salmonella
WT, red; Strains with the E. coli GyrB transgene, black; Strains with E. coli GyrA, blue; and Salmonella
with E. coli GyrA + GyrB, green.

3.4. Salmonella GyrA + GyrB Double Transgenics

The resulting average for strains carrying the gyrBEc transgene was in line with the in vitro power
analysis of the four gyrase combinations, if one focuses on the average. We naively anticipated that
the average supercoil level would rise in Salmonella transgenics having both E. coli gyrase subunits,
based on in vitro results with the plasmid. But a 10% increase of 4 min in cell doubling time (Table 1)
presaged significant supercoiling problems throughout the genome (Figure 4, green numbers). At the
ATP operon near Cs85, resolution fell from 66 ± 8% in WT NH6259 to 41 ± 10% (MIF = 28) in the
transgenic NH6295, representing a 72% decline. At the rrnG, the upstream rate fell from the WT value
in NH6257 of 69 ± 11% to 31 ± 7% in NH6293 (MIF = 45). The downstream rate fell from the WT
value in NH6258 of 31 ± 11% to 6 ± 5% (MIF = 20) in NH6294. The average resolution efficiency at
ten positions in WT cells of 58 ± 15% dropped by half to 27 ± 15% when both E. coli gyrase subunits
were present. Interpolation of the graph in Figure S1 indicates that E. coli gyrase caused the average
diffusible supercoil density to drop by 33%, from WT σ = −0.033 to mutant value of σ = −0.022
(Table S2). This was unexpected, but similar results were recorded for Salmonellae carrying the E. coli
gyrA gene alone (Figure 4, Table S2). Thus, unlike E. coli GyrB, E. coli GyrA caused global supercoiling
losses in Salmonella’s chromosome, and the biggest supercoil-losing positions were near genes with the
highest transcription rates.
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3.5. Transgenic Swaps of Salmonellae gyrBSt and gyrASt in E. coli

We also tested E. coli strains carrying Salmonella gyrase subunits. However, the GyrBSt transgene
swap was problematic. The frequency of colonies recovered on plates with GyrBSt linked to either Kn
or Cm fell >100 fold relative to the efficiency of the reciprocal GyrBEc swap in Salmonella. In addition,
when rare drug-resistant E. coli strains were analyzed, each strain had a transgene plus at least one
copy of WT gyrBEc. Our conclusion was that a preexisting duplication of GyrBEc was required to get a
copy of GyrBST. This confirms that the poor performance of this combination for in vitro supercoiling
extends to the in vivo situation.

Nonetheless, results for GyrASt swaps in E. coli were informative. Strains under selection
for the gyrASt were recovered at a normal frequency, and there were no WT GyrAEc duplications.
But, each transgenic E. coli strain required >2 days to become visible for picking on selective plates,
and the cell doubling time on LB broth increased from 39 ± 1 min for the WT to 60 ± 3 min (Table 1).
However, these transgenic strains (NH6380) exhibited constitutive RecA SOS induction, which made it
impossible to measure supercoil densities in the chromosome. In RecA-SOS induced cells, background
rates vary day to day and even from moment to moment because activated RecA induces cleavage of
the lambda repressor that regulates our Resolvase plasmid.

3.6. The GyrA CTD Controls Species Supercoiling

If the amino acid differences in GyrAEc cause transgenic sickness, is there a specific location of
cause, or do multiple mutations located throughout the protein contribute to the phenotype? Assigned
structure/function elements for GyrA are illustrated in Figure 5 with amino acid differences indicated
by black lines above the map. The GyrA Winged Helix Domain (WHD) (purple) forms the DNA
gate and includes the catalytic tyrosine (Y122). WHD is perfectly conserved between species and it
interacts with the GyrB Topoisomerase-Primase domain (TOPRIM) Mg++ binding domain (green) and
the C-terminal GyrA binding region that coordinates DNA cleavage and conformation changes that
open and close the DNA gate [41]. The Tower domain (blue) forms the floor of the upper chamber,
and the coiled coil domain forms the C-gate; these segments all have only have a few amino acid
differences. Most divergence is localized in CTD, which includes six β-propeller elements (blue) and
the red C-terminal acidic amino acid rich tail (Figure 5A).

The Berger lab showed that the acidic amino acid rich C-terminal tail of E. coli GyrA is responsible
for different catalytic rates and enzymatic endpoints in comparative studies of the distantly related
M. tuberculosis gyrase. Competition between the tail and DNA for binding to the CTD β-propellers
(Figure 5A) [42,43] explains why the purified E. coli GyrA dimers do not bind DNA [33]. The E. coli
GyrA tail has 14 substitutions and is three residues shorter than Salmonella GyrA tail (Figure 5A); these
differences could explain why GyrAEc is a more processive enzyme than GyrAST.

To evaluate the GyrA CTD contribution to chromosome supercoiling, chimeric E coli GyrA
transgenes were introduced to Salmonella. In NH6392, the N-terminal 579 amino acids of E. coli GyrA
were fused to 299 C-terminal residues of Salmonella GyrA at bp 1739. A second chimera in strain NH
6390 fused 705 N-terminal amino acids of E. coli GyrA to the last 173 amino acids of Salmonella GyrA
at bp 2117. The first chimera includes the entire CTD of Salmonella GyrA, and the second chimera
exchanges the last two-and-a-half pinwheel elements plus the acidic tail of Salmonella GyrA (Figure 5A,
underlined purple line with the asterisk).

Supercoil assays at 10 loci revealed that WT supercoiling was restored (MIF =≥ 100) (Figure 5B)
when E. coli GyrA was fused to the last 2 1

2 β-pinwheels and tail elements of Salmonella GyrA (Figure 5B,
purple numbers). A chimera with the E coli GyrA fused to the complete Salmonella GyrA CTD (NH6378)
also restored WT levels throughout the genome (Table S3 and Figure 5B). The mean resolution efficiency
increased 2.3-fold from 27 ± 15% to 62 ± 15%. This evidence demonstrates that the Salmonella GyrA
CTD coordinates supercoil distribution throughout the Salmonella genome by a mechanism that is not
obvious from quantitative in vitro supercoiling assays using a DNA substrate with a single highly
processive gyrase binding site (Figures 2 and 3).
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Figure 5. The C-terminal DNA binding domain of E. coli GyrA induces supercoiling losses in the
Salmonella chromosome. (A) The genetic map of the different gyrase species tested is shown at the top
(B) In vivo resolution results are compared for WT Salmonella gyrase—red numbers; strains with an E.
coli gyrA replacing the Salmonella allele—black numbers; and two chimeras containing the N-terminal
E. coli GyrA fused to Salmonella β-propeller elements at two points marked by blue and purple lines
beneath the map.

3.7. Transgenic Salmonella GyrA Chimeras in E. coli

Two chimeras were made in E. coli to evaluate the cell stress phenotype of Salmonella GyrA in
E. coli. A gyrAST transgenic strain NH6386 was modified twice. First, 579 N-terminal amino acids of
GyrAST were fused to 296 C-terminal residues of GyrAEc in NH6451 (Figure 6A—Blue underline).
This fusion is comparable to Salmonella chimera strain NH6390 and the results were similar. The slow
division time of 60 min was restored to the WT value of 40 min (Table 1). A second fusion in E. coli
NH6453 was an extreme test case: 840 N-terminal residues of Salmonella GyrA were spliced to only the
last 35 amino acids of E. coli GyrA. The C-terminal 35 amino acids of E coli GyrA completely reversed
cell sickness as this strain doubled in 37 ± 1 min (Table 1).
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Figure 6. Resolution assays of WT E. coli and E. coli supercoiling with chimeric Salmonella–E. coli GyrA
fusions. (A) A map of the genes that were tested. E. coli strains containing a WT GyrA, and two
chimeric forms of Salmonella-E. coli GyrA were tested for supercoil-dependent resolution at four sites in
the chromosome. (B) Resolvase deletion efficiencies for three gyrA genes are shown at 4 chromosomal
locations. Strains with a WT GyrA and a Salmonella GyrA fused to the E. coli CTD at amino acid had
very similar efficiencies at all four positions with a mean of 91 ± 5% and 92 ± 3% respectively. Strains
carrying the Salmonella chimera fused to only the last 35 amino acids of the E. coli GyrA tail had a mean
efficiency of 77 ± 4%, which shows a small (MIF) of 86.

3.8. Chromosome Supercoil Density in E. coli

To evaluate supercoil distributions in the E. coli chromosome, supercoil sensors were inserted into
four positions comparable to sites that were tested in Salmonella (Table S4 and Figure 6). Two sites are
high transcription regions: the sensor at map position 83 min lies just upstream of the ATP operon
and the sensor at 59 min is upstream of the rrnG operon. Two positions are not near known high
transcription units in LB, including the cynX locus at 7 min and ybfN at 19 min. The average resolution
efficiency for all four E. coli positions was 91 ± 5%; this is near the upper limit of our assay and it
confirms a high diffusible supercoil density near σ D = −0.042 (Figure S1).

The RecA-SOS phenotype disappeared in both the GyrA chimeras, along with a return to under
40 min doubling times. The γδ resolvase expression plasmid was well regulated in both, which allowed
us to measure supercoiling relative to WT at four loci (Figure 6B, Table S4). NH7001, NH7003, NH7004
and NH6999 have Salmonella GyrA fused to the complete E. coli CTD (Figure 6A). Their average
supercoil density at 4 locations was 92 ± 3% (Figure 6B, blue numbers) which matched WT values
(Figure 6B, black numbers). Strains NH6992, NH6994, NH6995, andNH6999 have only 32 amino acid
changes back to match E. coli GyrA and they showed a resolution efficiency of 80 ± 4% (Figure 6B,
red numbers). Therefore, the C-terminal 35 amino E. coli GyrA cures species-specific sickness and
restores chromosome local supercoiling to near WT levels at 4 test positions (Figure 6B). GyrA CTDs in
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both species are crucial for recognizing species-specific signals at different DNA regions that establishes
the WT supercoil chromosome domain structure.

4. Discussion

4.1. Evolution of Chromosomal Supercoil Control

E coli and Salmonella Typhimurium diverged from the “common ancestor” 120 million years ago
in the mid Cretaceous age of dinosaurs [44]. Comparative study of these bacteria was historically
focused largely on the different sets of phage and transposable sequences that give E. coli and Salmonella
distinct biochemical advantages in their various niches. The core biochemical pathways of chromosome
dynamics, DNA replication, transcription, and translation, have largely been assumed to be identical.
To dissect the mechanism of GyrA control over supercoil levels, it has been necessary to focus on three
factors. First, what conditions are known to alter gyrase supercoiling in living cells? Second, how are
supercoil domains formed and organized in both species? Third, what role do strong gyrase sites play
and how do they contribute to chromosome dynamics?

The first mechanism proposed to explain regulation of bacterial supercoil density was homeostatic
control [45]. The theory was based on observations that transcription of gyrA and gyrB in E. coli
increases when DNA supercoiling levels go down, while transcription of Topo I (the product of topA)
increases when the supercoil level goes up. The model proposes that chromosomes attain a steady state
by the mass action of these two enzymes that catalyze opposing reactions. Similar supercoil-sensitive
transcription profiles for gyrA, gyrB and topA genes have been reported in Haemophilus influenzae [46],
Streptococcus pneumoniae [47] and Pseudomonas aeruginosa [48]. However, the actual increase or decrease
in these proteins were not measured at that time. When technology enabled investigators to carefully
modulate expression of gyrase and Topo I in vivo [49], changing these protein levels had a small
impact. A 10% increase or decrease in either gyrase or Topo I caused a 1.5% change in ambient plasmid
supercoil density [50]. This value is at the detection limit of plasmid-based analysis.

One factor that can change supercoil levels is connected to the energy source ATP. Gyrase binds
both ATP and ADP, and the ratio of these two nucleotides influences supercoil endpoints in vitro;
the higher the ATP/ADP ratio, the higher the supercoil density of a plasmid substrate. ATP/ADP ratios
were found to vary in vivo when cells experience a number of stresses, including changing growth
conditions. The ATP/ADP relationship explained plasmid supercoil density changes in cells shifted
from low to high salt media [51], in cells shifted from aerobic to anaerobic growth conditions [52],
and in E. coli cultures as they enter stationary phase [53]. However, the influence of ATP/ADP ratios is
the same for E. coli and Salmonella gyrase in vitro.

4.2. Supercoil Domain Theory and Measurements

Another question that was initially addressed only in E. coli involved evaluation of the size
and number of supercoil domains in the 4 Mb circular chromosome. E. coli was found to have 50
domains with a size of roughly 100 kb. Data for this calculation was collected from cells given
X-ray treatment to introduce nicks in DNA, followed by a recovery period to seal nicks, followed by
crosslinking to radioactive psoralen, which binds twofold better to supercoiled than to relaxed DNA [54–
56]. However, when techniques were developed to measure supercoil domains in exponentially
growing cells, the domain number in E. coli and Salmonella was higher by an order of magnitude.
Different supercoil detection methods were developed for Salmonella [57,58] and E. coli [59], but results
from both species showed 500 domains per genome equivalent with an average size of about 10 kb.
Thus, 500 gyrase molecules per cell provides one gyrase for every domain, but there is not enough
gyrase to ensure every domain gets one enzyme. An additional surprise noted in both experiments
was that domain boundaries were not located at the same sites in every cell; rather, they were stochastic
with respect to DNA sequence in different cells [57,59]. Boundaries also changed from moment to
moment in the same cell [58]. The molecule(s) forming boundaries were a mystery.
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In 1987, a second mechanism that generates both (−) and (+) supercoils was proposed by Liu
and Wang [60]. They argued that the movement of RNA polymerase along the DNA double helix
would generate “twin domains” with (−) supercoils being generated behind a transcribed region
and (+) supercoils being pushed ahead of RNAP. In 2004, Deng discovered that RNA polymerase
does something unexpected by creating a supercoil barrier in DNA that blocks all supercoil diffusion
across a transcribed region. A new supercoil boundary is established when transcription initiates,
and the barrier disappears when gene expression is repressed [61]. The twin domain impact of RNA
transcription was also confirmed in Salmonella in 2010. Booker showed that supercoil density is elevated
behind the highly transcribed rrnG operon and supercoils are depleted in the domain downstream
of the operon [8,12]. Thus, RNA polymerase not only supercoils DNA in vivo at rates comparable
to gyrase, transcription also forms the most abundant supercoil domain boundaries in the bacterial
cell [62].

Recent results demonstrating stochastic domain structure linked to transcription in E. coli came
after high super-resolution microscopic techniques were developed for quantitatively measuring RNA
synthetic rates at single DNA locations inside a single living cell [63]. Many genes studied using this
technique showed a surprising transcription bursting pattern; an initial wave of transcription and
translation was followed by strong inhibition, which could be followed at variable intervals by another
burst. The phenomenon can’t be analyzed in cell populations because enzyme assays or microarray
analyses only reveal population averages.

Transcription bursting was subsequently modeled in vitro by firmly attaching covalently closed
circular plasmids to a surface that blocks (+) and (−) supercoil diffusion from cancelling each other
out [64]. Bursting in vivo and in vitro was explained by gyrase diffusion from one DNA site to the
another. If gyrase binds to a domain with a transcription complex stalled by (+) supercoiling, a second
burst occurs. When strong gyrase sites were added to plasmid bursting experiments along with gyrase,
the bursting response was converted to a smooth expression pattern, which is the characteristic of rrnG
operon and the 100 most highly transcribed operons in E. coli and Salmonella [12].

Since a transgenic E. coli GyrA subunit introduces different supercoil levels to different sites in
the Salmonella chromosome, there must be signals in the genome at different locations that influences
gyrase binding or activity. The simplest hypothesis is that chromosomal gyrase binding sites co-evolve
in E. coli and Salmonella along with the enzyme.

4.3. What Do Strong Gyrase Sites Look Like?

Evidence that a single gyrase binding site can influence local DNA supercoiling came first from
work on phage Mu [36]. Mu is a transposing replicon [65] that requires negative supercoiling to
initiate transposition reaction [22]. When Mu grows on a TS GyrB mutant, it replicates poorly, making
“pinpoint” plaques and generating very low phage yields. However, large plaque variants were
isolated that produce phage titers on the TS GyrB strain that nearly match phage titers of the WT strain.
Two phage mutants called nuB1 and nuB 103 [66] were found to elevate supercoil density in Mu while
leaving the rest of the chromosome unchanged. The Mu SGS is a 150 bp region with three components
that were dissected using genetics and biochemical analyses in the Pato lab [23,67–70]. The 150 bp Mu
SGS includes a 40 bp left arm (Figure 7A brown), a 50 bp in the central core (Figure 7 Aqua), and a
60 bp the right arm (Purple).

The gyrase DNA cleavage site is offset from center by 20 bp. Topological mapping shows that
gyrase constrains 1 + supercoil which represents a 360◦ loop [71]. The right and left arms exhibit
periodic hyper-sensitive sites at 10 bp intervals, reminiscent of the nucleosome DNase I pattern.
With the center of DNA cleavage being defined as 0, the SGS left arm spans bp-65 to bp-26, but it lacks
critical sequence or structure information since it can be deleted and adjacent sequences moved in to
this position still support Mu replication. The critical G or gate segment (Figure 7A,B Aqua) spans
DNA positions −25 to +25 and includes two 75◦ DNA bends that occur 1) at the 5’ to 3’ dinucleotide
pair of +7G +8C of the top strand, and 2) at the 5’ to 3’ -7G -8C dinucleotide pair on the bottom strand.
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Both DNA bends are made by inserting an isoleucine into the minor groove; the same pattern is seen
in high-resolution X-ray crystal structures of eukaryotic and prokaryotic type II topoisomerases [41].
The bends are also similar to DNA complexes with the chromosome associated protein IHF and HU,
which place proline into the minor groove to create similar bending angles [72,73]. DNA bending
aligns the L and R for interaction with the left and right pinwheel elements (Figure 6B).

Microorganisms 2019, 7 14 of 21 

isolated that produce phage titers on the TS GyrB strain that nearly match phage titers of the WT 
strain. Two phage mutants called nuB1 and nuB 103 [66] were found to elevate supercoil density in 
Mu while leaving the rest of the chromosome unchanged. The Mu SGS is a 150 bp region with three 
components that were dissected using genetics and biochemical analyses in the Pato lab [23,67–70]. 
The 150 bp Mu SGS includes a 40 bp left arm (Figure 7A brown), a 50 bp in the central core (Figure 7 
Aqua), and a 60 bp the right arm (Purple).  

The gyrase DNA cleavage site is offset from center by 20 bp. Topological mapping shows that 
gyrase constrains 1 + supercoil which represents a 360° loop [71]. The right and left arms exhibit 
periodic hyper-sensitive sites at 10 bp intervals, reminiscent of the nucleosome DNase I pattern. With 
the center of DNA cleavage being defined as 0, the SGS left arm spans bp-65 to bp-26, but it lacks 
critical sequence or structure information since it can be deleted and adjacent sequences moved in to 
this position still support Mu replication. The critical G or gate segment (Figure 7A and B Aqua) spans 
DNA positions −25 to +25 and includes two 75° DNA bends that occur 1) at the 5’ to 3’ dinucleotide 
pair of +7G +8C of the top strand, and 2) at the 5’ to 3’ -7G -8C dinucleotide pair on the bottom strand. 
Both DNA bends are made by inserting an isoleucine into the minor groove; the same pattern is seen 
in high-resolution X-ray crystal structures of eukaryotic and prokaryotic type II topoisomerases [41]. 
The bends are also similar to DNA complexes with the chromosome associated protein IHF and HU, 
which place proline into the minor groove to create similar bending angles [72,73]. DNA bending 
aligns the L and R for interaction with the left and right pinwheel elements (Figure 6B.) 

 
Figure 7. Anatomy of the Mu SGS. (A) Map of the 150 bp Mu SGS. Four regions include the left arm 
(Brown L), the Gate segment (Aqua G), the right arm (Purple R) and Transfer segment (Green T). 
Numbers show bp positions to the left (−) or to the right (+) of the center DNA cleavage. (B) The Gate 
DNA nucleotide sequence shows important positions for catalytic supercoiling. GyrA Tyr-122 makes 
a transient covalent bond with +3 A on the top strand and with −3 T on the bottom strand (red). 
Mutations that enhance supercoiling processivity include the +3 G-A transition (Blue nuB1) on top, 
and the nuB103 −3 T to C transition (Green) on the bottom strand. Two 75° bends occur at positions 
+7G, +8C on top and at −7G, −8G on the bottom strand [74]. (C) Two CTD pinwheel elements of a 
GyrA dimer interact with L and R arms to make a (+1) loop that places the T segment in position to 
pass through an open gate during a sign inversion strand transfer [75]. 

Figure 7. Anatomy of the Mu SGS. (A) Map of the 150 bp Mu SGS. Four regions include the left arm
(Brown L), the Gate segment (Aqua G), the right arm (Purple R) and Transfer segment (Green T).
Numbers show bp positions to the left (−) or to the right (+) of the center DNA cleavage. (B) The
Gate DNA nucleotide sequence shows important positions for catalytic supercoiling. GyrA Tyr-122
makes a transient covalent bond with +3 A on the top strand and with −3 T on the bottom strand (red).
Mutations that enhance supercoiling processivity include the +3 G-A transition (Blue nuB1) on top,
and the nuB103 −3 T to C transition (Green) on the bottom strand. Two 75◦ bends occur at positions
+7G, +8C on top and at −7G, −8G on the bottom strand [74]. (C) Two CTD pinwheel elements of a
GyrA dimer interact with L and R arms to make a (+1) loop that places the T segment in position to
pass through an open gate during a sign inversion strand transfer [75].

The essential right arm of Mu’s SGS (purple) had DNAse I protection from bp +26 to bp +85 bp [70].
The first 40 nucleotides are essential for SGS function and include phased bending signals that optimize
DNA looping over the pinwheels. This is similar to the nucleosome code where dinucleotide sequences
promote optimal bending that creates phased nucleosomes in eukaryotes [76]. The transfer segment
(green) can be any sequence; it stacks as a (+) chiral cross above the G segment (Figure 6) and is passed
through the open DNA gate during catalysis (see below). The final requirement for the Mu SGS to
promote Mu transposition is location. It only supports optimal Mu transposition when it is at the virus
center; it promotes efficient left and right end synapsis prior to strand transfer [67].
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4.4. A Species-Specific Rheostat Regulates Supercoiling at Strong Binding Sites

A “rheostat” model for processive supercoiling is illustrated for the Mu SGS in Figure 8.
Supercoiling begins when DNA enters gyrase through the “ATP gate” (Step 1) and binds to the
“floor” of the upper chamber (Figure 8B) with the aid of the strong 75◦ bends (Figure 7C). Competition
between DNA and the acidic tails for binding pinwheel surfaces are reversible equilibria in the absence
of ATP or a non-hydrolysable ATP analogue like AMP-PNP. ATP binding shifts the equilibrium to
favor the DNA looping on the right pinwheel. Then in step 2 binding of ATP to both GyrB subunits
closes the ATP gate and stimulates opening of the covalent gyrase-DNA gate, which passes the transfer
region of DNA to the bottom chamber. Step 3 involves rigid body rotation of the GyrA and GyrB
subunits that pass the transfer strand to the lower chamber where it can escape thorough the C Gate,
and rejoining of the DNA break yields 2 supercoils. The energy for making supercoils comes from
the binding energy of two ATPs, not from hydrolysis [77]. If the non-hydrolysable analog ADP-NP is
added to a gyrase reaction, the substrate gains an increase of 2 (−) supercoils, but the DNA is trapped
in a dead-end complex (red arrow). Hydrolysis of ATPs at step 4 re-opens the ATP gate, allowing the
release DNA with an increase of two negative supercoils.
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Figure 8. The GyrA red acidic tail controls of species-specific supercoiling. (A) Sequences of the GyrA
C-terminal acidic amino acids (red) for E. coli and Salmonella Typhimurium. (B) Proposed mechanism
to control supercoiling at different locations. Supercoiling is illustrated for a plasmid with a Mu SGS
DNA binding site. The long arm (Brown) interacts with one gyrA pinwheel element, the gate segment
(Aqua) folds into the upper chamber, and the right arm (Purple) interacts extensively with opposite
pinwheel elements. The T segment (Green) passes through the open DNA gate during strand transfer.
See text for step details.

Rheostat regulation occurs after step 4 when the pathway forks. One path (D) releases supercoiled
DNA (Figure 3). The alternative path P proceeds immediately through another round of supercoiling.
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Rheostat control in E. coli GyrA involves 35 residues beyond the 6th pinwheel with 19 acidic residues,
while the Salmonella rheostat has 38 amino acids beyond pinwheel 6 with 20 acidic units. Salmonella’s
stronger tail favors DNA release while E. coli’s gyrase tail favors processive cycling.

4.5. Where Are the Strong Gyrase Sites in E. coli and Salmonella chromosomes?

To our knowledge, there have been no focused searches to identify strong gyrase sites downstream
of the top 50–100 highly transcribed operons in any organism. Families of 300 highly repetitive
palindromes called Reps [78] or BIMEs [79,80] can bind gyrase with affinities at least 10-fold stronger
than random DNA. But for many of these sequences, in vitro binding and cleavage analysis carried
out on short DNA fragments gives complex patterns; 8 cleavage sites were identified in a single 344 bp
Rep element [78]. But in vivo analysis of BIME gyrase cleavage patterns showed only one cleavage
site per 2 repeats [81]. The importance of the arm sequence effect was unknown at the time of the
early gyrase binding experiments, and BIMEs clearly have other functions, including the role of being
loading sites on transcribed RNA for the transcription termination factor Rho [82]. Experiments using
Next Generation Sequencing analysis of covalent GyrA-DNA complexes trapped by SDS lysis were
recently reported for E. coli [83]. A similar study focused on Salmonella Typhimurium could answer
many questions about species evolution and show precisely where gyrase binding is most critical for
the class of highly transcribed operons.

4.6. Gyrase Supercoiling Mechanisms in Distantly Related Species

How is supercoiling regulated in the more distantly related bacterial species? A supercoiling
mechanism significantly different from the one shown in Figure 8 appears to be used in bacteria outside
of the Gram-negative family. Unfortunately, chromosomal supercoil density measurements have not
been made for most species, but it seems likely that DNA with linking numbers lower than E. coli could
be the norm. The acidic tail of E. coli, which prevents GyrA dimers from stable binding to DNA [28],
promotes fast supercoiling turnover and, when the tail is deleted, a very poor supercoiling reaction
remains [34]. In the few Gram-positive organisms that have been studied to date, the GyrA tail is greatly
minimized or completely missing. Bacillus subtilis has a reduced acidic residue C-terminus, and the
enzyme supercoils with only a 2-fold penalty when it is deleted [35,84]. However supercoiling rates
and endpoints haven’t been reported for most bacterial gyrases. The Micrococcus luteus GyrA binds
double strand DNA quite well as a dimer and occupies specific locations on plasmid DNA, as measured
by electron microscopy [85]. The acidic tail is absent in the GyrA homologues of M. tuberculosis [33]
and B. burgdorferi [86]. For organisms lacking a tail, gyrase DNA binding may be controlled primarily
by structural elements in the G region, which requires a strongly bent conformation [74].

4.7. E. coli GyrA in Salmonella

Why does the more powerful E. coli gyrase, and specifically the E. coli GyrA subunit, promote
supercoil losses at locations in the Salmonella chromosome with the highest transcription rates,
i.e., ATP and rrnG operons (Figure 4)? There are three non-exclusive mechanisms we can suggest to
answer the mystery of GyrA toxicity. First, Salmonella gyrase has a stronger GyrA-tail, so a gyrase
site downstream of the Salmonella rrnG and ATP operons may need to be strong sites to compensate
for Salmonellas’ weak enzyme. When the strong E. coli GyrA binds to a strong DNA site, the enzyme
may be a road block to other enzymes that move on DNA, i.e., DNA polymerases, DNA helicases,
DNA repair enzymes, and RNA polymerase. A second possibility involves a nonproductive ATP
hydrolysis reaction that was discovered when E. coli gyrase was studied using relaxed ColE1 plasmid
DNA, which includes a strong gyrase site to enhance site specific recombination [87]. In this case,
E. coli gyrase continued to hydrolyze ATP after reaching the hyper-supercoil endpoint. This reaction is
confusing, unproductive, and wasteful. If E. coli GyrA promoted a similar uncoupled ATP hydrolysis
at 50 or 100 strong gyrase sites in a Salmonella chromosome at the rate of 5 ATPs /sec, the energy drain
could lower ATP/ADP ratios, disrupt processes of DNA replication, proteins synthesis, and interfere
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general metabolism as a general energy sink. Third, a large percentage of chromosomal supercoiling
is constrained by proteins that include the nucleoid-associated group of HU, H-NS, FIS, IHF, DPS,
and STPA [88]. One or more of these proteins could directly or indirectly influence GyrA. An estimate
of the ratio of unconstrained vs constrained supercoiling in plasmid DNA showed 60% constrained and
40% unconstrained supercoiling in E. coli [89]. This balance remained the same for WT, topA mutants,
and gyrase mutants with altered the supercoil density within viable limits for E. coli. We assumed that
this ratio also persists for Salmonella in the calculations shown in Tables S2 and S3. However, H-NS
adopts several conformations including one that bridges two distant strands of DNA together [90,91].
The diffusion of supercoils catalyzed by gyrase near a strong patch of bridged DNA would restrict
the ability of DNA to slither and branch. Supercoiling could be forced away from such locations.
Recent biophysical studies show that the situation becomes even more complex. Every NAP listed
above was analyzed by mass spec and found to have cellular modifications that include acetylation,
succinylation, methylation, phosphorylation and deamidation at multiple positions [92]. Why these
modified forms are made and where they are located in the chromosome is another significant
housekeeping biochemical problem that should be investigated.

5. Conclusions

The E. coli vs. Salmonella comparison turns out to provide a long list of results that challenge
conventional theories of biochemical and genetic dogma. First, identical mutations in homologous
“housekeeping” genes gyrA, gyrB, Topo I, bacterial condensin MukBEF, and the nucleoid associated
protein H-NS, IHF, and HU, presented different phenotypes in E. coli and Salmonella [3]. These results
forced us to deal with the fact that there is more than one way to use the same set of proteins to organize
a bacterial chromosome and coordinate the complex connections between transcription, translation,
and DNA replication [12]. In this chapter on DNA topology, the regulatory problem of coordinating
supercoil equilibrium between the twin domains RNA transcription and gyrase turns out to be a local
problem handled downstream of transcription termination. Two different C-terminal tails of GyrA are
designed to deliver variable supercoil potential to the poorly and highly transcribed regions in both
species, while rarely transcribed genes can burst and stall. Gyrase seems not designed to maintain a
specific or ideal global average supercoil density, as many theories of regulation assume. Rather, the
enzyme is designed for optimal support of RNA transcription that is important for growth in the most
frequent niches of both species.
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