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Abstract: Candida glabrata is one of the most prevalent pathogenic Candida species in dental plaque on
tooth surfaces. Candida biofilms exhibit an enhanced resistance against most antifungal agents. Thus,
the development of alternative more potent and effective antimicrobials is required to overcome this
resistance. In this study, three novel fluorinated derivatives and nine selenoester compounds were
screened as novel antifungal and antibiofilm agents against C. krusei, C. parapsilosis, and C. glabrata
(N = 81 dental isolates). C. glabrata strains were susceptible only to fluorinated compounds while
C. krusei, C. parapsilosis, and C. glabrata were susceptible to the action of the selenoesters. The evaluated
symmetrical selenoester compounds presented very good antifungal activity against all the tested
C. glabrata dental isolates (1–4 µg/mL of minimum inhibitory concentration-MIC). The most active
compound (Se-5) was able to inhibit and disperse C. glabrata biofilms. These results demonstrated that
selenoesters may be novel and promising biocide agents against C. glabrata clinical dental isolates.
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1. Introduction

The oral cavity can be colonized by different groups of microorganisms, such as bacteria, viruses,
and fungi [1,2]. Bacterial adhesion to surfaces and the subsequent production of extracellular polymeric
substances prompts the formation of surface-related bacterial communities called biofilms [3]. Biofilm
infections can be caused by a single microbial species or by a mixture of species [4,5]. The most common
infection by Candida is denture stomatitis, which is caused by the formation of biofilm on the surface
of the acrylic denture [6]. The composition of the denture biofilm microbial community is similar
to that of dental plaque, with the exception of an increase in Candida spp. [7]. Dental biofilms are
composed of microorganisms embedded in an extracellular matrix that consists of organic constituents
(proteins, lipids, carbohydrates, and glycoproteins) and inorganic constituents (calcium, phosphorus,
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sodium, potassium, and fluoride) derived from saliva [8,9] (Figure 1). The microorganisms growing in
biofilms have a considerable impediment to antimicrobial therapy due to the specific architecture of
the biofilm, nutrient limitation, slow growth, and overexpression of multidrug-resistance (MDR) efflux
pumps [10–12].
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Figure 1. Schematic overview of the formation of fungal biofilm. Attachment, formation of monolayer,
microcolony, and biofilm.

Candida glabrata has been isolated in removable dental prostheses as one of the most prevalent
pathogenic yeast species among the Candida genus because it presents a higher affinity for the acrylic
surface of dentures [13,14]. This yeast is able to adhere to the mucous surfaces and to stick to the acrylic
resins of dental prostheses, being this adherence a crucial step in the generation of biofilms [15,16].
The biofilm acts as a protective barrier that confers to its embedded fungal cells the ability to develop
resistance towards the majority of the antifungal drugs commonly used in the treatment of chronic
fungal infections [17–19].

The probability of developing candidiasis is higher in older patients because they present weaker
defense mechanisms. Consequently, dentures predispose these patients to Candida infection, which
was observed in 65% of patients in a previous study [20–22]. This pathogenesis is multifactorial
because of its dependency of the host and of the yeast’s capability to adhere and proliferate in the host
epithelial tissues. The antibiotics available to date are ineffective in the treatment of biofilm due to their
high values of minimum inhibitory concentration (MIC) against Candida strains [23–25]. The reduced
inhibitory or disruption effects against Candida biofilm exerted by current antifungal drugs and the
rapid development of drug resistance have highlighted the need for the discovery of new antifungal
agents [4,26]. A few selenium drugs have been described to present antimicrobial activity [27], but
none of them has been described as a Candida glabrata biofilm inhibitor.

Regarding selenium, certain selenium derivatives or selenium nanoparticles have shown antifungal
activity [28–30]. In this context, our group has reported in previous works the activity of selenoesters
and selenoanhydrides against cancer cells [31], cancer multi-drug resistance [32], and resistant bacteria
as Staphylococcus aureus and Chlamydia trachomatis [33], among other biological effects. The mechanisms
of action of the selenocompounds are very diverse [34]. In the case of the selenium derivatives
with anticancer properties, it has been reported, among other effects, that they can trigger apoptotic
events [35], and have the ability to modulate the redox thiolstat thanks to the unique redox properties
of this element [36]. Selenium can act, depending on the cellular environment, as an oxidant or a
pro-oxidant. In contrast, not all microorganisms have enzymes to metabolize the selenocompounds.
This lack of selenium metabolism enzymes can lead to the precipitation of nanoparticles of elemental
selenium, which exert a toxic effect against pathogenic bacteria or fungus [37]. The formation of
these nanoparticles is hindered in human cells because selenocompounds are metabolized within
the cells, leading to the formation of H2Se. This key metabolite, depending on the cell requirements,
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can evolve to HSePO3
2-, which is used to incorporate selenium in selenoproteins in the form of the

selenocysteine aminoacid [38]. Alternatively, if there is an excess of selenium, it can be methylated to
form dimethylselenide (excreted through lungs) or the cation trimethylselenonium, which is excreted
through the urine [38]. This differential metabolism of selenium in human cells and in fungal/bacterial
cells may enable the discovery of selective drugs towards these pathogenic microbial species.

The aim of this study was to describe novel fluoride and selenoesters drugs with antifungal
and antibiofim activity against Candida strains commonly present in dentures. Thus, three fluoride
derivatives and nine selenoester compounds were evaluated in vitro as inhibition/disruption biofilm
agents against Candida glabrata isolates from dental prostheses of an adult care home in Bolivia. These
selenoesters are structural derivatives of bioactive selenoesters reported in previous works.

2. Materials and Methods

2.1. Tested Compounds

The fluoride-containing compounds were supplied by Sigma-Aldrich España (Madrid,
Spain) F-1 (o-(trifluoromethyl) phenethylamine) F-2 (m-(trifluoromethyl)phenethylamine) and F-3
(p-(trifluoromethyl) phenethylamine). Selenoesters were synthesized by Domínguez-Álvarez et
al. [39]: Se-1 (Se,Se-bis(2-oxopropyl)benzene-1,4-bis(carboselenoate), Se-2 Se,Se-bis(methyloxycarbonyl
methyl)benzene-1,4-bis(carboselenoate), Se-3 Se,Se-dibenzylbenzene-1,4-bis(carbo selenoate), Se-4
(Se,Se-bis(methyloxy carbonylmethyl)benzene-1,3-bis(carboselenoate), Se-5 (Se,Se-bis(2-oxopropyl)
benzene-1,3-bis (carboselenoate), Se-6 (Se,Se-bis(cyanomethyl)benzene-1,4-bis(carboselenoate),
Se-7 (Se,Se,Se-tris(cyanomethyl)benzene-1,3,5-tris (carboselenoate), Se-8 (Se,Se,Se-tris(cyanomethyl)
benzene-1,3,5-tris(carboselenoate), and Se-9 (Se,Se-bis(cyanomethyl)benzene-1,3-bis(carboselenoate).

2.2. Growth Conditions

For the isolation of C. glabrata, Sabouraud Agar (DIFCO, NJ, USA) was used (glucose 40 g, agar
20 g, 0.05 g of chloramphenicol, and 1 L of H2O, at pH 6.5). CHROMID® Candida bioMerieux
microculture and API/ID32 Candida (bioMèrieux, France) and MALDI-TOF MS (bioMèrieux, France)
were used. Susceptibility testing by disc diffusion agar used Mueller-Hinton agar supplemented with
glucose 2% and methylene blue (5 µg/mL). Susceptibility of C. glabrata with the bioactive compounds
was determined by the microdilution method in (Roswell Park Memorial Institute) RPMI medium
-1640 (supplemented with MOPS, (3-(N-morpholino)propanesulfonic acid) at pH 7). FBS (fetal bovine
serum 50%, bovine IgG <1 mg/mL hemoglobin <20 mg/dl), PBS (phosphate-buffered saline 0.01 M
pH 7.4 Sigma-Aldrich, MO, USA), medium M 138 (peptone 2.5 g, glucose 5 g, yeast extract 2.5 g,
malt extract 1.5 g, and chloramphenicol 0.05 g, 500 mL, and pH 6.5, adjusted with 0.1 N NaOH and
0.1 N HCl), Violet Gentian Solution (Sigma Aldrich, MO, USA), bleaching solution (25% acetone/75%
propanol), and 24-well polystyrene plates (Biofilm, CA, USA) were used in the formation of biofilms.
The microplate reader used was SpectraMax Plus 384 Microplate Reader. The optical density (OD) of
the biofilms formed at 36 ◦C was measured after 24 h at OD 620 nm.

2.3. Isolation and Identification of Candida Strains

Three selected strains among the most pathogenic species of Candida genus were used as a control
from the American Type Culture Collection (ATCC): C. glabrata ATCC 2001, C. krusei ATCC 6258, and
C. parapsilosis ATCC 22019.

In total, Candida isolates from 81 adults from care homes (“Mercedes”, “Santa Rita” and “25 de
Mayo”) from Sucre, Bolivia, each patient with informed consent] were employed in this study. The
Candida strains were isolated by swabbing the surface of dentures of the upper or lower arch. [40 For the
isolation of C. glabrata, agar dextrose Sabouraud and in CROMagar was used, in which C. glabrata had
a mauve-pink color. The identification was carried out with API/ID32 Candida and MALDI-TOF MS.
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2.4. Antifungal Assay

The antifungal activity of the tested compounds was evaluated by the agar disc diffusion (CLSI)
and minimal inhibitory concentrations (MICs) methods [31]. The microorganisms kept at −80 ◦C
were seeded onto Petri dishes with Sabouraoud dextrose agar culture medium supplemented with
chloramphenicol (50 µg/L) and incubated at 37 ◦C for 48 h. The standardization of the inoculum for
the susceptibility tests was carried out in 0.5 of McFarland, from five colonies of each microorganism
(five reference strains of Candida species or the 37 isolated of dentures), which were streaked on
Muller-Hinton agar supplemented with glucose 2% and methylene blue (5 µg/mL). Then, filter
paper discs (6–10 mm), containing the tested compounds at appropriate concentrations (fluorinated
compounds: 50–500 µg/mL; selenium compounds: 1–4 µg/mL), were placed on the agar surface. The
inoculated plates were incubated for 24 h at 37 ◦C overnight for C. glabrata and C. krusei or 48 h for C.
parapsilosis. The tested antimicrobial agents diffused into the agar and their inhibitions of Candida spp.
growth were measured (Figure S1, Table 1). Sensidisks of voriconazole, caspofungin, and fluconazole
were used as a control. The standardization of the inoculum for the susceptibility tests was carried out
in 0.5 Mc Farland (0.5–2.5 × 106 UFC/mL).

Table 1. Diameter for select antifungal agents against Candida spp. after 24 h of incubation.
FLZ = Fluconazole (C. krusei 6 mm), C. parapsilosis (22–23 mm), VOR = Voriconazole (C. krusei
16–25 mm, C. parapsilosis 28–37 mm); CAS = Caspofungin (C. krusei 19–26 mm, C. parapsilipsis 14–23).

Species

Interpretive Categories and Zone Diameter (mm)

Antifungal Agents Fluoride Compounds Selenoesters

FLZ VOR CAS F-1 F-2 F-3 Se-5 Se-7 Se-8

(25 µg) (1 µg) (5 µg/mL) (500 µg) (2 µg)

C. glabrata
ATCC2001 20 21 21 21 24 21 20 22 26

C. krusei
ATCC6258 6 23 20 10 19 10 36 37 29

C. parapsilosis
ATCC22019 24 31 14 10 10 10 36 40 28

2.5. Minimal Inhibitory Concentrations (MICs)

The tested concentrations of selenoesters, voriconazole (VOR), fluconazole (FLZ), and caspofungin
(CAS) were prepared in RPMI-1640 (pH = 7). The inoculum was prepared by suspending five distinct
colonies (> 6–10 mm diameter) from 24-h cultures, in at least 3 mL of sterile distilled water. The
inoculum was then suspended by vigorous shaking on a vortex mixer for 15 s, the cell density was
adjusted to the density of a 0.5 McFarland standard, with the addition of sterile distilled water if
required, to render a yeast suspension of 1 to 5 × 106 colony forming units (CFUs)/mL. A working
suspension was prepared by the dilution of the standardized suspension in sterile distilled water to
yield 1 to 5 × 105 CFU/mL. The 24-wellplate was prepared with 200 µL of cell suspension and 20 µL of
selenoesters (1–100 µg/mL) or antifungal agents (0.2–10 µg/L for VOR, CAS, and FLZ) and incubated
at 37 ◦C during 24 to 48 h. MIC was determined as the lowest concentration of the drug that inhibits
the growth of the yeasts. The results were visualized by spectrometry at 530 nm.

2.6. Biofilm Inhibition Assay

The biofilm-forming ability of the Candida strains was measured using the crystal violet assay
(CV), which is based on the ability of this dye to color the polysaccharide matrix [40,41]. In order to
determine the ability of compounds to inhibit biofilms, the tested cultures were left growing in 24-well
polystyrene microtiter plates in the presence of the respective fluoride or selenoester compounds at
different concentrations. Briefly, each Candida spp. isolated from adult care homes (37 samples) and C.
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glabrata ATCC 2001, C. krusei ATCC 6258, and C. parapsilosis ATCC 22019 wild type were grown in
10 mL of rich M130 medium at 36 ◦C overnight in anorbital shakers at 150 rpm. Those cultures were
diluted with M130 medium in order to obtain a final density of 1.0 × 106 CFU/mL. Then, 0.2 mL of each
strain were grown in a 24-well microtiter plate and incubated for 2 h at 36 ◦C until OD 620 nm was equal
to 0.5 and added to the evaluated compounds (3 fluoride derivatives and 9 selenoester compounds) at
different concentrations and sealed and left overnight at 36 ◦C. Three assays were performed for each
strain in each plate. We included three controls: Negative control (vehicle, medium M138), without
growth and without biofilm formation; positive control (vehicle, medium M138; and biofilm-forming
strain); and positive control with antifungal drug (vehicle, medium M138; biofilm-forming strain and
caspofungin). After biofilm surface priming, the medium in each well was removed carefully with a
multichannel pipette, taking care to not disrupt the biofilm; each well was subsequently washed three
times with PBS. The formed biofilm at the bottom of plate was stained with 0.5% aqueous solution of
crystal violet for 3 min. After staining, plates were washed three times with sterile water and dried at
room temperature. The optical density (OD) of each well was measured at 620 nm with an automated
microplate reader SpectraMax Plus 384.

2.7. Biofilm Disruption Assay

In order to determine the ability of the fluoride or selenoester-containing compounds to disrupt
pre-formed biofilms at the bottom of plate, the test cultures were formed in microtiter plate wells for
24 h. The pre-formed biofilms were then treated with the compounds at different concentrations for 24 h
and the residual biofilm was estimated using the crystal violet assay. Microtiter plate wells containing
fungal cells without antimicrobial compounds were used as controls during the experimentation.
The data related to these experiments are depicted as the average values of the triplicate observations
and error bars indicate the standard deviation (Figures S2–S7). The average OD from the control wells
was subtracted from the OD of all test wells. The biofilm inhibition assay and biofilm disruption assay
were performed three times for all Candida isolate from the adult care home.

BBU (Biofilm Biomass Unit) = ODb 620 nm – ODc 620/ODb 620 nm
BBU (%) = Biofilm Biomass Unit by 100
ODb = Absorbance without tested compound
ODc = Absorbance with tested compound
BBU (t = 0) Biofilm Inhibition Units by 100
BBU (t = 24) Biofilm Disruption Unit by 100

2.8. Data Analysis

The normality test was performed using the Shapiro Wilk test with a p value >0.05 with a 95%
confidence level. Then, the results obtained were compared with the Tukey test using an ANOVA;
the variance analyses were contrasted with the treatments of the fluoride and selenoester compounds
according to the concentration and the time of formation of biofilms of the clinical strains of C. glabrata.
Statistical comparisons among the different strains were performed by using Sigma Stat statistical
software (SPSS, IBM, Armonk, NY, USA).

3. Results and Discussion

Among the 81 dental samples from the adult care home (>80 year (25%), 60–80 years (55%),
and textless59 years (20%)), the evaluated Candida species were found in 80% (Scheme 1).
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Scheme 1. Samples were isolated from an adult care home and analyzed in the laboratory of Universidad
Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca in Sucre (Bolivia) (UMRPSFXCH).

Of the samples with Candida, 37 samples (58%) were identified as Candida glabrata and 70% of
them had candidiasis (Scheme 1). In addition, among those 27 isolates with candidiasis by C. glabrata,
11 were able to form biofilm (Scheme 1, Table S1). According to our data, older adults presented a
4.4-fold higher risk of developing candidiasis if their dentures were colonized by these microorganisms
(prevalence 64,8%, IC 95% 1.727616–11.218251, and p = 0.0015) and more likely to cause candidiasis if
colonized by C. glabrata. We observed an interesting behavior in mixed biofilms of C. albicans and C.
glabrata, when compared to single biofilms. A 77% reduction of C. albicans was observed when this
fungus formed mixed biofilms with C. glabrata. This reveals that there are competitive interactions in
which C. glabrata predominates over C. albicans during the formation of biofilm. Those results verify
that Candida glabrata is an emergent pathogen in the oral cavity present in dental stomatitis [42] and
that it plays an important role in the formation of dental biofilms.

3.1. Antifungal Screening

Herein, we tested two types of compounds: (i) Fluorinated compounds and (ii) symmetrical
selenoesters (Scheme 2). On one hand, the fluorinated compounds are small molecules bearing aromatic
rings, trifluoromethyl, and amine groups. On the other hand, the symmetrical selenoesters contain a
phenyl core substituted by two or three identical aliphatic moieties, each containing a selenoester and
a functional group (methylketone, methyl oxygen ester, phenyl, or cyano) bound to selenium through
a methylene linker. The chemical structure of the halogenated and selenated compounds is shown
in Scheme 2. The fluoride compounds were available commercially, whereas the selenoesters were
synthesized according to known literature methods [39].
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Scheme 2. Chemical structures of selenoester and fluoride compounds used as antifungal and
anti-biofilm agents against Candida glabrata ATCC2001 and dental isolates.

The behavior of the fluoride compounds and the selenoesters against Candida spp. according to
the agar diffusion method is reported in Table 1 (Figure S1).

To evaluate their antifungal activity, these molecules were challenged against drug-sensitive yeast
C. glabrata and drug-resistant yeasts, such as C. krusei or C. parapsilosis. Results showed that fluorinated
compounds were active against C. glabrata while Se-5 (ketone selenodiester), Se-7 (ketone selenotriester),
and Se-8 (cyano selenotriester) had antifungal activity against all Candida species. Caspofungin (CAS),
fluconazole (FLZ), and voriconazole (VOR) were used as a control.

The antifungal efficacy is expressed as the minimum inhibitory concentration (MIC), that is,
the minimum concentration of the molecules required to inhibit the growth of the yeast (Table 2
and Table S2). MIC values of selenoesters were determined against five reference strains and 37
isolate dentures. The obtained MIC values were compared against antifungal agents (voriconazole,
caspofungin, micafungin, amphotericin B, and fluconazole) (Table 2 and Table S2). MIC values of 37
dental isolates with the selenoesters ranged from 1 to 64 µg/mL against Candida spp.

In general, all selenoester compounds showed a broad-spectrum activity against various
drug-resistant fungi (Table 2). The range of MIC values for the selenocompounds Se-5, Se-7, and Se-8
(-1,3-COSeCH2COCH3, -1,3,5-COSeCH2COCH3, or -1,3,5-COSeCH2CN) was 0.5 to 5 µg/mL against all
commercial Candida species. Besides, Se-1 (-1,4-COSeCH2COCH3) exerted antifungal activity against
the selected C. glabrata reference strain, with an MIC value of 8 µg/mL.

As mentioned before, 11 dental isolates were able to form biofilms. Table 3 shows the MIC values
of Se-5, Se-7, and Se-8 against those isolates and C. glabrata ATCC 2001. Standard antifungal agents,
voriconazole and caspofungin were used for comparison.

Selenocompounds Se-5 and Se-7 showed very good antifungal activity, with an MIC of 1 to
4 µg/mL or 1 to 16 µg/mL, respectively, for the 11 dental isolates whereas Se-8 showed a moderate
antifungal activity with an MIC value of 16 to 32 µg/mL (except with isolates 3 and 18, where MIC
values were 4 and 8 µg/mL, respectively).
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Table 2. Antifungal activity of selenoesters against C. glabrata ATCC2001, C. krusei ATCC6258,
C. parapsilosis ATCC22019, and 37 dental isolates.

Compounds
MIC (µg/mL)

C. glabrata
ATCC 2001

C. krusei
ATCC 6258

C. parapsilosis
ATCC 22019

C. glabrata
isolates (N = 37)

VOR <0.5 0.5 0.12 0.12–1
FLZ 32 16 2 0.1–64
CAS 0.12 0.19 1 0.12–8
Se-1 8 32 32 32–64
Se-2 64 64 64 32–64
Se-3 64 64 64 32–64
Se-4 64 64 64 64–128
Se-5 4 2 1 0.5–4
Se-6 64 64 64 64–128
Se-7 2 1 2 0.5–4
Se-8 5 1 0.5 10–32
Se-9 64 64 64 16–64

Voriconazole (VOR) presents an antifungal spectrum broader than fluconazole against Candida species although
both are azole compounds [43] Fluconazole (FLZ), Caspofungin (CAS).

Table 3. MIC values of Se-5, Se-7, and Se-8 against Candida glabrata dental isolates.

MICs (µg/mL), C. glabrata Dental Isolates (n = 11)

Strain Number

Compounds 1 2 3 5 10 15 16 18 22 47 49

VRZ 0.25 0.25 0.25 O.5 0.25 0.25 0.25 ≤0.12 ≤0.12 0.25 ≤0.12
CAS 0.25 0.25 0.25 >8 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Se-5 1 4 2 4 2 2 1 1 2 2 4
Se-7 1 2 6 2 2 1 2 16 2 1 >2
Se-8 16 16 4 32 16 16 20 8 32 16 16

The above results suggest that an optimum substitution in the aromatic ring of di- or tri-esters
is required for maximum activity. Thus, the symmetrical selenodiesters or selenotriesters could
be good candidates as antifungal agents against Candida present in dentures. Among them,
methylketone-containing selenoesters showed the most promising activities.

3.2. Inhibition of Biofilm Growth and Disruption of Preformed Biofilm

Candida species present the ability to form biofilms, which protects them from the action of
antifungal drugs. As is well known, cells in biofilms on an abiotic surface are 1000-fold more resistant
to conventional antibiotics than in planktonic cultures [44]. The general protocol used for the inhibition
or disruption of the biofilm by fluoride derivatives or selenoester compounds against C. glabrata is
represented in Figure 2. Here, IC50 or IC90 are defined as the concentration of the compound that
inhibits the biofilm development by 50% or 90% (BBU = 0.5 or 0.9) while EC50 is defined as the
concentration of compound that disperses 50% of a preformed biofilm (Table S3).
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Figure 2. General (A) inhibition or (B) dispersion of preformed biofilm exerted by fluoride or selenoester
compounds against C. glabrata.

All fluoride compounds (F-1, F-2, and F-3) presented a similar behavior against the biofilm
formation generated by C. glabrata ATCC 2001 or dental isolates (Figure 2). The IC50 values [45,46] of
F-1, F-2, and F-3 against C. glabrata reference strains and dental isolate biofilm formation were found
to be 50, 100, and 150 µg/mL (t = 0), respectively (Figures 2 and 3, the mean values of BBU for C.
glabrata ATCC2001 with those compounds are shown in Figures S2–S4 in the Supplementary Material).
The IC50 value of caspofungin against C. glabrata dental isolates was found to be 1 µg/mL (red line,
Figure 2). In the presence of fluoride compounds, the biofilm formation by C. glabrata decreased by
83% (p < 0.05), with most of the dental isolates at a concentration of 160 µg/mL (t = 0). This is consistent
with the value described in the literature for fluconazole at the same concentration [47]. The IC90 value
of caspofungin (t = 0) was 2 µg/mL and F-1, F-2, and F-3 were found to be 150, 300, and 320 µg/mL,
respectively (Figures 2 and 3). IC90 values at t = 24 h for all fluoride compounds were >320 µg/mL.

The discovery of novel antifungal agents with the ability to not only inhibit biofilm formation
but also to disperse established biofilms would be a significant advance to tackle infections caused by
Candida spp [48]. In order to evaluate the efficiency of fluoride compounds to eradicate preformed
biofilms, F-1, F-2 and F-3 were used against C. glabrata ATCC2001 and against 11 dental isolates biofilms.
Pre-formed biofilms of C. glabrata ATCC2001 were treated with six different concentrations of fluoride
compounds, 50 to 320 µg/mL (Figures 3 and 4; range 50–320 µg/mL). The EC50 values for F-1, F-2, F-3,
and caspofungin (red line) were 50, 150, >320, and 2 µg/mL, respectively.
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Figure 3. Effect of fluoride compounds F-1 and F-2 against C. glabrata dental isolates and C. glabrata
ATCC 2001 in the biofilm formation (t = 0) and disruption biofilm at different concentrations. Red line
value obtained with caspofungin at 2 µg/mL. The BBU (biofilm biomass units) units were monitored at
24 h. BBU = 1 inhibition or disruption 100% of biofilm, BBU = 0 no inhibition or disruption the biofilm
by the fungal agents.
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Figure 4. Effect of F-3 compound against C. glabrata dental isolates and C. glabrata ATCC2001 in the
biofilm formation (t = 0) and disruption (t = 24 h) at different concentrations. Red line value obtained
with caspofungin at 2 µg/mL. The BBU units were monitored at 24 or 48 h. BBU = 1 biofilm inhibition
or disruption 100%, BBU = 0 no inhibition or killing the biofilm by the agents.

The same study of biofilm inhibition or disruption was carried out with the active Se-5, Se-7, and
Se-8 selenoester compounds (Figures 5–7). Se-5 was found to be an effective inhibitor of C. glabrata
biofilm formation as shown in Figure 5.
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Figure 6. Effect of Se-5 or Se-7 against C. glabrata dental isolates (11) and C. glabrata ATCC 2001 in
biofilm formation (t = 0) at different concentrations (1–4 µg/mL). Caspofungin was used as a control
(2 µg/mL, red line). The BBU units were monitored at 24 h. BBU = 1 corresponds with a 100% biofilm
inhibition, whereas BBU = 0 indicates lack of inhibition of the biofilm by the agents.Microorganisms 2019, 7, x FOR PEER REVIEW 12 of 16 
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Figure 7. Effect of Se-5 or Se-7 against C. glabrata dental isolates and C. glabrata ATCC2001 at t = 24 h
(destroy effect) at different concentrations (1–4 µg/mL). Red line value obtained with caspofungin
(2 µg/mL). The BBU units were monitored at 24 or 48 h. BBU = 1 means biofilm inhibition or dispersion
100%, and BBU = 0 means lack of inhibition or dispersion the biofilm by the agents.
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The IC50 and IC90 values at t = 0 of Se-5 and Se-7 against C. glabrata ATCC2001 and the dental
isolates biofilm formation were found to be similar at 3 µg/mL (Figure 6, Table S3). The IC50 and IC90

values at t = 24 h of Se-5 and Se-7 against C. glabrata ATCC2001 and dental isolate biofilm formation
were found to be 1 to 4 and >4 µg/mL respectively. Mean values of BBU for C. glabrata with those
compounds are shown in Figures S5 and S6 in the Supplementary Material.

The selenoester Se-5 presents better biofilm inhibition or disruption than caspofungin or the other
selenoesters (Figure 6, Figure 7). Se-5, in many cases, dispersed up to 85% of the biofilm at 2 µg/mL,
when caspofungin and Se-7 dispersed 58% or 30%, respectively (Figure 7). The above results indicate
thus the ability of symmetrical selenoesters to disperse biofilms. The effect of Se-5 on the formation
of C. glabrata biofilms at t = 0 h and 4 µg/mL was reduced by 33.33% (0.59 ± 0.12–0.97 ± 0.02 BBU)
biofilm formation compared to caspofungin at 2 ug/mL (0.93 BBU ± 0.03) (positive control), being
statistically significant (p < 0.0001) in the two biofilms. After 24 h, Se-5 at 4 ug/mL reduced the biofilm
formation (0.16 ± 0.25–0.96 ± 0.05BBU) by 66.66%, with a greater effect compared to the positive control
of caspofungin (0.56 ± 0.17 BBU), with a p < 0.0001 in eight biofilms and p > 0.05 in four biofilms
(Figure S6).

On the other hand, Se-7 (t = 0, at 2 µg/mL) reduced biofilm formation on C. glabrata with a greater
effect in 91.66% (0.80 ± 0.12–1.10 ± 0.01 BBU) in comparison to caspofungin at 2 µg/mL (0.93 BBU
± 0.03) (positive control), being statistically significant (p < 0.0001). After 24 h at 4 ug/mL, the Se-7
compound did not reduce the formation of biofilms (0.05 ± 0.01–0.36 ± 0.02 BBU) in 100% of the
biofilms compared to caspofungin (0.56 ± 0.17 BBU), with a p-value < 0.0001. The IC50 value of Se-8
against C. glabrata ATCC2001 and dental isolate biofilm formation was 10 µg/mL. The mean value of
BBU for C. glabrata with Se-8 is shown in Figure S7 in the Supplementary Material. The IC90 value
of Se-8 against C. glabrata dental isolates was 20 µg/mL. Se-8 presented poorer biofilm inhibition or
disruption when compared to the other selenoesters evaluated in antibiofilm assay or to caspofungin
(red line, Figure 8).Microorganisms 2019, 7, x FOR PEER REVIEW 13 of 16 
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Figure 8. Effect of Se-8 compound against C. glabrata dental isolates and C. glabrata ATCC2001 in biofilm
formation (t = 0) and dispersion (t = 24 h) at different concentrations (1–4 µg/mL). Red line value
obtained with caspofungin (2 µg/mL). The BBU units were monitored at 24 or 48 h. BBU = 1 means
100% biofilm inhibition or dispersion, BBU = 0 means lack of inhibition or dispersion of the biofilm.

The effect of Se-8 on the formation of biofilms generated by C. glabrata dental isolates at t = 0 or 24 h
and 4 µg/mL was very weak (0.15 ± 0.03–0.80 ± 0.08 BBU, and 0.07 ± 0.03–0.51 ± 0.14 BBU, respectively),
compared to caspofungin (0.93 BBU ± 0.03, 0.56 ± 0.17 BBU, respectively), being statistically significant,
p < 0.0001. Selenocompound had the lowest biofilm-reducing effect at 0 and 24 h among the four
selenocompounds evaluated in this anti-biofilm assay.

If we compare caspofungin and selenoesters at the same concentration of 2 µg/mL, Se-5 and Se-7
present a similar biofilm inhibition but Se-5 presets better biofilm disruption against the tested C.
glabrata dental isolates. At this stage, the underlying mechanism of action of these novel selenoesters
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against C. glabrata is unknown and more experiments are needed to determine the ultimate mechanism
behind the antifungal activity described herein. Selenocompounds and among them, selenoesters,
as briefly mentioned in the introduction [31–39], have been proven in previous works to be able to
exert a wide range of interesting biological activities, both in the anticancer and antimicrobial fields;
for example, the modulation of the redox cellular state, scavenging of free radicals, increase of the
oxidative stress, induction of apoptosis, and inhibition of efflux pumps, among others [31–39]. With
the caveat that future works would need to prove it, we could hypothesize that one of several of
these mechanisms could explain the observed activities for the symmetrical selenoesters presented in
this work.

The abovementioned biofilm inhibition exerted by the Se-5 compound makes it a promising
antibiofilm agent. Thus, it could be a good starting point in the design of new antibiofilm agents against
Candida spp. present in dental prosthesis. Besides, it will be necessary to carry out additional studies
to elucidate the mechanism through which the active selenoester Se-5 exerts its promising antifungal
and biofilm inhibition activity. The inhibition and disruption of the biofilm with all test cultures was
statistically significant, with p < 0.05 in the case of the treated cells compared to the untreated controls.

4. Conclusions

In summary, our findings support that Candida glabrata isolated in dental isolates is one of the
most prevalent pathogenic yeast species of the Candida spp. Novel inhibitor and disruptor biofilm
compounds against C. glabrata based upon the symmetrical selenoesters scaffold were evaluated herein.
Among them, Se-5 and Se-7 showed good antifungal activity against all species studied as well as
against all dental isolates. Fluoride-containing compounds presented IC50 values of 50 to 150 µg/mL
and EC50 > 320 µg/mL. The most active compound, Se-5, presented an IC50 value of 2 µg/mL and an
EC50 value of 2 to 4 µg/mL. These active compounds not only inhibited the formation of biofilm but
also were able to disperse the established biofilms. Consequently, symmetrical selenoester compounds
could be a novel promising target of research in terms of the development of novel anti-biofilms drugs.
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