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Abstract: Multifunctionalities linked with the microbial communities associated with the millet
crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities
inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant
growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed
taxonomic communities with functional capabilities linked to support growth and development of
the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically
diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the
Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional
rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus,
sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and
virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound
metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies
growth, development, and survival of the plants under nutrient deprived dry environment conditions.
The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo
rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study
opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between
taxonomic abundance and targeted functions that help plant growth and development in stressed
and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere
microbiome in adaptation and survival of plants in harsh abiotic conditions.
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1. Introduction

Crop plant rhizosphere harbors a huge collection of mutualistic microbial population which
encodes metabolic activities supporting the growth and development of the host and associative
organisms [1]. Soil bacteria in close propinquity to the plant roots, i.e., the rhizosphere exhibit deep
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impact on nutrient management and plant defense against biotic and abiotic stresses [2]. Rhizosphere
associated microbial communities play a key role in different biogeochemical cycles [3]. A vast
microbial majority with interactive functions in the natural habitats still remains uncharacterized
due to the limitations of culturability on media conditions [4,5]. This is specifically true in the
dynamic biological systems like rhizosphere, which harbors complex microbial diversity and
metabolic functions [6,7]. Therefore, for characterizing complex rhizosphere communities and
linking functionalities, metagenomics has provided access to the rich pool of genomes in a particular
microenvironment [8]. Understanding how different microbial communities in the rhizosphere
influence plant performance and productivity using metagenomics can open new avenues for devising
eco-friendly ways to cater benefits from microbe-mediated agricultural technologies [9].

Paspalum scrobiculatum (kodo or Indian crown grass) is among the ancient grain millets grown in
many parts of India, Philippines, Indonesia, Thailand, and West Africa [10], where it is consumed as
nourishing healthy and vitality foods in rural areas [11]. As a drought-tolerant and hardy monocot
crop especially confined to semi-arid regions, kodo is grown on about 907,800 ha of land annually with
the approximate annual production of 310,710 tons [12]. The crop grains possess high-value proteins
(11%), carbohydrates (66.6 g per 100 g of grains equivalent to 353 kcal), low fat (3.6 g per 100 g) with
iron (25.86 to 39.6 ppm), calcium (27/100 mg) and antioxidant free-radical scavengers [13]. Kodo plants
exhibit medicinal attributes like antidiabetic and antirheumatic activities, cures wounds and possesses
a tranquilizing effect [12,13]. As against rice and wheat, which contain 0.2% and 1.2% fiber content,
kodo is fiber rich (9%) and thus, a beneficial food source for subsistence farming communities in many
regions in India and Africa.

Having said that the plant rhizosphere is dynamic and live ecosystem inhabited by diverse
microbial communities with apparent multifunctions [14], focused attention is required to decipher
inhabitants of the millet rhizosphere and link communities with the multifunctionalities that favor
plant and soil health in such difficult ecological conditions. We analyzed microbial communities and
functions in the kodo millet rhizosphere metagenome and identified overall taxonomic abundance of
communities, their functional pathways and metabolism in this rhizosphere and establish their role
in stress responses, adaptation to abiotic stresses, nutrient recycle, xenobiotic degradation, carbon
fixation, plant growth promotion, and disease resistance. The study indicated multi-functions of the
microbial communities that help plant growth and development under water deficit drought stress
in the rhizosphere. It further extends our understanding on the role of rhizosphere microbiome in
adaptation and survival of plants growing under nutrient deprived conditions.

2. Materials and Methods

2.1. Soil Sampling and Analysis

P. scrobiculatum L. (kodo variety IK 1) was grown as a trial crop for the Rabi season at S.G.
College of Agriculture and Research, Jagdalpur, Chhattisgarh, India (19.07N;81.96E). The crop was
sown in the last week of February, 2017 in the Experimental Research Farm and was maintained as
per the standard agronomic practices [15]. The rhizosphere of two months old plants (6 plants per
location; total 5 locations in 4500 sq ft plot; 6-10 cm depth from the top soil) was collected along
with the adhering soils, pooled together, refined, and made free from root hairs before processing for
metagenomic DNA extraction. Since the ear heads of the crop gains physiological maturity in 100 days
(https://www.agrifarming.in/kodo-millet-farming-cultivation-practices; website visited on 17.9.2019),
the sampling of the rhizosphere soil was performed prior to the onset of blooming stage in order to
analyze the microbial community structure and function before the most critical stage of the crop cycle.
The sample was stored in —80 °C until the metagenomic DNA extraction was performed. Analysis
of the rhizosphere soil was performed at Center for Analytical Research and Studies, Maharashtra
Institute of Technology, India.
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2.2. Metagenomic DNA Extraction and Sequencing

Isolation of the metagenomic DNA was performed from 2 g of the rhizosphere soil sample using
FastDNA™ SPIN Kit (MPBio, USA) following manufacturer’s instructions. The content, purity, and
quality of the extracted DNA was determined using NanoDrop 1000 spectrophotometer (NanoDrop
Technologies Inc., USA). Extracted metagenomic DNA was checked on agarose-gel electrophoresis.
Isolated metagenomic DNA was used for the high-throughput sequencing through Illumina HiSeq
Sequencing system. Metagenomic library was constructed and sequence analysis was performed with
approximately 2.6 gigabases (Gb) of metagenomic data using bioinformatics tools.

2.3. Annotation of Metagenomic Dataset

The paired end fastQ read files of the metagenomic sample was uploaded to the Metagenome
Rapid Annotation using Subsystem Technology (MG-RAST) server (http://metagenomics.anl.gov/) [16]
and processed through the standard pipeline with default parameters. Sequence similarity searches
were done for identification of proteins and other annotations by alignment against different databases,
i.e., protein databases M5NR [17], Genbank [18,19], SEED [20] and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [21]. All the analysis was performed using 96-node high performance
supercomputing system (HP) cluster available at ICAR-National Bureau of Agriculturally Important
Microorganisms, Mau, India.

2.4. Taxonomic and Functional Annotation

For the taxonomic assignments, sequence alignment was done through the MG-RAST pipeline
against the RefSeq protein database which allows accessibility to different sequence databases as a
single, searchable database [16]. Parameters applied were maximum E-value of 1 X 107, a minimum
percentage identity of 60%, and a minimum alignment length of 15. For functional analysis comparisons,
subsystems were implied to assign functional roles to genes [22,23].

2.5. Metabolic Potential Analysis

For functional annotation of different metabolic pathways, Kyoto Encyclopedia of Genes and
Genomes (KEGG) was used from the MG-RAST pipeline (parameters: minimum alignment length of
15 and E-value cutoffs of 1e-5). Metabolic genes for different biological processes were identified in the
dataset and the abundances of those gene sequences were calculated.

2.6. Availability of Data and Associated Information

The metagenome dataset with information about taxonomic and functional assignments with
other details is publicly available from the MG-RAST with ID mgm4776125.3.

3. Results and Discussion

Millet crops have gained worldwide attention due to their intrinsic resistance against diseases,
nutritional value to feed subsistence rural population, ability to grow under dry and harsh conditions,
and environmental robustness. Physicochemical analysis of kodo rhizosphere suggested that the soil
was low in carbon (0.49%), nitrogen (available N 195.7 kg/ha),and phosphorus (available P 9.46 kg/ha)
content. The soil was almost normal with pH 7.15 and moderate in potassium (available K 167.2 kg/ha)
content. The soil analysis revealed that the kodo millet plants were growing well in low carbon and
nutrient deficient soils in the water deficient conditions.

3.1. Sequencing and Annotation of Proteins

A total of 2.6 GB data was obtained for kodo rhizosphere metagenome with 10,669,925 sequences.
Out of the total sequences, 590,010 (5.53%) failed to pass the QC pipeline. Furthermore, 516,927
sequences were identified as artificial duplicate reads. Of the sequences that passed quality control,
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certain sequences (11,748) were predicted as ribosomal RNA genes (0.13%) while 33.13% (3,086,627)
were identified as predicted proteins with known functions and 66.75% (6,218,676) as predicted proteins
with unknown functions.

3.2. Taxonomic Microbial Diversity in the Kodo Rhizosphere

The taxonomic classification of genes was carried out through Best Hit Classification algorithm of
MG-RAST against the M5NR database [16]. A total of 9,317,051 sequences were assigned to various
taxonomies. There were also a number of sequences that could not be assigned to the highest taxonomy
levels with an average of 15.5% of the reads and they were tagged as either unassigned, unclassified,
or ‘others’. Over all, bacteria dominantly accounted for 98.12% of the total assigned reads followed by
Eukaryota (1.21%) and Archaea (0.58%), while “unclassified sequences’ and ‘other sequences’ accounted
only for 0.06 and 0.01% respectively. Viral sequences were least abundant in the rhizosphere sample
with only 0.01% fraction. The alpha diversity for the kodo rhizobiome was calculated to be 381 reflecting
the presence of significant number of species. The rarefaction curve predicted the taxonomic diversity
and reflected significantly high level of community variability in the kodo rhizosphere (Figure 1).
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Figure 1. Rarefaction curve of species richness for kodo rhizosphere microbiome.

3.3. Community Composition and Abundance

A total of 65 different phyla were identified for the reads along with those characterized
as ‘unclassified sequences’ (derived from Archaea, Bacteria, Eukaryota, Fungi, other sequences,
unclassified sequences or viruses). Among all the phyla, Actinobacteria (42.22%) and Proteobacteria
(23.72%) were the most dominating communities with almost 66% of total reads. Other dominant
bacterial phyla included Chloroflexi (7%), Firmicutes (5.08%), Acidobacteria (4.65%), Bacteroidetes
(4%), Verrucomicrobia (3.7%), Planctomycetes (2.32%), and Cyanobacteria (1.95%). Rest of the phyla
possess less than 1% of total reads (Figure 2).
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Figure 2. The dominance of different microbial communities in the kodo rhizobiome at different

taxonomic units. Groups with less than 1% reads were clubbed together and designated as ‘others’.

At class level, 205 different classes were identified. Actinobacteria was the most dominant
class occupying 42.22% of the total assigned reads followed by Alphaproteobacteria (12.57%),
Betaproteobacteria (4.45%), Ktedonobacteria (4.42%), Acidobacteria (3.61%), Gammaproteobacteria
(3.48%), Deltaproteobacteria (3.05%), Clostridia (2.33%), Planctomycetacia (2.32%), Bacilli (2.29%),
unclassified (derived from Cyanobacteria) (1.92%), Spartobacteria (1.90%), Sphingobacteria (1.6%),
Thermomicrobia (1.23%), Chloroflexi (1.18%), Verrucomicrobiae (1.12%), and Cytophagia (1.02%).
Less than 1% of the entire reads was individually assigned to rest of the classes which cumulatively
accounts for 9% only (Figure 2).

At the order level, hits were obtained for 554 different taxa with maximum hits for Actinomycetales
(36.87%). Only 16 orders occupied more than 1% of the reads though rest of the orders cumulatively
accounted for 22.54% of the total distribution (Figure 2). Family-level taxonomy indicated 1073
identified families. However, only 23 families were with more than 1% of the total read distribution.
Most of the dominantly present families were observed for the order Actinomycetales (26.03%)
including Streptomycetaceae (9.45%) and 10others (Frankiaceae: 3.80%, Pseudonocardiaceae: 2.91%,
Mycobacteriaceae: 2.70%, Nocardiaceae: 2.33%, Micromonosporaceae: 1.96%, Streptosporangiaceae:
1.43%, Catenulisporaceae: 1.37%, Nakamurellaceae: 1.24%, Nocardioidaceae: 1.2%, and
Actinosynnemataceae: 1.05%). We noticed that 42.78% of the total reads were assigned to rest
of 1050 families with less than 1% of reads.

Similarly, at genus level reads were assigned to 2115 different genera with only 17 genera having
more than 1% reads. Rest of the genera cumulatively accounted for 55.75% distribution (Figure 2).
In these 17 genera, Streptomyces (9.37%) was the most dominant community while nine other genera
also belonged to the order Actinomycetales (Frankia, Mycobacterium, Rhodococcus, Micromonospora,
Streptosporangium, Catenulispora, Amycolatopsis, Nakamurella, and Actinosynnema).
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Actinomycetales is the taxonomic order of Actinobacteria with largest taxonomic units amongst
18 identified lineages within the bacteria [24,25]. The members are referred to Actinomycetes, the
species of which are known for producing prominent antimicrobial compounds—such as streptomycin,
actinomyecin, and streptothricin of immense agricultural importance [26,27]. The order Streptomycetales,
especially the genus Streptomyces synthesizes almost 80% of the total metabolites known today as
compared to other unicellular bacteria except Bacillus and Pseudomonas species (16%), cyanobacteria
(3.7%), and myxobacteria (1.8%) [28]. These communities serve as valuable sources of novel secondary
metabolites with multiple biological functions such as antagonism, anti-infection, anticancer, and
antibiotics [29-32]. The dominance of Actinobacteria in the kodo rhizosphere reflects significant
attributions with respect to the crop robustness against diseases, and that too under stressed
environment. These communities have a proven role to protect plants under oxidative stress
conditions [32,33], their dominance indicates their supportive functions for the kodo crop being
grown in dry environment. Apart from this, the revelations on the dominance of Streptomycetales
community in the kodo rhizosphere may invite attention for the isolation and identification of
antibiotic-producing cultivable actinobacteria using culturable strategies.

The second most dominating family and genus of Actinomycetales was Frankia, a N-fixing
actinomycete forming root nodules [34]. These communities fix nitrogen under free-living and
symbiotic conditions [25,35,36]. Since kodo is grown in fertility-deprived soil and the crop requirement
for N as external input is low (40 kg N per ha) (http://vikaspedia.in/agriculture/crop-production/
package-of-practices/cereals-and-millets/finger-millet-and-kodo-millet; website visited on 17.9.2019),
the dominance of N-fixer Frankia species in the rhizosphere reflects prominent role of these communities
in supporting N-demand of the plants under low nitrogen conditions.

3.4. Metabolic Multifunctionalities in the Kodo Rhizosphere

Microbial communities inhabiting rhizosphere soil play crucial biogeochemical role in the root
microenvironment [37]. Functional characterization of the rhizobiome thus becomes crucial for the
understanding of microbial support to the plants in nutrient-poor, abiotic stressed and disease prone
conditions [38,39]. Protein function in the dataset was identified through evidence-based annotations
(COG, KEGG, SEED SubSystem) classified into diverse hierarchies i.e. particular genes, protein
families and cellular processes. Identified proteins revealed community-linked metabolic potentials
and functional activities of the kodo rhizosphere. COGs classification reflected that ‘Metabolism’
(48.33%) was the most abundant functional category followed by ‘Information Storage and Processing’
(20.45%) and ‘Cellular Processes and Signaling’ (16.65%) (Figure 3). ‘Poorly characterized’ (14.57%)
category was also noticed. KEGG also showed ‘Metabolism’ (61.37%) as the most abundant category
followed by ‘Genetic Information Processing’ (20%), ‘Environmental Information Processing’ (13%),
‘Cellular Processes’ (3.74%), ‘Human Diseases’ (1.5%), and ‘Organismal Systems’ (0.43%) (Figure 3).
Hierarchical analysis of Level 1 of SEED Subsystems again reflected different prominent functions of
microbial communities in the rhizopshere. Sequences associated with carbohydrate metabolism, amino
acids and derivatives, protein metabolism, cofactors, vitamins, prosthetic groups, pigments and RNA
and DNA metabolism were abundant (Figure 3). Metaproteomics [40,41] and metatranscriptomics
studies [42—45] have already been reported for the presence of such functional categories in different soil,
sediment and water ecosystems. These functions were shown to be linked with the maintenance and
regulation of basic cellular processes that support growth and metabolism of microbial communities
under various environments [46,47]. We speculate that with the abundance of these functions,
the communities harboring kodo rhizosphere maintain and regulate their own cellular functions
and metabolism.
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Figure 3. Distribution of reads to different functional categories using COG, KEGG, NOG, and
Subsystems databases. Abbreviations used are, COG (A: Information Storage And Processing, B:
Metabolism, C: Poorly Characterized, D: Cellular Processes And Signaling); KEGG (A: Metabolism, B:
Genetic Information Processing, C: Environmental Information Processing, D: Cellular Processes, E:
Human Diseases, F: Organismal Systems), NOG (A: Information Storage and Processing, B: Cellular
Processes and Signaling, C: Poorly Characterized, D: Metabolism); Subsystems (A: Carbohydrates, B:
Clustering-based subsystems, C: Amino Acids and Derivatives, D: Protein Metabolism, E: Miscellaneous,
F: Cofactors, Vitamins, Prosthetic Groups, Pigments, G: RNA Metabolism, H: DNA Metabolism, I: Fatty
Acids, Lipids, and Isoprenoids, J: Cell Wall and Capsule, K: Respiration, L: Nucleosides and Nucleotides,
M: Virulence, Disease and Defense, N: Stress Response, O: Membrane Transport, P: Metabolism of
Aromatic Compounds, Q: Phages, Prophages, Transposable elements, Plasmids, R: Cell Division and
Cell Cycle, S: Regulation and Cell signaling, T: Phosphorus Metabolism, U: Nitrogen Metabolism, V:
Sulfur Metabolism, W: Motility and Chemotaxis, X: Secondary Metabolism, Y: Iron acquisition and
metabolism, Z: Potassium metabolism, AA: Dormancy and Sporulation, AB: Photosynthesis).

3.5. Carbon Fixation

The analysis indicated that the genes related to the pathways involved in the central carbohydrate
metabolism and energy generation (Entner-Doudoroff pathway, glycolysis and gluconeogenesis, and
pentose phosphate pathway) were significantly present in the dataset. Abundant hits were observed
for carbon dioxide fixation along with the pathways of Calvin—-Benson cycle, carboxysome, CO, uptake,
and photorespiration (oxidative C2 cycle). Different level 2 stages, their associated pathways and
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enzymes related to carbohydrate metabolism including amino sugars (GlcNAc) 2 catabolic operon,
chitin and N-acetylglucosamine utilization, N-acetyl-galactosamine and galactosamine utilization,
neotrehalosadiamine ((NTD) Biosynthesis Operon); central carbohydrate metabolism (including
glycolysis, gluconeogenesis) were identified. In the kodo rhizosphere, the communities that utilize
amino sugars, polysaccharides, organic acids, one-carbon compounds, and sugar alcohols as sole source
of carbon and energy were observed. The communities that participate in the central carbohydrate
metabolism, fermentation, and hydrolysis were also identified for their food and energy related needs.
This is eventually helpful for survival of kodo plant as biochemical analysis reflects low organic content
of soil. It reflects that rhizosphere microbial communities are helping the plant to meet their demand
for carbon through different metabolic pathways as soil exhibits low carbon content.

3.6. Mineral Metabolism

The dataset was analyzed for different hierarchies (level 2, level 3, and functions) with the SEED
subsystems to explore genes linked with the major functions in nitrogen, phosphorus, sulfur, and
iron metabolism

3.6.1. Nitrogen Metabolism

Reads related to ammonia assimilation (58%) occupied a maximum of the total sequences of
N metabolism followed by ammonification (28%) and denitrification (5%). The proportion of the
reads linked with N fixation was low (1% only) (Figure 4). A minor fraction of the reads matched
with the processes like allantoin utilization and cyanate hydrolysis. The abundance of reads linked
with ammonia assimilation in the plant rhizosphere followed by those associated with nitrate and
nitrite ammonification is indicative of such processes that enhance nitrogen use efficiency (NUE) in the
plants [48] that grow under low N availability [49]. Since ammonia can be directly assimilated in to
amino acids, few pathways like glutamate, alanine, or aspartate and other cellular components are
known for its assimilation. Enzymes like glutamate dehydrogenase (GDH), glutamine synthetase (GS),
and glutamate synthase are the major catalyzing agents for these reactions. Reads associated with the
enzymes glutamate synthase (EC 1.4.1.13), glutamate-ammonia-ligase adenylyltransferase (EC 2.7.7.42),
nitrogen regulation protein (NR(I) and NR(II)), nitrogen regulatory protein (P-1I), and ammonium
transporter indicate prominent assimilation of ammonia in the rhizosphere inhabiting microbial
communities. Certain bacteria possess the ability to reduce nitrate and/or nitrite to ammonium (NH4 ")
without nitrous oxide as an intermediate. The process, known as nitrate/nitrite ammonification
improves NUE because the end product, i.e., ammonia is retained in the soils for utilization by the
plants. The reads related to the nitrate/nitrite ammonification (28%) were dominant in the kodo
rhizosphere. The enzymes such as nitrate ABC transporter, nitrate/nitrite transporter, nitrite reductase
(EC 1.7.1.4), Respiratory nitrate reductase (EC 1.7.99.4), nrfE, NrfC protein, response regulator NasT
responsible for these processes were identified in the rhizosphere metagenome. Functionally, the
dominance of these processes due to dominant microbial communities with such functionalities may
enrich soil N content.

We further explored the reads for different enzymes that help incorporation of nitrogen in the
plants [50]. Prominent enzymes allantoate amidohydrolase (EC 3.5.3.9), allantoicase (EC 3.5.3.4),
allantoinase (EC 3.5.2.5), ureidoglycolate dehydrogenase (EC 1.1.1.154), and ureidoglycolate hydrolase
(EC 3.5.3.19) related to allantoin utilization were identified in the dataset. Sequences linked with the
methylobacterium, which is known for allantoin utilization [51] are present significantly (Figure 4).
Presence of such communities and their processes are therefore, indicative of improving N economy
in rhizosphere through enhanced NUE under nitrogen limitations. Rhizosphere soil analysis has
indicated deficiency of N, which seems to be compensated by the presence of N fixing and assimilating
microbial communities. Thus, the microbial communities are helping the plants to cope up with less N
content through making environmental nitrogen available.
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P9

Figure 4. Assignment of reads in different pathways of the different biological process. Percentage

distribution of different pathways in a particular biological process is shown. Abbreviations used
are, Nitrogen Metabolism (A: Ammonia assimilation, B: Nitrate and nitrite ammonification, C:
Denitrification, D: Nitric oxide synthase, E: Allantoin Utilization, F: Nitrogen fixation, G: Amidase,
H: Cyanate hydrolysis, I: Nitrosative stress, J: Nitrilase, K: Dissimilatory nitrite reductase), Sulfur
Metabolism (A: Inorganic Sulfur Assimilation, B: Sulfur oxidation, C: Alkanesulfonate assimilation,
D: Utilization of glutathione as a sulphur source, E: Thioredoxin-disulfide reductase, F: L-Cystine
Uptake and Metabolism, G: Alkanesulfonates Utilization, H: Taurine Utilization, I: Galactosylceramide
and Sulfatide metabolism, J: DMSP breakdown, K: Release of Dimethyl Sulfide (DMS) from
Dimethylsulfoniopropionate (DMSP), L: Sulfate reduction-associated complexes), Iron acquisition
and metabolism (A: Campylobacter Iron Metabolism, B: Siderophore Pyoverdine, C: Transport of Iron,
D: Iron acquisition in Vibrio, E: Ferrous iron transporter EfeUOB, low-pH-induced, F: Bacillibactin
Siderophore, G: Siderophore assembly kit, H: Encapsulating protein for DyP-type peroxidase and
ferritin-like protein oligomers, I: Heme, hemin uptake and utilization systems in GramPositives, ]: Heme,
hemin uptake and utilization systems in GramNegatives, K: Siderophore Yersiniabactin Biosynthesis, L:
ABC-type iron transport system, M: ABC transporter (iron.B12.siderophore. hemin), N: Hemin transport
system, O: Siderophore pyochelin, P: Iron(IIl) dicitrate transport system Fec, Q: Iron Scavenging cluster
in Thermus, R: Siderophore Achromobactin, S: Siderophore Enterobactin), Phosphorus Metabolism (A:
Phosphate metabolism, B: High affinity phosphate transporter and control of PHO regulon, C: P uptake
(cyanobacteria), D: Alkylphosphonate utilization, E: Phosphonate metabolism, F: Phosphoenolpyruvate
phosphomutase, G: Phosphate-binding DING proteins).
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The presence of different cyanate ABC transporter proteins, cyanate hydratase (EC 4.2.1.104) and
Cyn operon transcriptional activator involved in cynate hydrolysis was traced. Cyanate is generally
formed spontaneously inside the cells from urea and carbamoylphosphate [52,53] or appear in the
environment as a result of physicochemical decomposition of urea or cyanide [54,55]. Certain marine
cyanobacteria [56,57] and only one identified organism, Nitrososphaera gargensis [58] utilize cyanate
as N source for energy under N-limiting conditions [59]. The presence of the reads linked with the
cyanate metabolism in kodo rhizosphere may be an interesting finding.

Different enzymes including nitrite reductase (EC 1.7.2.1), nitric-oxide reductase (EC 1.7.99.7),
nitrous-oxide reductase (EC 1.7.99.6), transcriptional regulator and maturation protein for denitrification
were identified. Though denitrification is a process of losing N from the soils, the presence of enzymes
with denitrifying activities, even in low proportion (5%) reflects a naturally balanced ecosystem, where
microbial communities normally return fixed N to the atmosphere [60]. For N fixation, reads linked
to homocitrate synthase (EC 2.3.3.14), nitrogenase, NifA and VnfA were identified. Certain reads
were also identified for the enzymes involved in the processes of N metabolism like nitrosative stress
(NorR, NnrS), dissimilatory nitrite reductase (Cytochrome c551 NirM), nitric oxide synthase (putative
cytochrome P450 hydroxylase), and nitrilase (Plant-induced nitrilase; EC 3.5.5.1). Altogether the
results generate an insight that in the kodo rhizosphere, nitrogen economy is mainly maintained by
the processes like ammonia assimilation, nitrate/nitrite ammonification, allantoin utilization, and N
fixation (Figure 4). The soils in which these plants grow are usually N deficient and the N fertilizer
usage in kodo crop is very limited [49]. In the rhizosphere, plants, microbial communities, and other
soil inhabitants interdependently depend on the naturally managed low N resources for their nitrogen
requirements. This has major implications for kodo plants because N is a crucial element for the growth
and development.

3.6.2. Phosphorus Metabolism

Phosphorus (P) is an essential macronutrient. It also manages low pH stress through cytoplasmic
buffering of hydrogen ions [61]. Limited availability of P in the soils, freshwater, and marine ecosystems
influences primary and heterotrophic bacterial productivity [62]. The rhizosphere of the kodo is low
in P as is evident from the soil analysis. Microorganisms acquire inorganic and organic forms of
reduced P compounds like phosphonate, phosphite, and hypophosphite [63]. The most abundant gene
pool (71%) for P metabolism in the dataset included different Phn proteins, phosphate metabolism
(different phosphatase, NAD(P), transhydrogenase and various enzymes (EC 3.1.3.1, EC 3.6.1.11,
EC 3.6.1.1, EC 1.6.1.2, EC 2.7.4.1, EC 3.6.1.1, EC 1.6.1.1), phosphoenolpyruvate phosphomutase,
phosphonate metabolism (different ABC transporter) proteins along with phosphate-binding DING
proteins (Figure 4). Different enzymes prominently related to high-affinity phosphate transporter
and control of PHO regulon (16%), P-uptake (10%), and alkylphosphonate utilization were indicative
of enhanced plant P availability, P-solubilization, and mineralization through the acquisition of P
from phosphonates with the help of rhizosphere microbial communities, as is evident from earlier
studies [64].

3.6.3. Sulfur Metabolism

In the kodo rhizosphere, 48% genes were linked with inorganic sulfur assimilation and those
involved in galactosylceramide, sulfatide metabolism, and sulfur oxidation. Enzymes known for
inorganic sulfur assimilationlike ABC-type probable sulfate transporters, adenylylsulfate reductase,
ferredoxin, oxidoreductase, sulfate adenylyltransferase, sulfate transport system, and permease
proteins were identified. Genes related to galactosylceramide and sulfatide metabolism, sulfate
reduction-associated complexes, sulfur oxidation, and thioredoxin-disulfide reductase were also
detected. For organic sulfur assimilation, genes and pathways related to alkanesulfonate assimilation,
DMSP breakdown, L-Cystine uptake/metabolism, and utilization of taurine and glutathione as
a sulfur source were identified (Figure 4). Of the two sulfur oxidation pathways, the Sox is
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involved in complete oxidation of reduced sulfur compounds to sulphate while the APS involves
adenosine-5-phosphosulphate as an intermediate [65,66]. A completely functional Sox complex
includes SoxB (key component), SoxXA, SoxYZ, and SoxCD components [64,65]. Reads linked with
sulfur oxidation (14%) showed SoxB along with SoxA, SoxX, and SoxY suggesting the occurrence
of sulfur oxidation processes in the rhizosphere. Sulfur-oxidizing bacterial communities include
members from Alpha-, Beta-, Gamma- and Epsilon-proteobacteria, Chlorobia and Chloroflexi along
with the photo- and chemoautotrophic bacteria [65,66] while the sulfur-reducing bacteria are mostly
from Deltaproteobacteria [66—69]. Interestingly, a wide assemblage of these communities inhabited
kodo rhizosphere as is evident from their taxonomic abundance (Figure 2). Apart from inorganic
sulfur assimilation and sulfur oxidation, reads linked with alkanesulphonate assimilation (13%),
utilization of glutathione as sulfur source (8%), thioredoxin-disulfide reductase, and L-cystine uptake
and metabolism (both 6%) were also present(Figure 4). The role of the enzymes associated with
sulfur metabolism have been reported from microbial communities inhabiting various habitats [70-73].
Their presence in metagenome reflects a balanced sulfur metabolic capability of microbial communities
associated with the kodo rhizosphere.

3.6.4. Iron Acquisition and Metabolism

Iron (Fe) is a crucial micronutrient for the living organisms for activating metabolic enzymes
and pathways as prosthetic group constituent [74]. High-affinity Fe transport systems involving
biosynthetic chelates, the siderophores help microorganisms and plants to tolerate Fe stress. Transport
systems allow microorganisms to competitively obtain Fe as siderophores, to which plants utilize
under varied soil conditions. We identified gene sequences related to iron acquisition and metabolism
in the kodo rhizosphere metagenome through SEED subsystem alignment at different levels (Figure 4).
Sub-categorization of these sequences further revealed that most of them were associated with
siderophore activity plus some other functions, e.g. ABC transporter, heme, hemin uptake and
utilization systems (gram negative and gram positive both), hemin transport system, Iron(III)
dicitrate transport system, iron acquisition in Vibrio, iron scavenging cluster in Thermus, iron
metabolism in Campylobacter, and iron transport (Figure 4). A large number of siderophore related
sequences were involved in the siderophore assembly i.e. ABC-type Fe*"-siderophore transport
system, Ferric hydroxamate ABC transporter (EC 3.A.1.14.3), Isochorismate synthase (EC 5.4.4.2) of
siderophore biosynthesis, Siderophore biosynthesis protein, Siderophore synthetase component and
TonB-dependent proteins. Different siderophores linked gene sequences that resembled pyoverdine
(generally produced by the members of the family Pseudomonaceae, i.e., Azotobacter, Azomonas,
Pseudomonas, and Rhizobacter) [75] , achromobactin (siderophore produced by Pseudomonas syringe) [76];
yersiniabactin (siderophore of the pathogenic bacteria Yersinia pestis, Yersinia pseudotuberculosis,
and Yersinina enterocolitica) [77]; bacillibactin (siderophore synthesized by the genus Bacillus) [78];
enterobactin and pyochelin (siderophore synthesized by Pseudomonas aeruginosa) [79,80] were traced
in the dataset. We speculate that the dominant presence of microbial communities linked with the
efficient iron acquisition functions is supposed to make them enable to enhance iron bioavailability in
the rhizosphere of kodo plants.

3.7. Metabolism of Aromatic Compounds

Microbial capabilities for utilization of aromatic compound through degradation of xenobiotic
chemicals is essential for detoxification of natural habitats [81,82]. We identified sequence reads
linked with different pathways involved in the anaerobic degradation of aromatic and xenobiotic
compounds, metabolism of aromatic intermediates, and peripheral pathways for catabolism of aromatic
molecules (Figure 5). Identified gene sequences were linked with anaerobic toluene and ethylbenzene
degradation; 4-hydroxyphenylacetic acid catabolic pathway; catechol and protocatechuate branch
of beta-ketoadipate pathway; central meta-cleavage of aromatic compounds; homogentisate and
N-heterocyclic degradation pathways; pathways for degradation of benzoate, gentisare, biphenyl,
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chloroaromatic, chlorobenzoate, naphthalene, and antracene; n-phenylalkanoic acid, phenylpropanoid
compound, p-hydroxybenzoate, quinate, salicylate ester, and toluene (Figure 5).

Secondary Metabolism Stress Response

Virulence, Disease and Defense

@

Figure 5. Assignment of reads in different pathways of the different biological process. Percentage
distribution of different pathways in a particular biological process is shown. Abbreviations used
are, Secondary Metabolism (A: Plant hormones, B: Bacterial cytostatics, differentiation factors and
antibiotics, C: Plant alkaloids, D: Biosynthesis of phenylpropanoids, E: Aromatic amino acids and
derivatives, F: Biologically active compounds in metazoan cell defense and differentiation, G: Plant
octadecanoids), Virulence, Disease and Defense (A: Resistance to antibiotics and toxic compounds, B:
Other, C: Bacteriocins, D: Adhesion, E: Toxins and super-antigens, F: Invasion and intracellular
resistance), Stress Response (A: Oxidative stress, B: Osmotic stress, C: Heat shock, D: Others,
E: Detoxification, F: Acid stress, G: Cold shock, H: Periplasmic stress), Metabolism of Aromatic
Compounds (A: n-Phenylalkanoic acid degradation, B: Phenylacetyl-CoA catabolic pathway (core), C:
Anaerobic benzoate metabolism, D: Benzoate transport and degradation cluster, E: Homogentisate
pathway of aromatic compound degradation, F: Catechol branch of beta-ketoadipate pathway, G:
Protocatechuate branch of beta-ketoadipate pathway, H: Phenylpropanoid compound degradation,
I: Central meta-cleavage pathway of aromatic compound degradation, J: 4-Hydroxyphenylacetic
acid catabolic pathway, K: Benzoate degradation, L: Gentisare degradation, M: p-Hydroxybenzoate
degradation, N: Biphenyl degradation, O: Chloroaromatic degradation pathway, P: N-heterocyclic
aromatic compound_degradation, Q: Acetophenone carboxylase 1, R: Salicylate and gentisate catabolism,
S: Carbazol degradation cluster, T: Chlorobenzoate degradation, U: Naphtalene and antracene

degradation, V: Aromatic amin catabolism).

Traces of anaerobic benzoate metabolism, a key intermediary in the microbial metabolism of
aromatic compounds [37,83] were detected in the dataset. We identified genes catalyzing aromatic amine
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catabolism, a constituent of herbicide degradation and causal factor behind bladder cancer [84]. We also
detected genes related to enzymes for catabolism of salicylate and gentisate, recognized intermediates
in the naphthalene catabolism [85,86] in the rhizosphere microbiome. Carbazole is among the
most abundant nitrogeneous compounds from petroleum [87,88]. Likewise, Phenylacetyl-CoA is the
component of various substrates like phenylalanine, lignin-related phenylpropane units, phenylalkanoic
acids and environmental contaminants such as styrene and ethylbenzene [89]. In the kodo metagenome,
genes related to the enzymes associated with phenylacetyl-CoA catabolic pathway (core) were also
identified. Collectively, the results confirm that the microbial communities in the rhizosphere of kodo
plants with xenobiotic degradation capabilities hold immense promise for bioremediation of soils from
the aromatic compounds.

3.8. Secondary Metabolism

Secondary metabolism is one of the most diverse features of microbial communities [90,91].
A wide range of small molecule metabolites are synthesized by microorganisms as a representation of
metabolic complexity [92,93]. Being essential tool for self-defense, they play major role in host-microbe,
microbe-microbe, and microbe—environment interactions [94] and act as clinically-used antibiotics,
antimicrobials, anticancer agents, immuno-suppressants, and other drugs [93,95]. Besides other
microorganisms, Streptomycetales are functional Actinobacterial communities to produce diverse
secondary metabolites, especially polyketide and peptide-type antibiotics [96-98].

Biological processes and pathways that were prominently identified belonged to the aromatic
amino acids and derivatives (cinnamic acid degradation, pyrrolnitrin biosynthesis), bacterial cytostatics,
differentiation factors, antibiotics (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and
bacterial morphogens, clavulanic acid biosynthesis, nonribosomal peptide synthetases (NRPS) in
Frankia sp. Ccl3, paerucumarin biosynthesis, phenazine biosynthesis, biologically active compounds
in metazoan cell defense and differentiation (quinolinic acid and its derivatives, steroid sulfates),
biosynthesis of phenylpropanoids (flavanone, phytoalexin, phytosterol, salicylic acid and tannin
biosynthesis, phenylpropionate degradation), lipid-derived mediators (cannabinoid biosynthesis),
alkaloids biosynthesis from l-lysine, phytohormones (auxin biosynthesis, auxin degradation), and
octadecanoids (Figure 5). This information is helpful in investigating the rhizobiome for specific
microorganisms through improved culturable methods for obtaining efficient strains with potential
secondary metabolic functions. Immense benefits from the belowground microbial dark matter (hidden
communities, unexplored metabolites) can also be obtained in terms of novel genes and metabolic
pathway machinery with diverse chemistry [99,100].

Genes related to enzymes involved in the auxin biosynthesis (aromatic-L-amino-acid decarboxylase
(EC 4.1.1.28), indole-3-pyruvate decarboxylase (EC 4.1.1.74), nitrilase 1 (EC 3.5.5.1) and 2 (EC 3.5.5.1),
phosphoribosylanthranilate isomerase (EC 5.3.1.24), tryptophan synthase alpha chain (EC 4.2.1.20),
tryptophan synthase beta chain (EC 4.2.1.20)) were identified. Growth regulators like cytokinins and
auxin (indole-3-acetic acid; IAA) are microbial products affecting the cell division and elongation in
plants [101,102]. Such findings reflected that kodo rhizobiome is rich in the auxin producing and
secreting microbial communities. Cinnamic acid is a known allelochemical phenolic that influences
seed germination, plant root growth, and affects metabolic processes [103]. We identified genes related
to enzymes (such as 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, 2-keto-4-pentenoate hydratase,
3-(3-hydroxy-phenyl) propionate hydroxylase, 3-phenylpropionate dioxygenase ferredoxin-NAD(+)
reductase component, Hca operon (3-phenylpropionic acid catabolism) transcriptional activator HcaR
and Probable 3-phenylpropionic acid transporter) concerned with cinnamic acid biosynthesis. . It is
reasonable to speculate that the rhizobiome of this crop has functionalities to downstream the influence
of cinnamic acid, and thereby, promotes plant growth and development.
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3.9. Stress Response

Among the gene sequences identified for stress response, most were related to oxidative stress
followed by osmotic and heat stress with an overrepresentation of glycine betaine, glucans, glutathione,
and superoxide dismutase (Figure 5). Possible reason for this might be the fact that the crop usually
grows in harsh drought stress and nutrient depleted conditions [49] and so, their root associated
microbiota are metabolically tuned to such conditions. Apart from the gene sequences related to the
enzymes of oxidative, osmotic and heat stress, those involved in acid stress, cold shock, desiccation stress,
detoxification, and periplasmic stress were also identified. For oxidative stress, enzymes of various
pathways like CoA disulfide thiol-disulfide redox system, glutaredoxins, glutathione: biosynthesis and
gamma-glutamyl cycle, glutathione (non-redox reactions and redox cycle both), glutathione analogs:
mycothiol, glutathionylspermidine and trypanothione, NADPH:quinone oxidoreductase 2, oxidative
stress (general), protection from reactive oxygen species, redox-dependent regulation of nucleus
processes, regulation of oxidative stress response were detected (Figure 5). We observed that diverse
stress resistance, tolerance and/or avoidance mechanisms are engaged by the microbial communities in
the kodo rhizosphere for their survival and performance in the environment.

Glutathione plays a significant defensive role against oxidative stress [104,105] and provides
protection against toxic xenobiotics including environmental pollutants [106-108]. We identified genes
related to the enzymes of the pathways involved in betaine biosynthesis from glycine, choline, and
betaine uptake (also traced multiple copies of betaine biosynthesis sequences), ectoine biosynthesis
and regulation, osmoprotectant ABC transporter, osmoregulation, and synthesis of osmoregulated
periplasmic glucans. Glycine betaine (GB) is a major organic osmolyte in organisms against different
environmental stresses like drought, salinity, high temperature, UV radiation, and heavy metals [109].
Conclusively, the availability of genes related to stress response processes indicates how the inhabiting
microbial communities adopt and respond in the rhizosphere microclimate at both the community and
organism level and exhibit metabolic capabilities to support growth and development of kodo plants.

3.10. Virulence, Disease, and Defense

Significant number of gene sequences linked with virulence, disease, and defense were also
identified in the rhizosphere (Figure 5). Such genes include Adhesion (related to Staphylococcus,
Campylobacter, Enterobacteria, and Streptococcus), Bacteriocins (bacitracin stress response, marinocine,
and tolerance to colicin E2), invasion and intracellular resistance, resistance to antibiotics and toxic
compounds (multidrug efflux systems and resistance to arsenic, cadmium, mercury, chromium,
zinc, vancomyecin, cobalt-zinc-cadmium), toxins and superantigens (diphtheria toxin, streptolysin
biosynthesis, and transport). It has been observed that the bacterial communities in the rhizosphere
defend themselves through bacteriocins or ribosomally synthesized antibacterial peptides [110].
Adherence is a crucial step of bacterial pathogenesis or infection and colonization with the host [111].
Bacterial adhesins are surface recognition molecules that allow bacteria to target specific surfaces like
root tissues [110,111]. The presence of such genes in the rhizosphere pointed out specialized functions
of strengthening rhizosphere colonization by inhabiting bacterial communities. Gene sequences
related to resistance against metal contamination in the rhizosphere possibly play significant role
in bioremediation [62,109]. Metagenomic analysis of different environments including drinking
water [112], sediment [113], and soil [114] has led to identify diversity and abundance of antibiotic
resistance genes [115,116]. Our analysis, in concurrence with the previous studies, also showed that
the microbial communities from kodo rhizobiome have capabilities to bioremediate against metal
contamination and defend plants against disease causing organisms.

Studies suggest that plant associated microbial communities differ widely in the soils and
particular plant eventually chooses specific core microbiome [117-119] which is supposed to provide
key contribution to plant growth and health [120-123]. Metagenomic analysis of kodo rhizosphere also
revealed high taxonomic diversity with actinobacterial dominance (42.22%) along with Proteobacteria
(23.72%) and the Bacteroides (4%). The observations are supported by earlier study [124] that
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on the basis of amplicon metagenome sequencing reflected similar revelations. High throughput
sequence analysis of 165 rRNA gene for the assessment of bacterial community composition in three
different Andean tuber crops Oca (Oxalis tuberosa), Ullucu (Ullucus tuberosus), and Mashua (Tropaeolum
tuberosum) identified Bacteroidetes and Proteobacteria phyla as the most abundant communities [125].
Extensive overlap between core rhizosphere microbiome in different plant species, e.g., citrus [119],
Arabidopsis [126,127], millet [120], sugarcane [117], and cooloola [128] has been observed to suggest that
various factors driving community assembly may become common among plant species. Similarly,
analysis of more than 20 wheat rhizosphere metatranscriptomes have led to identify metabolic pathways
related to the degradation of aromatic and xenobiotics compounds [129]. Gene sequences linked with
these pathways have also been dominantly observed in the kodo rhizosphere.

All together these studies reveal that microbial communities with diverse taxonomic structure
and metabolic functions inhabit the crop rhizosphere to contribute in interactive way to support plants
in their surrounding environment. Cumulative microbial multifunctionalities in the kodo rhizosphere
as is observed in the present study or evidenced from parallel studies on the microbial community
structure and function of other crops, ultimately leads to a productive and healthy microenvironment
around the plant roots that eventually influences crop survival and productivity.

4. Conclusions

Understanding how different microbial communities in the rhizosphere influence plant
performance and productivity using metagenomics opens new avenues for devising eco-friendly ways
to cater benefits from microbe-mediated agricultural technologies. Millet crops are in center of attention
across the world as they ably grow under nutrient deprived soil conditions, reflect environmental
robustness, possess disease resistance and remediation ability, and are high in food nutritional value.

Accumulating evidences suggest that crop plants in their rhizosphere microenvironment are largely
supported by the belowground microbial communities. Metagenomic analysis of kodo rhizosphere
revealed high taxonomic diversity with actinobacterial dominance. Further analysis of the metabolic
capabilities of microbial communities associated with the kodo rhizosphere has been established with
the observations that gene sequences linked with normal physiological pathways, carbon fixation,
nutrient cycling and acquisition, stress and defense response, secondary metabolism, xenobiotic
degradation, and bioremediation were abundantly identified in the metagenome. With such metabolic
functions, the microbial communities are supposed to support growth, development and survival of the
crop in the soil under tough environmental conditions. These results established that a rich gene pool
is associated with the kodo rhizosphere for: (i) various secondary metabolite pathways associated with
synthesis of bacteriocins or ribosomally synthesized antibacterial peptides; (ii) resistance against diverse
antimicrobial compounds; and (iii) detoxification of xenobiotic compounds and metals. Knowing these
facts, either new culturable strategies can be devised to isolate such microbial strains that can show
robust behavior in the adverse condition or model organisms can be manipulated with such genes to
harvest novel functional benefits.

The information from mining of metagenome of neglected but agro-ecologically robust and
nutritionally sound plants is helpful to identify novel genes and proteins of varied functions. This
is also helpful in mapping metabolome of kodo rhizosphere to explore novel small molecules with
proven functions of agricultural implications. Conclusively, the availability of genes associated with
different important biological processes indicates how the inhabiting microbial communities adopt
and respond in the rhizosphere microclimate at both the community and organism level and exhibit
metabolic capabilities to support growth and development of kodo plants.

Author Contributions: R.P. generated the data and R.P. and D.PS. performed the data analysis and wrote the
manuscript. VK.G., H.A.E., 5.G. and M.K.V. checked the manuscript. Finally, the manuscript was reviewed by all
the authors.

Acknowledgments: D.P.S. is thankful to the network project on agriculture bioinformatics of CABin, ICAR, India
which supported bioinformatics analysis work at ICAR-NBAIM Supercomputing facility. R.P. is thankful to the



Microorganisms 2019, 7, 608 16 of 21

Department of Science and Technology (DST), Government of India for the National Post-Doctoral Fellowship
(N-PDF, Fellowship Reference no. PDF/2016/000714) under which the experimental data was generated.

Conflicts of Interest: The authors declare no competing interests.

References

1.  Lareen, A; Burton, F; Schafer, P. Plant root-microbe communication in shaping root microbiomes. Plant Mol.
Biol. 2016, 90, 575-587. [CrossRef]

2. Xu, Y. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 2016, 129,
653-673. [CrossRef] [PubMed]

3.  Fierer,N,; Leff,].W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L. Cross-biome metagenomic analyses of
soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390-21395.
[CrossRef] [PubMed]

4.  Stewart, E.J. Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151-4160. [CrossRef] [PubMed]

5. Oliveira, C.; Gunderman, L.; Coles, C.A.; Lochmann, J.; Parks, M.; Ballard, E. 16S rRNA Gene-based
metagenomic analysis of ozark cave bacteria. Diversity 2017, 9, 31. [CrossRef]

6. Rossell6-Mora, R.; Amann, R. The species concept for prokaryotes. FEMS Microbiol. Rev. 2001, 25, 39-67.
[CrossRef]

7. Torsvik, V,; Qvreas, L. Microbial diversity and function in soil: From genes to ecosystem. Curr. Opin.
Microbiol. 2002, 5, 240-245. [CrossRef]

8. Schloss, P.D.; Handelsman, J. Biotechnological prospects from metagenomics. Curr. Opin. Microbiol. 2003, 14,
303-310. [CrossRef]

9.  Parnell, ].J; Berka, R.; Young, H.A.; Sturino, ].M.; Kang, Y.; Barnhart, D.M.; DiLeo, M.V. From the Lab to
the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Front. Plant Sci. 2016, 7, 1110.
[CrossRef]

10. de Wet, J.M.].; Rao, K.E.P,; Mengesha, M.H.; Brink, D.E. Diversity in kodo millet, Paspalum scrobiculatum.
Econ. Bot. 1983, 37, 159-163. [CrossRef]

11. Hegde, P.S.; Chandra, T.S. ESR spectroscopic study reveals higher free radical quenching potential in kodo
millet (Paspalum scrobiculatum) compared to other millets. Food Chem. 2005, 92, 177-182. [CrossRef]

12.  Yadav, N.; Chaudhary, K; Singh, A.; Gupta, A. Evaluation of hypoglycemic properties of kodo millet based
food products in healthy subjects. IOSR J. Pharm. 2013, 3, 14-20.

13. Deshpande, S.S.; Mohapatra, D.; Tripathi, M.K.; Sadvatha, R.H. Kodo millet-nutritional value and utilization
in Indian foods. J. Grain Proc. Storage 2015, 2, 16-23.

14. Alsterberg, C.; Roger, F; Sundbick, K.; Juhanson, J.; Hulth, S.; Hallin, S.; Gamfeldt, L. Diversity of habitats
and bacterial communities support landscape-scale multifunctionality differently across seasons. Peer J. 2016,
4,e2036v1. [CrossRef]

15.  Prabhakar; Prabhu, C.G.; Boraiah, B.; Bhat, S.; Nandani, C.; Kiran, T.V.; Manjunath, H.A. Improved Production
Technology for Kodo Millet; Technical Bulletin-2/2017-18; Project Coordinating Unit, ICAR-AICRP on Small
Millets; GKVK: Bengaluru, India, 2017.

16. Meyer, E; Paarmann, D.; D’Souza, M.; Olson, R.; Glass, E.M.; Kubal, M. The metagenomics RAST server-a
public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf. 2008, 9,
386. [CrossRef] [PubMed]

17.  Wilke, A.; Harrison, T.; Wilkening, J.; Field, D.; Glass, E.M.; Kyrpides, N. The M5nr: A novel non-redundant
database containing protein sequences and annotations from multiple sources and associated tools. BMC
Bioinf. 2012, 13, 141. [CrossRef] [PubMed]

18. Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank.
Nucleic Acids Res. 2013, 41, D36-D42. [CrossRef]

19. Benson, D.A; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res.
2015, 43, D30-D35. [CrossRef]

20. Chen, B; Yang, Y.; Liang, X,; Yu, K,; Zhang, T.; Li, X. Metagenomic profiles of antibiotic resistance genes

(ARGs) between human impacted estuary and deep ocean sediments. Environ. Sci. Technol. 2013, 47,
12753-12760. [CrossRef]


http://dx.doi.org/10.1007/s11103-015-0417-8
http://dx.doi.org/10.1007/s00122-016-2691-5
http://www.ncbi.nlm.nih.gov/pubmed/26932121
http://dx.doi.org/10.1073/pnas.1215210110
http://www.ncbi.nlm.nih.gov/pubmed/23236140
http://dx.doi.org/10.1128/JB.00345-12
http://www.ncbi.nlm.nih.gov/pubmed/22661685
http://dx.doi.org/10.3390/d9030031
http://dx.doi.org/10.1111/j.1574-6976.2001.tb00571.x
http://dx.doi.org/10.1016/S1369-5274(02)00324-7
http://dx.doi.org/10.1016/S0958-1669(03)00067-3
http://dx.doi.org/10.3389/fpls.2016.01110
http://dx.doi.org/10.1007/BF02858779
http://dx.doi.org/10.1016/j.foodchem.2004.08.002
http://dx.doi.org/10.7287/PEERJ.PREPRINTS.2036V1
http://dx.doi.org/10.1186/1471-2105-9-386
http://www.ncbi.nlm.nih.gov/pubmed/18803844
http://dx.doi.org/10.1186/1471-2105-13-141
http://www.ncbi.nlm.nih.gov/pubmed/22720753
http://dx.doi.org/10.1093/nar/gks1195
http://dx.doi.org/10.1093/nar/gku1216
http://dx.doi.org/10.1021/es403818e

Microorganisms 2019, 7, 608 17 of 21

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M. KEGG for linking genomes to life and
the environment. Nucleic Acids Res. 2008, 36, D480-D484. [CrossRef]

Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, ].J.; Disz, T. The SEED and the Rapid Annotation of
microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206-D214. [CrossRef]
[PubMed]

Imchen, M.; Kumavath, R.; Barh, D.; Azevedo, V.; Ghosh, P.,; Viana, M.; Wattam, A.R. Searching for signatures
across microbial communities: Metagenomic analysis of soil samples from mangrove and other ecosystems.
Sci. Rep. 2017, 7, 8859. [CrossRef] [PubMed]

Stackebrandt, S.; Schumann, P. Introduction to the taxonomy of actinobacteria. Prokaryotes 2006, 3, 297-321.
Sellstedt, A.; Richau, K.H. Aspects of nitrogen-fixing Actinobacteria, in particular free-living and symbiotic
Frankia. FEMS Microbiol. Lett. 2013, 342, 179-186. [CrossRef]

Bentley, S.D.; Chater, K.F.,; Cerdefio-Tarraga, A.M.; Challis, G.L.; Thomson, N.R.; James, K.D. Complete
genome sequence of the model actinomycete Streptomyces Coelicolor A3 (2). Nature 2002, 417, 141. [CrossRef]
Waksman, S.A.; Schatz, A.; Reynolds, D.M. Production of antibiotic substances by actinomycetes. Ann. NY
Acad. Sci. 2010, 48, 73-86. [CrossRef]

Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot.
2012, 65, 385. [CrossRef]

Daoudi-Hamdad, H.H.; Bhatnagar, F.; Baratti, T.; Lefebvre, G. H107, a new aminoglycoside anti-Pseudomonas
antibiotic produced by a new strain of Spirillospora. Microbios 2000, 102, 69-77.

Bibb, M.J. Regulation of secondary metabolism in Streptomyces. Curr. Opin. Microbiol. 2005, 8, 208-215.
[CrossRef]

Forar, L.R.; Amany, K; Ali, E.; Arab, B.C. Taxonomy, Identification and biological activities of a novel isolate
of Streptomyces tendae. ]. Biotechnol. 2006, 9, 427-436.

Janardhan, A.; Kumar, A.P; Viswanath, B.; Saigopal, D.V.R.; Narasimha, G. Production of bioactive
compounds by actinomycetes and their antioxidant properties. Biotechnol. Res. Int. 2014, 2014, 8. [CrossRef]
[PubMed]

Schweder, T.; Lindequist, U.; Lalk, M. Screening for new metabolites from marine microorganisms. In
Marine Biotechnology 1. Advances in Biochemical Engineering/Biotechnology; Ulber, R., Le Gal, Y., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 96, pp. 1-48.

Tjepkema, J.D.; Cashon, R.E.; Beckwith, J.; Schwintzer, C.R. Hemoglobin in Frankia, a nitrogen-fixing
actinomycete. Appl. Environ. Microbiol. 2002, 68, 2629-2631. [CrossRef] [PubMed]

Zakhia, F; Jeder, H.; Willems, A.; Gillis, M.; Dreyfus, B.; de Lajudie, P. Diverse bacteria associated with
root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera
Microbacterium and Starkeya. Microb. Ecol. 2006, 51, 375-393. [CrossRef] [PubMed]

Gtari, M.; Ghodhbane-Gtari, F.; Nouioui, I.; Beauchemin, N.; Tisa, L.S. Phylogenetic perspectives of
nitrogen-fixing actinobacteria. Arch. Microbiol. 2012, 194, 3-11. [CrossRef] [PubMed]

Bai, Y.; Liang, J.; Liu, R.; Hu, C.; Qu, ]. Metagenomic analysis reveals microbial diversity and function in the
rhizosphere soil of a constructed wetland. Environ. Technol. 2014, 35, 2521-2527. [CrossRef] [PubMed]
Moat, A.G.; Foster, ].W.; Spector, M.P. Microbial Physiology; John Wiley & Sons: Hoboken, NJ, USA, 2002;
ISBN 0-471-39483-1.

Joice, R.; Yasuda, K.; Shafquat, A.; Morgan, X.C.; Huttenhower, C. Determining microbial products and
identifying molecular targets in the human microbiome. Cell Metab. 2014, 20, 731-741. [CrossRef] [PubMed]
Ram, R.J.; Verberkmoes, N.C.; Thelen, M.P,; Tyson, G.W.; Baker, B.].; Blake, R.C.; Shah, M., 2nd; Hettich, R.L.;
Banfield, J.F. Community proteomics of a natural microbial biofilm. Science 2005, 308, 1915-1920. [CrossRef]
Bertin, P.N.; Heinrich-Salmeron, A.; Pelletier, E.; Goulhen-Chollet, F.; Arsene-Ploetze, F.; Gallien, S.
Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta-and
proteo-genomics. ISME] 2011, 5, 1735. [CrossRef]

Parro, V.; Moreno-Paz, M.; Gonzalez-Toril, E. Analysis of environmental transcriptomes by DNA microarrays.
Environ. Microbiol. 2007, 9, 453-464. [CrossRef]

Moreno-Paz, M.; Go'mez, M.].; Arcas, A.; Parro, V. Environmental transcriptome analysis reveals physiological
differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in
their natural microbial community. BMC Genom. 2010, 11, 404. [CrossRef]


http://dx.doi.org/10.1093/nar/gkm882
http://dx.doi.org/10.1093/nar/gkt1226
http://www.ncbi.nlm.nih.gov/pubmed/24293654
http://dx.doi.org/10.1038/s41598-017-09254-6
http://www.ncbi.nlm.nih.gov/pubmed/28821820
http://dx.doi.org/10.1111/1574-6968.12116
http://dx.doi.org/10.1038/417141a
http://dx.doi.org/10.1111/j.1749-6632.1946.tb31756.x
http://dx.doi.org/10.1038/ja.2012.27
http://dx.doi.org/10.1016/j.mib.2005.02.016
http://dx.doi.org/10.1155/2014/217030
http://www.ncbi.nlm.nih.gov/pubmed/24790761
http://dx.doi.org/10.1128/AEM.68.5.2629-2631.2002
http://www.ncbi.nlm.nih.gov/pubmed/11976149
http://dx.doi.org/10.1007/s00248-006-9025-0
http://www.ncbi.nlm.nih.gov/pubmed/16598639
http://dx.doi.org/10.1007/s00203-011-0733-6
http://www.ncbi.nlm.nih.gov/pubmed/21779790
http://dx.doi.org/10.1080/09593330.2014.911361
http://www.ncbi.nlm.nih.gov/pubmed/25145207
http://dx.doi.org/10.1016/j.cmet.2014.10.003
http://www.ncbi.nlm.nih.gov/pubmed/25440055
http://dx.doi.org/10.1126/science.1109070
http://dx.doi.org/10.1038/ismej.2011.51
http://dx.doi.org/10.1111/j.1462-2920.2006.01162.x
http://dx.doi.org/10.1186/1471-2164-11-404

Microorganisms 2019, 7, 608 18 of 21

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

Frias-Lopez, J.; Shi, Y.; Tyson, G.W.; Coleman, M.L.; Schuster, S.C.; Chisholm, S.W.; Delong, E.F. Microbial
community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. USA 2008, 105, 3805-3810.
[CrossRef] [PubMed]

Urich, T. Simultaneous assessment of soil microbial community structure and function htrough analysis of
the meta-transcriptome. PLoS ONE 2008, 3, 2527. [CrossRef] [PubMed]

Moran, M.A. Metatranscriptomics: Eavesdropping on complex microbial communities. Microbe 2009, 4,
329-334. [CrossRef]

Chen, L.X. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid
mine drainage. ISME . 2015, 9, 1579. [CrossRef] [PubMed]

Masclaux-Daubresse, C. Nitrogen uptake, assimilation and remobilization in plants: Challenges for
sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141-1157. [CrossRef] [PubMed]

Dwivedi, B.S.; Rawat, A.K,; Dixit, B.K.; Tahkur, R.K. Effect of inputs integration on yield, uptake and
economics of Kodo Millet (Paspalum scrobiculatum L.). Econ. Aff. 2016, 61, 519-524. [CrossRef]

Cobo-Diaz, J.E; Fernandez-Gonzalez, A.].; Villadas, PJ.; Robles, A.B.; Toro, N.; Fernandez-L6pez, M.
Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean
forest after a wildfire. Microb. Ecol. 2015, 69, 895-904. [CrossRef]

Minami, T.; Anda, M.; Mitsui, H.; Sugawara, M.; Kaneko, T; Sato, S.; Minamisawa, K. Metagenomic analysis
revealed methylamine and ureide utilization of soybean-associated Methylobacterium. Microb. Environ. 2016,
31, 268-278. [CrossRef]

Qian, M.; Eaton, ].W.; Wolff, S. Cyanate-mediated inhibition of neutrophil myeloperoxidase activity. Biochem.
J. 1997, 326, 159-166. [CrossRef]

Purcarea, C. Aquifex aeolicus aspartate transcarbamoylase, an enzyme specialized for the efficient utilization
of unstable carbamoyl phosphate at elevated temperature. . Biol. Chem. 2003, 278, 52924-52934. [CrossRef]
Ubalua, A.O. Cyanogenic glycosides and the fate of cyanide in soil. Aust. J. Crop. Sci. 2010, 4, 223-237.
Widner, B.; Mulholland, M.R.; Mopper, K. Chromatographic determination of nanomolar cyanate
concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal. Chem. 2013, 85,
6661-6666. [CrossRef] [PubMed]

Kamennaya, N.A.; Post, A.F. Distribution and expression of the cyanate acquisition potential among
cyanobacterial populations in oligotrophic marine waters. Limnol. Oceanog. 2013, 58, 1959-1971. [CrossRef]
Rocap, G. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature
2003, 424, 1042. [CrossRef]

Hatzenpichler, R. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc.
Natl. Acad. Sci. USA 2008, 105, 2134-2139. [CrossRef]

Palatinszky, M. Cyanate as an energy source for nitrifiers. Nature 2015, 524, 7563. [CrossRef]

Philippot, L.; Hallin, S.; Schloter, M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron.
2007, 96, 249-305.

Lamarche, M.G.; Wanner, B.L.; Creplin, S.; Harel, ]J. The phosphate regulon and bacterial virulence: A
regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 2008, 32,
461-473. [CrossRef]

Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, ].V. Co-selection of antibiotic and metal resistance.
Trends Microbiol. 2006, 14, 176-182. [CrossRef]

Sosa, O.A. Phosphorus redox reactions as pinch hitters in microbial metabolism. Proc. Natl. Acad. Sci. USA
2018, 115, 7-8. [CrossRef]

Marschner, P.; Crowley, D.; Rengel, Z. Rhizosphere interactions between microorganisms and plants govern
iron and phosphorus acquisition along the root axis-model and research methods. Soil. Biol. Biochem. 2011,
43, 883-894. [CrossRef]

Ghosh, W.; Dam, B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically
and ecologically diverse bacteria and archaea. FEMS Microbiol. Rev. 2009, 33, 999-1043. [CrossRef]

Yousuf, B.; Kumar, R.; Mishra, A.; Jha, B. Unravelling the carbon and sulphur metabolism in coastal
soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial
communities. PLoS ONE 2014, 9, €107025. [CrossRef] [PubMed]

Muyzer, G.; Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol.
2008, 6, 441-454. [CrossRef] [PubMed]


http://dx.doi.org/10.1073/pnas.0708897105
http://www.ncbi.nlm.nih.gov/pubmed/18316740
http://dx.doi.org/10.1371/journal.pone.0002527
http://www.ncbi.nlm.nih.gov/pubmed/18575584
http://dx.doi.org/10.1128/microbe.4.329.1
http://dx.doi.org/10.1038/ismej.2014.245
http://www.ncbi.nlm.nih.gov/pubmed/25535937
http://dx.doi.org/10.1093/aob/mcq028
http://www.ncbi.nlm.nih.gov/pubmed/20299346
http://dx.doi.org/10.5958/0976-4666.2016.00065.6
http://dx.doi.org/10.1007/s00248-015-0586-7
http://dx.doi.org/10.1264/jsme2.ME16035
http://dx.doi.org/10.1042/bj3260159
http://dx.doi.org/10.1074/jbc.M309383200
http://dx.doi.org/10.1021/ac400351c
http://www.ncbi.nlm.nih.gov/pubmed/23738747
http://dx.doi.org/10.4319/lo.2013.58.6.1959
http://dx.doi.org/10.1038/nature01947
http://dx.doi.org/10.1073/pnas.0708857105
http://dx.doi.org/10.1038/nature14856
http://dx.doi.org/10.1111/j.1574-6976.2008.00101.x
http://dx.doi.org/10.1016/j.tim.2006.02.006
http://dx.doi.org/10.1073/pnas.1719600115
http://dx.doi.org/10.1016/j.soilbio.2011.01.005
http://dx.doi.org/10.1111/j.1574-6976.2009.00187.x
http://dx.doi.org/10.1371/journal.pone.0107025
http://www.ncbi.nlm.nih.gov/pubmed/25225969
http://dx.doi.org/10.1038/nrmicro1892
http://www.ncbi.nlm.nih.gov/pubmed/18461075

Microorganisms 2019, 7, 608 19 of 21

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Headd, B.; Engel, A.S. Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes
collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl. Environ.
Microbiol. 2012, 79, 1171-1182. [CrossRef] [PubMed]

Tourova, T.P. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes
using sox B as a functional molecular marker. FEMS Microbiol. Ecol. 2013, 84, 280-289. [CrossRef]

Yin, H. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile
Acidithiobacillus thiooxidans. BMC Microbiol. 2014, 14, 179. [CrossRef]

Zhang, X.; Niu, J.; Liang, Y.; Liu, X; Yin, H. Metagenome-scale analysis yields insights into the structure and
function of microbial communities in a copper bioleaching heap. BMC Genet. 2016, 17, 21. [CrossRef]
Johnson, D.B.; Hallberg, K.B. Carbon, iron and sulfur metabolism in acidophilic micro-oranisms. Adv. Microb.
Physiol. 2009, 54, 201-255.

Dopson, M.; Johnson, D.B. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing
microorganisms. Environ. Microbiol. 2012, 14, 2620-2631. [CrossRef]

Rout, G.R,; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1-24. [CrossRef]
Menhart, N.; Thariath, A.; Viswanatha, T. Characterization of the pyoverdines of Azotobacter vinelandii
ATCC12837 with regard to heterogeneity. Biol. Met. 1991, 4, 223-232. [CrossRef] [PubMed]

Berti, A.D.; Thomas, M.G. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae
B728a. ]. Bacteriol. 2009, 191, 4594-4604. [CrossRef] [PubMed]

Perry, R.D.; Balbo, P.B.; Jones, H.A.; Fetherston, ].D.; DeMoll, E. Yersiniabactin from Yersinia pestis: Biochemical
characterization of the siderophore and its role in iron transport and regulation. Microbiology 1999, 145,
1181-1190. [CrossRef] [PubMed]

Hotta, K.; Kim, C.Y.; Fox, D.T.; Koppisch, A.T. Siderophore-mediated iron acquisition in Bacillus anthracis and
related strains. Microbiology 2010, 156, 1918-1925. [CrossRef] [PubMed]

Brandel, J.; Humbert, N.; Elhabiri, M.; Schalk, L].; Mislin, G.L.; Albrecht-Gary, A.M. Pyochelin, a siderophore
of Pseudomonas aeruginosa: Physicochemical characterization of the iron (III), copper (II) and zinc (II)
complexes. Dalton Trans. 2012, 41, 2820-2834. [CrossRef]

Das, S.; Bora, S.S.; Yadav, R.N.S.; Barooah, M. A metagenomic approach to decipher the indigenous microbial
communities of arsenic contaminated groundwater of Assam. Genom. Data 2017, 12, 89-96. [CrossRef]
Uchiyama, T.; Miyazaki, K. Metagenomic screening for aromatic compound-responsive transcriptional
regulators. PLoS ONE 2013, 8, €75795. [CrossRef]

Sun, W.; Krumins, V.; Fennell, D.E.; Kerkhof, L.J.; Haggblom, M.M. Anaerobic degradation of aromatic
compounds. In Manual of Environmental Microbiology, Fourth Edition American Society of Microbiology; ASM
Press: Washington, DC, USA, 2016; p. 5.

Egland, P.G.; Harwood, C.S. BadR, a new MarR family member, regulates anaerobic benzoate degradation
by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J. Bacteriol. 1999, 181, 2102-2109.
Koutros, S. Heterocyclic aromatic amine pesticide use and human cancer risk: Results from the US Agricultural
Health Study. Int. ]. Cancer 2009, 124, 1206-1212. [CrossRef]

Grund, E.; Denecke, B.; Eichenlaub, R. Naphthalene degradation via salicylate and gentisate by Rhodococcus
sp. strain B4. Appl. Environ. Microbiol. 1992, 58, 1874-1877. [PubMed]

Liu, T.T. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp.
strain NCIMB 12038. Appl. Microbiol. Biotechnol. 2011, 90, 671-678. [CrossRef] [PubMed]

Hsu, C.S.; Qian, K.; Robbins, W.K. Nitrogen speciation of polar petroleum compounds by compound class
separation and on-line liquid chromatography-mass spectrometry (LC-MS). |. Sep. Sci. 1994, 17, 271-276.
[CrossRef]

Yang, M. Isolation and identification of a carbazole degradation gene cluster from Sphingomonas sp. JS1.
World J. Microbiol. Biotechnol. 2009, 25, 1625. [CrossRef]

Teufel, R. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. USA
2010, 107, 14390-14395. [CrossRef]

Walsh, C.T.; Fischbach, M. A. Natural products version 2.0: Connecting genes to molecules. J. Am. Chem. Soc.
2010, 132, 2469-2493. [CrossRef]

Banik, ].J.; Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials
and other bioactive small molecules. Curr. Opin. Microbiol. 2010, 13, 603—609. [CrossRef]

Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1-26. [CrossRef]


http://dx.doi.org/10.1128/AEM.02812-12
http://www.ncbi.nlm.nih.gov/pubmed/23220955
http://dx.doi.org/10.1111/1574-6941.12056
http://dx.doi.org/10.1186/1471-2180-14-179
http://dx.doi.org/10.1186/s12863-016-0330-4
http://dx.doi.org/10.1111/j.1462-2920.2012.02749.x
http://dx.doi.org/10.7831/ras.3.1
http://dx.doi.org/10.1007/BF01141185
http://www.ncbi.nlm.nih.gov/pubmed/1838001
http://dx.doi.org/10.1128/JB.00457-09
http://www.ncbi.nlm.nih.gov/pubmed/19482931
http://dx.doi.org/10.1099/13500872-145-5-1181
http://www.ncbi.nlm.nih.gov/pubmed/10376834
http://dx.doi.org/10.1099/mic.0.039404-0
http://www.ncbi.nlm.nih.gov/pubmed/20466767
http://dx.doi.org/10.1039/c1dt11804h
http://dx.doi.org/10.1016/j.gdata.2017.03.013
http://dx.doi.org/10.1371/journal.pone.0075795
http://dx.doi.org/10.1002/ijc.24020
http://www.ncbi.nlm.nih.gov/pubmed/1622263
http://dx.doi.org/10.1007/s00253-010-3033-1
http://www.ncbi.nlm.nih.gov/pubmed/21181154
http://dx.doi.org/10.1002/jhrc.1240170415
http://dx.doi.org/10.1007/s11274-009-0055-x
http://dx.doi.org/10.1073/pnas.1005399107
http://dx.doi.org/10.1021/ja909118a
http://dx.doi.org/10.1016/j.mib.2010.08.012
http://dx.doi.org/10.1038/ja.2005.1

Microorganisms 2019, 7, 608 20 of 21

93.

94.

95.

96.

97.

98.
99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

Wilson, M.R.; Zha, L.; Balskus, E.P. Natural product discovery from the human microbiome. J. Biol. Chem.
2017, 292, 8546-8552. [CrossRef]

Cimermancic, P. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene
clusters. Cell 2014, 158, 412-421. [CrossRef]

Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. . Nat. Prod. 2016,
7,629-661. [CrossRef] [PubMed]

Gomez-Escribano, J.; Bibb, M. Engineering Streptomyces coelicolor for heterologous expression of secondary
metabolite gene clusters. Microb. Biotechnol. 2011, 4, 207-215. [CrossRef] [PubMed]

Hwang, K.; Kim, H.; Charusanti, P.; Palsson, B.; Lee, S. Systems biology and biotechnology ofStreptomyces
species for the production of secondary metabolites. Biotechnol. Adv. 2014, 32, 255-268. [CrossRef] [PubMed]
O’Connor, S.E. Engineering of secondary metabolism. Annu. Rev. Genet. 2015, 49, 71-94. [CrossRef]
Miiller, C.A.; Obermeier, M.M.; Berg, G. Bioprospecting plant-associated microbiomes. J. Biotechnol. 2016,
235,171-180. [CrossRef]

Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—a review. Nat. Prod. Rep.
2016, 33, 988-1005. [CrossRef]

Gunatilaka, A.A L. Natural products from plant-associated microorganisms: Distribution, structural diversity,
bioactivity, and implications of their occurrence. J. Nat. Prod. 2006, 69, 509-526. [CrossRef]

Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth
promotion: A review. Ann. Microbiol. 2010, 60, 579-598. [CrossRef]

Salvador, V.H. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 2013,
8, €69105. [CrossRef]

Chavan, S. Reduced glutathione: Importance of specimen collection. Ind. J. Clin. Biochem. 2005, 20, 150-152.
[CrossRef]

Cascella, R. S-linolenoyl glutathione intake extends life-span and stress resistance via Sir-2.1 upregulation in
Caenorhabditis elegans. Free Radic. Biol. Med. 2014, 73, 127-135. [CrossRef] [PubMed]

Garcia-Giménez, ].L. Nuclear glutathione. Biochim. Biophys. Acta 2013, 1830, 3304-3316. [CrossRef] [PubMed]
Garcia-Giménez, ].L.; Pallardd, F.V. Maintenance of glutathione levels and its importance in epigenetic
regulation. Front. Pharmacol. 2014, 5, 88.

Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular
protagonist. Biochem. Pharmacol. 2003, 66, 1499-1503. [CrossRef]

Alonso, A.; Sanchez, P.; Martinez, ]J.L. Environmental selection of antibiotic resistance genes. Environ.
Microbiol. 2001, 3, 1-9. [CrossRef] [PubMed]

Bhatt, P.V.; Vyas, B.R.M. Screening and characterization of plant growth and health promoting rhizobacteria.
Int. ]. Curr. Microbiol. Appl. Sci. 2014, 3, 139-155.

Coutte, L. Role of adhesin release for mucosal colonization by a bacterial pathogen. J. Exp. Med. 2003, 197,
735-742. [CrossRef]

Shi, P. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water.
Water Res. 2013, 47, 111-120. [CrossRef]

Kristiansson, E. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance
and gene transfer elements. PLoS ONE 2011, 6, €17038. [CrossRef]

Monier, ]. M. Metagenomic exploration of antibiotic resistance in soil. Curr. Opin. Microbiol. 2011, 14, 229-235.
[CrossRef]

Medeiros, ].D. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz. |.
Microbiol. 2016, 47, 835-845. [CrossRef] [PubMed]

Wang, Z. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery
wastewater treatment plant. PLoS ONE 2013, 8, €76079. [CrossRef] [PubMed]

Hamonts, K. Field study reveals core plant microbiota and relative importance of their drivers. Environ.
Microbiol. 2018, 20, 124-140. [CrossRef] [PubMed]

Lemanceau, P,; Blouin, M.; Muller, D.; Moénne-Loccoz, Y. Let the core microbiota be functional. Trends Plant
Sci. 2017, 22, 583-595. [CrossRef]

Xu, J.; Zhang, Y.; Zhang, P; Trivedi, P,; Riera, N.; Wang, Y.; Liu, X.; Fan, G.; Tang, ].; Coletta-Filho, H.D.;
et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 2018, 9, 4894.
[CrossRef]


http://dx.doi.org/10.1074/jbc.R116.762906
http://dx.doi.org/10.1016/j.cell.2014.06.034
http://dx.doi.org/10.1021/acs.jnatprod.5b01055
http://www.ncbi.nlm.nih.gov/pubmed/26852623
http://dx.doi.org/10.1111/j.1751-7915.2010.00219.x
http://www.ncbi.nlm.nih.gov/pubmed/21342466
http://dx.doi.org/10.1016/j.biotechadv.2013.10.008
http://www.ncbi.nlm.nih.gov/pubmed/24189093
http://dx.doi.org/10.1146/annurev-genet-120213-092053
http://dx.doi.org/10.1016/j.jbiotec.2016.03.033
http://dx.doi.org/10.1039/C6NP00025H
http://dx.doi.org/10.1021/np058128n
http://dx.doi.org/10.1007/s13213-010-0117-1
http://dx.doi.org/10.1371/journal.pone.0069105
http://dx.doi.org/10.1007/BF02893062
http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.004
http://www.ncbi.nlm.nih.gov/pubmed/24835770
http://dx.doi.org/10.1016/j.bbagen.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23069719
http://dx.doi.org/10.1016/S0006-2952(03)00504-5
http://dx.doi.org/10.1046/j.1462-2920.2001.00161.x
http://www.ncbi.nlm.nih.gov/pubmed/11225718
http://dx.doi.org/10.1084/jem.20021153
http://dx.doi.org/10.1016/j.watres.2012.09.046
http://dx.doi.org/10.1371/journal.pone.0017038
http://dx.doi.org/10.1016/j.mib.2011.04.010
http://dx.doi.org/10.1016/j.bjm.2016.06.011
http://www.ncbi.nlm.nih.gov/pubmed/27522532
http://dx.doi.org/10.1371/journal.pone.0076079
http://www.ncbi.nlm.nih.gov/pubmed/24098424
http://dx.doi.org/10.1111/1462-2920.14031
http://www.ncbi.nlm.nih.gov/pubmed/29266641
http://dx.doi.org/10.1016/j.tplants.2017.04.008
http://dx.doi.org/10.1038/s41467-018-07343-2

Microorganisms 2019, 7, 608 21 of 21

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

Jin, T. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 2017, 6,
1-12. [CrossRef]

Zhang, Y. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus
root-associated microbiome. Microbiome 2017, 5, 97. [CrossRef]

Trivedi, P. Huanglongbing alters the structure and functional diversity of microbial communities associated
with citrus rhizosphere. ISME ]. 2012, 6, 363-383. [CrossRef]

Riera, N.; Handique, U.; Zhang, Y.; Dewdney, M.M.; Wang, N. Characterization of antimicrobial-producing
beneficial bacteria isolated from Huanglongbing Escape citrus trees. Front. Microbiol. 2017, 8,2415. [CrossRef]
Prabha, R.; Singh, D.P.; Verma, M.K.; Sahu, P.; Kumar, P. Bacterial diversity in rhizosphere of Paspalum
scrobiculatum L. (kodo millet) is revealed with shotgun metagenome sequencing and data analysis. Data Brief.
2018, 20, 1653-1657. [CrossRef]

Chica, E.; Buela, L.; Valdez, A. Metagenomic survey of the bacterial communities in the rhizosphere of three
Andean tuber crops. Symbiosis 2019, 1-10. [CrossRef]

Bulgarelli, D. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.
Nature 2012, 488, 91-95. [CrossRef] [PubMed]

Lundberg, D.S. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86-90. [CrossRef]
[PubMed]

Yeoh, Y.K. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil
chronosequence. Nat. Commun. 2017, 8, 215. [CrossRef] [PubMed]

Singh, D.P,; Prabha, R.; Gupta, V.K; Verma, M.K. Metatranscriptome analysis deciphers multifunctional genes
and enzymes linked with the degradation of aromatic compounds and pesticides in the wheat rhizosphere.
Front. Microbiol. 2018, 9, 1331. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1093/gigascience/gix089
http://dx.doi.org/10.1186/s40168-017-0304-4
http://dx.doi.org/10.1038/ismej.2011.100
http://dx.doi.org/10.3389/fmicb.2017.02415
http://dx.doi.org/10.1016/j.dib.2018.09.006
http://dx.doi.org/10.1007/s13199-019-00631-5
http://dx.doi.org/10.1038/nature11336
http://www.ncbi.nlm.nih.gov/pubmed/22859207
http://dx.doi.org/10.1038/nature11237
http://www.ncbi.nlm.nih.gov/pubmed/22859206
http://dx.doi.org/10.1038/s41467-017-00262-8
http://www.ncbi.nlm.nih.gov/pubmed/28790312
http://dx.doi.org/10.3389/fmicb.2018.01331
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Soil Sampling and Analysis 
	Metagenomic DNA Extraction and Sequencing 
	Annotation of Metagenomic Dataset 
	Taxonomic and Functional Annotation 
	Metabolic Potential Analysis 
	Availability of Data and Associated Information 

	Results and Discussion 
	Sequencing and Annotation of Proteins 
	Taxonomic Microbial Diversity in the Kodo Rhizosphere 
	Community Composition and Abundance 
	Metabolic Multifunctionalities in the Kodo Rhizosphere 
	Carbon Fixation 
	Mineral Metabolism 
	Nitrogen Metabolism 
	Phosphorus Metabolism 
	Sulfur Metabolism 
	Iron Acquisition and Metabolism 

	Metabolism of Aromatic Compounds 
	Secondary Metabolism 
	Stress Response 
	Virulence, Disease, and Defense 

	Conclusions 
	References

