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Abstract: Listeria monocytogenes is a foodborne pathogen that is widely distributed in nature, having
been isolated from a variety of sources such as soil, water, plant matter, and animals. In addition,
L. monocytogenes is often detected in the regular sampling of food and food processing environments.
The most common method for detecting L. monocytogenes is the use of selective enrichments. Both
lithium chloride and esculin, in combination with ferric ammonium citrate, are utilized in several of
the most commonly-employed selective enrichment schemes for L. monocytogenes. Here we report
that transposon-based inactivation of lmo1930, one of the genes in the menaquinone biosynthesis
operon, via transposon mutagenesis severely impaired the ability of L. monocytogenes to grow in the
presence of lithium chloride or hydrolyze esculin, and conferred reduced growth and colony size.
All phenotypes were restored upon genetic complementation. Thus, strains of L. monocytogenes with
mutations leading to inactivation of lmo1930 may evade many commonly-used selective enrichment
protocols employed in the detection of L. monocytogenes.
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1. Introduction

Listeria monocytogenes is found ubiquitously in nature and is a facultative intracellular pathogen,
capable of causing severe disease and death in susceptible individuals [1,2]. For these reasons, the rapid
and reliable detection of L. monocytogenes is a key factor in the surveillance of this pathogen. Selective
enrichment is typically used to detect and isolate L. monocytogenes from food and environmental
samples. While there are numerous validated selective enrichment protocols for L. monocytogenes [3–5],
many of these approaches share ingredients such as lithium chloride and esculin in combination with
ferric ammonium citrate to differentiate L. monocytogenes from other microorganisms.

Esculin is a biopolymer that is widely distributed in several types of plants [6]. Given its presence
in soil and plant matter, the ability to utilize this biopolymer may be useful for environmental survival
of L. monocytogenes. The ability to hydrolyze esculin has been observed in diverse microorganisms and
esculin has also been incorporated as a differential-selective agent into several selective enrichment
protocols for L. monocytogenes. Esculin hydrolysis in the presence of ferric ammonium citrate results in
a black precipitate that is easily detected with the naked eye in either liquid or solid media, allowing
detection of putative L. monocytogenes or other Listeria spp. on agar media such as Modified Oxford
(MOX) [7,8]. If esculin hydrolysis or lithium chloride tolerance were compromised, L. monocytogenes
and other Listeria spp. would be undetectable in many of the currently employed enrichment protocols,
with potentially important food safety and public health implications. In this work we investigated
the involvement of lmo1930 in esculin hydrolysis and lithium chloride tolerance in L. monocytogenes
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and assessed the importance of this gene for identification of L. monocytogenes in selective enrichment
protocols that utilize esculin and lithium chloride. We employed transposon mutagenesis and genetic
complementation to identify and characterize a gene essential in esculin hydrolysis in L. monocytogenes
strain 2010L-1723, implicated in an outbreak of listeriosis via contaminated celery.

2. Methods

2.1. Bacterial Strains and Growth Conditions

Unless otherwise specified, strains were routinely cultured in Trypticase soy broth (Becton,
Dickinson and Co (BD), Sparks, MD, USA) supplemented with 0.7% yeast extract (BD) (TSBYE) or in
brain heart infusion (BHI; BD). TSBYE or BHI with 1.2% agarose (BD) was used for solid media (TSAYE
and BHIA, respectively). When appropriate, media were supplemented with esculin (1 g/L) (Acros
Organics, Fair Lawn, NJ, USA) and ferric ammonium citrate (0.5 g/L) (MP Biomedicals, Solon, OH, USA).
Growth was assessed aerobically on TSAYE and BHIA with and without esculin/ammonium ferric citrate,
as well as modified oxford medium (BD) (MOX) and RAPID’L.mono (Biorad, Marnes-la-Coquette,
France). In addition, growth was assessed anaerobically at 37 ◦C on MOX, TSAYE, and BHIA using an
anaerobic chamber (Coy Laboratory Products Inc., Grass Lake, MI, USA). To assess tolerance to lithium
chloride (LiCl), dilutions of overnight cultures grown in BHI were plated on BHIA supplemented with
15 g/L LiCl (Amresco, Solon, OH, USA) and monitored for growth at 37 ◦C for 48 h. To assess the
role of menaquinone in relation to esculin hydrolysis, strains were streaked on TSAYE supplemented
with esculin, ferric ammonium citrate, and 50 mg of vitamin K2/liter (Supelco, Bellefonte, PA, USA).
The plates were then incubated over 48 h at 37 ◦C and observed for growth and the formation of black
precipitate. To assess relative growth levels in BHI and TSBYE, growth was monitored over 48 h at
37 ◦C in a Bioscreen C absorbance microplate reader (Oy Growth Curves Ab Ltd., Raisio, Finland).
Growth curves were constructed from four biological replicates in one technical trial for each strain.
Recorded changes in optical density (600 nm) were used to plot a growth curve for each strain in BHIB
and TSBYE.

2.2. Mutant Library Construction and Mutant Screening

Mariner-based transposon mutant libraries, consisting of ~3000 individual mutants, were
constructed as previously described [9,10], in L. monocytogenes strains 2011L-2858 from the 2011
cantaloupe outbreak [11], and 2010L-1723 from a 2010 outbreak associated with celery [12].
Individual mutants were screened on TSAYE supplemented with esculin and ammonium ferric citrate.
The transposon insertion in a mutant lacking the ability to hydrolyze esculin was localized using
arbitrary PCR as described previously [9,10]. PCR primers flanking the putative insertion site were
lmo1930F (5′-CTGATAATCGGCTTCACTTTG-3′) and lmo1930R (5′-GCAGCTGCTGACACT ACTT-3′).
The subsequent PCR product was then visualized on a gel and sequenced (Genewiz Inc., South Plainfield,
NJ, USA). The copy number of the transposon was established using qPCR as described [13].

2.3. Genetic Complementation

The coding region of the lmo1930 homolog in strain 2010-1723 (hereafter referred to as “lmo1930”) was
amplified using primers H1H3compsoeC (5′-TAAAAAGATAGGGGAATTAAGGATGAAACTTAACT
TTTTATATGC-3′) and H1H3compsoeD (5′-CAGTGCGGCCGCTTAATAATTTCTTTTATCTAAAAC
AC-3′). Since lmo1930 is located within an operon (Figure 1), the upstream region at the
start of the operon that contained the in silico-predicted promoter was also amplified using
primers H1H3compsoeA (5′-GTACGGTACCGCTACATAGACTTTTAAGCACT-3′) and H1H3compsoeB
(5′-CCTTAATTCCCCTATCTTTTTA-3′). These two PCR products were then purified and joined together
using splicing by overlap extension (SOE) PCR as previously described [14], to provide a fusion of the
upstream regulatory region with the coding region of lmo1930 from strain 2010L-1723. The resulting
product was digested with KpnI and NotI (New England Biolabs, Ipswitch, Ma, USA) and ligated into



Microorganisms 2019, 7, 539 3 of 8

similarly-digested shuttle vector pPL2 [15]. The resulting recombinant plasmid pPLH1H3comp was
transformed into chemically-competent Escherichia coli DH5α (Invitrogen, Waltham, MA, USA), resulting
in strain E. coli DH5α_pPLH1H3comp. It was then extracted from E. coli DH5α_pPLH1H3comp and
electroporated into mutant H1H3, resulting in strain H1H3::lmo1930.
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Figure 1. Organization of the lmo1930 genomic region in L. monocytogenes EGD-e. Genes belonging to
the lmo1930 operon as described by Toledo-Arana et al. (2009) are indicated in green. Downstream
genes aroF and aroB belonging to the aroF aroB lmo1926 hisC tyrA aroE operon (Toledo-Arana et al. (2009)
are in black. The transposon insertion in lmo1930 is indicated with a downwards-pointing red triangle.
Primers H1H3compsoeA and H1H3compsoeB used for amplification of the upstream regulatory region
are indicated with blue arrows. Primers H1H3compsoeC and H1H3compsoeD used for amplification
of the lmo1930 coding region are indicated with orange arrows.

3. Results and Discussion

3.1. Insertional Inactivation of lmo1930 Abolished Esculin Hydrolysis and Resulted in Impaired Growth

The capacity to hydrolyze esculin was determined for 2392 and 1092 mariner-based transposon
mutants of L. monocytogenes strains 2011L-2858 and 2010L-1723, respectively. The mutants were tested
on TSAYE supplemented with esculin and ferric ammonium citrate (TSAYE-Es) to identify those unable
to hydrolyze esculin and thus, lacking black pigmentation on the agar. This screening identified one
esculin hydrolysis-deficient mutant of strain 2010L-1723, designated H1H3, while similar mutants of
2011L-2858 were not identified. Arbitrary PCR indicated that H1H3 harbored a transposon insertion in
lmo1930 (Figure 1). PCR with primers flanking this site resulted in a product that was ~1.4 kb (the
approximate size of the mariner-based transposon) larger than the PCR product from the parental
strain (Figure 2). Sequencing of this PCR product localized the transposon insertion at nt 595 in
the coding region of the lmo1930 homolog of 2010L-1723. Real-time PCR indicated that this mutant
harbored a single copy of the transposon (data not shown).
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Figure 2. PCR confirmation of the transposon insertion in lmo1930. Bands are the result of amplification
with lmo1930F and lmo1930R as described in Materials and Methods. Lanes: 1, mutant H1H3; 2,
parental strain 2010L-1723, 3, genetically-unrelated, serotype 1/2b strain 2011L-2858; M, molecular
weight markers (HyperLadder 1kb; Bioline, Boston, MA, USA).
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On TSAYE-Es, H1H3 was unable to hydrolyze esculin, producing white colonies that were also
consistently smaller than the parental strain (Figure 3). Smaller colonies were also produced on TSAYE
(data not shown). Furthermore, H1H3 grew slower, with a prolonged lag phase in the non-selective
liquid media TSBYE (Figure 4), and markedly lower final absorbance in BHI (Figure 4). Surprisingly,
however, on BHI agar supplemented with esculin and ferric ammonium citrate, H1H3 was able to
hydrolyze esculin and formed black colonies, even though the colony size was still considerably smaller
than the parental strain (data not shown). Interestingly, this same behavior was observed in TSAYE
supplemented with vitamin K2 (Figure 3). This finding suggests that nutrient components in BHI and
vitamin K2 complement the esculin hydrolysis phenotype of the mutant that was noted in TSAYE-based
media. The fact that H1H3 was capable of esculin hydrolysis on TSAYE supplemented with vitamin
K2 suggests that menaquinone production was impacted in H1H3 and is likely linked to the esculin
hydrolysis phenotype. However, BHI and vitamin K2 supplementation under the conditions that were
employed appear to be inadequate for full restoration of colony size, possibly indicating that lmo1930
is required for the production of additional compounds that are needed for wild type levels of growth.
The findings also suggest that the mutant would likely not have been identified had the transposon
library been screened on BHIA with esculin and ferric ammonium citrate, instead of TSAYE-Es.Microorganisms 2019, 7, x FOR PEER REVIEW 5 of 9 
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Figure 3. Impact of the transposon insertion in lmo1930 on colony size and esculin hydrolysis of
L. monocytogenes, and effects of K2 supplementation. Cultures were grown on media with esculin
/ ferric ammonium citrate (TSAYE-Es) (left) or TSAYE-ES with vitamin K2 (right) as described in
Materials and Methods. Panels: A, parental strain 2010L-1723; B, mariner-based mutant H1H3; C,
H1H3 complemented with the lmo1930 homolog. Strains were grown at 37 ◦C for 24 h (top) and 48 h
(bottom).
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Figure 4. Aerobic growth of 2010L-1723 and H1H3 at 37 ◦C. Parental strain 2010L-1723 was grown in
TSBYE (blue line) or BHI (orange line), and H1H3 was also grown in TSBYE (purple line) or BHI (green
line) as described in the Material and Methods. Curves were generated from repeated measures of
OD600 over 48 h. Each line represents the average measures of four biological replicates per strain in
one representative trial. Error bars represent standard deviation.

3.2. Genetic Complementation Confirms Role of lmo1930 in Esculin Hydrolysis

Genetic complementation of lmo1930 fused with its upstream regulatory region restored both
colony size and esculin hydrolysis (Figure 3). This indicates that both of the observed phenotypes,
i.e., reduced colony size and lack of esculin hydrolysis were both due to the inactivation of lmo1930.
Furthermore, the complementation data demonstrate that these phenotypes were not due to potential
polar effects of the transposon insertion on the previously-studied aroB or other genes downstream of
lmo1930.

3.3. Inactivation of lmo1930 Markedly Reduces Tolerance to LiCl and Compromises Growth of L.
Monocytogenes on LiCl-Containing Selective Media Such as MOX and RAPID’L.mono agar

As discussed above, esculin hydrolysis plays a key role in the differential detection of
L. monocytogenes and other Listeria spp. in a number of selective media. MOX is one such medium that
takes advantage of the black precipitate formed when esculin is hydrolyzed. Interestingly, we found
that H1H3 not only failed to form back colonies but also lacked the ability to grow on MOX. The ability
of H1H3 to grow on MOX was restored upon complementation with the intact lmo1930 (Figure 5).

To identify which component(s) of MOX resulted in this lack of growth, H1H3 was tested for
growth on BHIA with and without the MOX antimicrobial supplement, as well as on MOX base
lacking the antimicrobial supplement. Growth of H1H3 was similar on BHIA with or without the MOX
supplement (data not shown), suggesting that the MOX supplement was not a major contributor to the
lack of growth of H1H3 on MOX.

MOX base contains LiCl (final concentration, 1.5%) as an agent to inhibit background
microorganisms. Lithium is a chaotropic agent that has been shown to interfere with protein
solubility [16], and we, therefore, hypothesized that the growth impairment of H1H3 on MOX
may reflect impaired tolerance of the mutant to lithium. Indeed, when H1H3 was plated on BHI
supplemented with 1.5% LiCl (BHI-LiCl), no growth was observed after 24 h, while the parental
strain grew, albeit with smaller colonies than on BHIA (data not shown). By 48 h there was a four-log
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reduction in the population of H1H3 on BHIA-LiCl vs BHIA. This finding reveals a novel role of
lmo1930 in LiCl tolerance of L. monocytogenes; impaired tolerance to LiCl was a major contributor to the
lack of growth of the lmo1930 transposon mutant on MOX.
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Figure 5. Growth of L. monocytogenes strains on RAPID’L.mono and MOX plates. A, parental strain
2010L-1723; B, mariner-based mutant H1H3; C, H1H3 complemented with the lmo1930 homolog.
Cultures were grown at 37 ◦C for 48 h as described in Materials and Methods.

Besides MOX, LiCl is a key selective agent in several other Listeria selective agar media including
LPM, PALCAM, RAPID’L.mono agar, and Brilliance Listeria agar, as well as Fraser and Half-Fraser
broths used as primary/secondary enrichments in the commonly-employed ISO method [8,17]. Growth
of H1H3 on RAPID’L.mono plates was severely inhibited with barely-visible growth, where the culture
was most heavily inoculated on the agar plate and no individual colonies could be detected (Figure 5).
The collective findings suggest that validated L. monocytogenes isolation methods that utilize LiCl
would likely fail to recover strains with mutations in lmo1930.

Previously-characterized menaquinone biosynthesis mutants were shown to have primarily
anaerobic metabolism [18]. In rich media such as BHI, inactivation of aroA led to reduced growth
rates aerobically and anaerobically, while aroB mutants grew poorly aerobically and failed to grow
at all anaerobically, and growth of an aroE mutant was severely impaired aerobically but improved
anaerobically, albeit still impaired in comparison to the parental strain [18]. Colony size of H1H3
on BHIA or MOX was noticeably improved anaerobically, and the difference in colony size between
H1H3 and the parental strain 2010L-1723 was not as striking anaerobically as under aerobic conditions,
where in fact H1H3 was completely unable to grow on MOX (Figure 6). Further biochemical and
transcriptional analysis is needed to assess whether metabolism in H1H3 is primarily anaerobic and
especially impaired in the presence of oxygen.

The gene investigated here, lmo1930 was not previously reported to be implicated in menaquinone
biosynthesis. However, the lmo1930-inactivated mutant H1H3 exhibited phenotypes such as smaller
colony size and growth deficiency in BHI. A similar growth deficiently was noted previously in aro
mutants impaired in menaquinone biosynthesis [18]. Both the colony size and growth rate phenotypes
were restored via genetic complementation. These findings are also supported by the transcriptional
findings from Toledo-Arana et al. (2009) [19], that despite its proximity to the previously-studied aro
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genes, lmo1930 is the penultimate gene in a menaquinone biosynthesis operon which includes the
preceding ORFs folE, lmo1932, and menH, and is terminated by ndk (Figure 1). The extent to which
mutants of other genes in this operon, and potentially also aro mutants, may also be impaired in
esculin hydrolysis, LiCl tolerance and growth on selective media remains to be determined. While our
findings exhibited some similarities to previous work, determining the role of lmo1930 in menaquinone
biosynthesis was not a major focus of the current study, and additional work would be required to
conclusively establish that link.
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growth rate phenotypes were restored via genetic complementation. These findings are also 

supported by the transcriptional findings from Toledo-Arana et al. (2009) [19], that despite its 

proximity to the previously-studied aro genes, lmo1930 is the penultimate gene in a menaquinone 

biosynthesis operon which includes the preceding ORFs folE, lmo1932, and menH, and is terminated 

by ndk (Figure 1). The extent to which mutants of other genes in this operon, and potentially also aro 

mutants, may also be impaired in esculin hydrolysis, LiCl tolerance and growth on selective media 

Figure 6. Anaerobic growth of 2010L-1723 and H1H3 under anaerobic conditions. Left panel; TSAYE;
right panel, MOX. Strains were grown for 72 h at 37 ◦C as described in Materials and Methods.

In conclusion, the current study implicates lmo1930, a gene in an operon implicated in menaquinone
biosynthesis, in two key phenotypes i.e., esculin hydrolysis and LiCl tolerance, required for the selective
enrichment of L. monocytogenes in several most commonly-employed selective enrichment protocols.
Our findings indicate that L. monocytogenes strains with mutations leading to inactivation of lmo1930,
and possibly mutants of other genes involved in menaquinone biosynthesis, may evade detection
in many of the selective enrichment protocols for L. monocytogenes that are currently employed. The
incidence of such mutants in foods, the environment or illness remains currently unknown since they
would not be detected as putative listeria with many enrichment protocols. Selective enrichment
schemes that do not include LiCl and also utilize screening via molecular methods may be needed to
ensure adequate surveillance of L. monocytogenes and other Listeria spp. in foods and the environment.
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