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Abstract: The endophytic strain Chaetomium cupreum isolated from metal-contaminated soil was
inoculated in Eucalyptus globulus roots to identify genes involved in metal stress response and plant
growth promotion. We analyzed the transcriptome of E. globulus roots inoculated with C. cupreum.
De novo sequencing, assembly, and analysis were performed to identify molecular mechanisms
involved in metal stress tolerance and plant growth promotion. A total of 393,371,743 paired-end
reads were assembled into 135,155 putative transcripts. It was found that 663 genes significantly
changed their expression in the presence of treatment, of which 369 were up-regulated and 294
were down-regulated. We found differentially expressed genes (DEGs) encoding metal transporters,
transcription factors, stress and defense response proteins, as well as DEGs involved in auxin
biosynthesis and metabolism. Our results showed that the inoculation of C. cupreum enhanced
tolerance to metals and growth promotion on E. globulus. This study provides new information to
understand molecular mechanisms involved in plant-microbe interactions under metals stress.

Keywords: Chaetomium cupreum; endophyte; Eucalyptus globulus roots; metal stress; transcriptome

1. Introduction

In Chile, copper (Cu) mining has generated an over-accumulation of metals in areas surrounding
Cu smelters, and Puchuncavi Valley (Valparaiso region, Chile) is a recognized place by the high
environmental pollution originated mainly for Cu smelting. The toxicity of metals can generate losses
of vegetal diversity and functionality of species, leading to a change of the soil characteristics and
difficulty to establish vegetation [1]. However, it is known that prolonged exposure to metals can
generate a selection of resistant/tolerant plant populations [2]. Eucalyptus spp. has been reported as
a metal-tolerant species and used for phytoremediation process due to it fast growth; high biomass
production; wide adaptability; and accumulation of high amounts of metals such as Cu, Zn, Pb,
and Cd [3].

Soil microorganisms play an important role in the restoration of environments affected by
contamination of metals, promoting plant growth through different mechanisms such as indole acetic
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acid (IAA) production, siderophores, organic acids, biosurfactants, and phosphate solubilization [4].
Among these, endophytic fungi may confer physiological and ecological benefits to the host, including
enhanced growth, protection from attack of pathogens, help establishment in degraded ecosystem:s,
and tolerate different types of stress [5].

Previous reports have shown that endophytic fungi inoculation enhances plant growth and
tolerance in hosts under metal stress [6]. For example, endophytic fungus C. cupreum enhances growth
and tolerance to Cu in E. globulus plants cultivated in soils with high concentrations of metals and
metalloids [7]. The inoculation of the strain Penicillium funiculosum LHLO6 to Glycine max plants reduces
metal accumulation and activates signaling of stress-response and antioxidant systems [8]. While the
inoculation of Gaeumannomyces cylindrosporus increased root length and biomass under lead stress,
moreover, it altered translocation and accumulation of lead in Zea mays plants [9].

The development of new sequencing technologies has contributed to characterizing molecular
responses to abiotic stress in several plants [10,11]. Among them, RNA-sequencing (RNA-seq) has
been successfully applied in transcriptomic studies providing information about levels of transcripts
and changes in gene expression even in non-model species [12-14]

Recent studies have delved into the molecular mechanisms involved in the tolerance of plants to
metal stress. However, only a few transcriptomic studies have focused on understanding how the
inoculation of endophytic microorganisms in plants can contribute to the response to metal stress,
considering that there are some microorganisms that provide beneficial effects for the growth and
productivity of plants through different molecular mechanisms [15].

On the other hand, several studies have described mechanisms involved in Cu tolerance in plants,
including: i) a reduction of the uptake of Cu by the plant or ii) an increase of the efflux of Cu [16], iii)
sequestration and compartmentalization [17], iv) extracellular precipitation [18], and v) high regulation
of antioxidant defense systems [19]. Recently, Wang, et al. [12] described genes involved in Cu tolerance
in Paeonia ostii finding that genes related to Cu transporters, plant hormone, signal transduction,
transcription factors, and antioxidant systems play an important role in Cu stress response.

The understanding of plant-microbe interactions at the molecular level is an important aspect for
the development of new phytoremediation alternatives based on the use of native microorganisms
adapted to metal stress.

In the present research, we analyzed the transcriptomic response of E. globulus inoculated with C.
cupreum growing in a multi-contaminated soil with metals. Analysis were carried out with de novo
assembly of the transcriptomics of E. globulus roots tissues. The aim of this study was to identify genes
involved in plant growth promotion and metal stress response, which provide important molecular
information to understand plant-microbe—metal interactions and contribute to new strategies that can
be used in phytoremediation processes.

2. Materials and Methods

2.1. Plant Material and Experiment Design

Clonally propagated E. globulus seeds were acquired from a commercial nursery (Semillas
Imperial, Los Angeles, Chile). Seeds were germinated in vermiculite in a plant growth chamber at
room temperature. After 4 weeks, uniform plants were selected and transplanted to 300 cc plastic pots
with a mixture of Puchuncavi Valley soil: vermiculite (1:1 v/v) as a substrate. The soil is classified as an
Entisol (Chilicauquén series) and has a pH,, of 5.54 and Cu, Zn, Pb, As and Cd content (in mg Kg_l) of
385, 183, 135, 52 and 1.1 respectively. Pots were randomly divided into two groups, without microbial
inoculation as control while the other group was inoculated with fungal strain C. cupreum according to
Almonacid, et al. [20], where one slant of active mycelia was diluted in 40 mL of sterile distilled water
then homogenized and vigorously agitated (10 mL of this suspension were inoculated, equivalent to
70 mg of dry mycelium). Plants were grown in a greenhouse with supplementary light provided by
incandescent cool white lamps (400 umol m~2s~1 400-700 nm) (Sylvania®, Wilmigton, MA) with a
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16/8 h day/night cycle at 24/16 °C and 50% relative humidity. After 90 days post-inoculation (dpi), all
plants were harvested and five biological samples were dried in an air-forced oven at 70°C for 48 h and
then were weighted to determine the biomass production. Entire roots systems were collected from
five biological replicates of the control and inoculated plants. All these samples were rinsed thoroughly
with distilled water, immediately frozen in liquid nitrogen and stored at —80°C until RNA extraction.

2.2. Fungus Detection in Roots by Scanning Electron Microscopy (SEM)

For fungus visualization, six root segments collected at the end of the experiment (90 dpi) from
non-inoculated and inoculated plants were cut into 1-cm pieces. Segments were obtained from the
upper part (near to stem) and lower part (lateral roots). Samples were observed by SEM (Hitachi SU
3500, Japan).

2.3. RNA Extraction, Sequencing and Illumina Reads Processing

Total RNA was extracted from 70 mg of root tissue collected at the end of the experiment
(90 dpi) using Spectrum ™ Plant Total RNA kit (Sigma-Aldrich, Germany) following the manufacturer’s
instructions. The yield and quality of the RNA isolation samples was measured using a Qubit® 2.0
Fluorometer (Life Technolology, Carlsbad, CA), and Fragment Analyzer" Automated CE System
(Analytical Advanced Technologies, Ames, IA). To obtain good coverage of the E. globulus transcriptome,
equal quantities of individual RNAs from root tissues of five biological replicate plants were used
for library construction. Complementary DNA (cDNA) libraries were constructed using the TruSeq
RNA Sample Preparation kit v2 (Illumina®, San Diego, CA) following the Illumina manufacturer’s
instructions and subsequently sent for sequencing to Macrogen Inc (Seoul, Korea). A total of 10
samples were sequenced in a single lane of an Illumina HiSeq 4000 platform (Illumina) in paired-end
mode for 101 cycles. The resulting FASTQ files containing [llumina raw sequences were analyzed and
trimmed using NGSQC Toolkit v2.3 [21], removing adaptors and low-quality reads, based on their
Q-score composition, removing all reads with a content of Q>30 lower than 70% of bases.

2.4. De novo Transcriptome Assembly

Due to the endophytic nature of C. cupreum, high-quality reads were aligned with Eucalyptus
grandis genome using BLASTN. Matching reads were used to construct a de novo assembly using
Trinity software v2.8.3 [22]. Transcriptome was assembled on an Amazon Web Service Linux instance
m4.16xlarge and downstream analysis were carried out at Centro de Modelacién y Computacion
Cientifica (CMCC, Universidad de La Frontera, Chile). Refinement of transcriptome was carried
out mapping reads to assembled transcripts, and relative abundance in FPKM value (Fragments per
kilobase per transcript per million mapped reads) was calculated with RSEM v1.2.26 [23]. Poorly
supported transcripts were removed, keeping all transcripts with a relative abundance of at least
1 FPKM for downstream analysis. Highly similar and redundant transcripts were clustered using
CD-HIT-EST with a threshold of 95% [24]. In order to validate the integrity of this de novo assembly, a
comparison between E. globulus assembled transcriptome was carry out by BUSCO (Benchmarking
Universal Single-Copy Orthologs) against OrthodBv9 database (embryophyte), to identify highly
conserved orthologous genes [25].

2.5. Functional Annotation of the Transcriptome

The resulting transcripts were aligned into the SwissProt database using BLAST+ with an
e-value filter of 1-e71¥ as threshold, and evaluated in hidden Markov profiles to identify any family
membership and conserved domains in PFAM-A database [26]. Functional annotation and Gene
Ontology (GO) terms classification (Cellular component, Biological process and Molecular function
and) were performed with PANTHER system [27], using as input gene lists obtained from blast top hit
using reference proteomes collection from EMBL as database.
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2.6. Differential Expression Analysis

The relative abundance was calculated using RSEM through align_and_estimate_abundance.pl
script and the resulting abundance for each sample were merged in a matrix and analyzed
with run_DE_analysis.pl script, which involves the Bioconductor package DESeq2 in R statistical
environment [28]; both scripts were contained in the Trinity package. To judge the significance of gene
expression, a False Discovery Rate value (FDR) lower than 0.05 and a minimum fold change (FC) of
2 were set as thresholds. Main DEGs related to metal response and plant growth promotion were
analyzed through a heat map using log10 ratio values of expression levels.

3. Results

3.1. Plant Biomass and Fungus Detection in Roots

After 90 dpi, inoculated plants showed significantly higher dry biomass as compared to the control,
and increased 37% in shoots and 45% in roots in relation to non-inoculated plants (Figure 1). According
to SEM images, no structures were observed in the roots of non-inoculated plants of E. globulus after
harvest, while in all plants inoculated, fungal hyphae were observed (Figure 2).
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Figure 1. Effect of inoculation of endophytic strain Chaetomium cupreum on shoot and root dry weight
of Eucalyptus globulus (90 days post-inoculation). Values are expressed as means + standard error.
Statistical significance was evaluated with t-student test *(p < 0.05).
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Figure 2. Detection of Chaetomium cupreum in roots of inoculated plants of Eucalyptus globulus (90 days
post inoculation) observed under scanning electron microscopy. Black arrows show fungal hyphae.
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3.2. Sequence Data, de novo Transcriptome Assembly and Annotation

Ten libraries, which include five control samples and five samples inoculated with C. cupreum
(90 dpi), with a total of 460.158.421 paired-end reads, were obtained. After sequence trimming for
adapter and filtering low quality reads, it resulted in 393.371.743 high quality reads (Table 1). De novo
transcriptome assembly after trimming, where transcripts with an estimated abundance lower than 1
FPKM and highly similar or redundant transcripts with a sequence similarity higher than 95% were
removed, resulted in 135.155 transcripts. Transcriptome statistics such as N50 and average length
values can be observed in Table 1.

Table 1. Summary of de novo assembly statistics of Eucalyptus globulus roots by Trinity software.

Eucalyptus globulus
Number of transcripts 131.155
Number of components 81.210
Size 147.15 Mbp
N10 4469 bp
N20 3580 bp
N30 3002 bp
N40 2540 bp
N50 2128 bp
Average length 1121.97 bp
Median 580 bp

Transcripts of the final assembly were aligned to the Swissprot database; the homology search
presented results for 37.667 sequences, corresponding to 27.9% of the total. De novo transcriptome was
compared against BUSCO database, which contains information about highly conserved orthologous
genes. Of the 1440 BUSCO genes, 1133 complete (78.7%), 108 fragmented (7.5%), and 199 missing
genes (13.8%) were found in our assembly (Table 2).

Table 2. Summary of evaluation of the de novo assembly of Eucalyptus globulus roots by BUSCO.

Complete BUSCOs 1133 78.7%
-Single-copy BUSCOs 574 39.9%
-Duplicated BUSCOs 559 38.8%
Fragmented BUSCOs 108 7.5%

Missing BUSCOs 199 13.8%

Total BUSCO genes 1.440 100.0%

3.3. Differential Expression Analysis

Differentially expressed genes (DEGs) were estimated using a fold change > 2 and a FDR <
0.05 as cut-off between control and treatment conditions. In total, we found 709 DEGs (Figure 3),
of which 403 were up-regulated and 306 were down-regulated in response to C. cupreum inoculation.
However, those genes that did not match in annotation with Blast hit were removed and discarded.
Therefore, we obtained 663 DEGs of which 369 were up-regulated and 294 down-regulated under
C. cupreum inoculation. From DEGs, we investigated their functions carry out gene ontology analysis
and classified them into three major GO terms (Figure 4). Between the annotated transcripts, cell and
organelle had the two greatest number of transcripts in cellular component terms. For the biological
process term, metabolic process, cellular process, and biological regulation had the most transcripts.
Within molecular function, most transcripts showed catalytic activity, binding and transporter activity.
According to the PHANTER classification system, we observed that the functional class transport and
transcription factor were down-regulated in treatment compared to control, where a greater number of
transcripts was presented (Figure 5).
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Figure 3. Volcano plot of differentially expressed genes between control (without microbial inoculation)
and treatment (with microbial inoculation) conditions in Eucalyptus globulus roots transcriptome. In red,
differentially expressed genes; in black, genes without variation in expression.
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Figure 4. Gene ontology distribution of Eucalyptus globulus transcripts according to level 1 categories:
GO, Cellular Component (CC), Biological Process (BP) and Molecular Function (MF). Genes are
differentially expressed in treatment compared to control condition.
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Figure 5. Distribution of differentially expressed genes according PHANTER classification system. The

bars show the number of genes in each protein functional class. Genes are differentially expressed in
treatment compared to control condition.

Among identified DEGs, we explore those involved in response to metal stress, metal transport
and plant growth promotion (Table 3). In the inoculated condition, we found down-regulated genes
that play an important role against metal stress, among them: metallothionein-like protein 1, peroxidase
10 precursor and heavy metal-associated isoprenylated plant protein 28 included in GO terms: metal ion
binding (GO:0046872), response to oxidative stress (GO:0006979) and metal ion transport (GO:0030001),
respectively. Other down-regulated genes were related to metals transport, Natural resistance-associated
macrophage protein 1 (Nramp1), Nramp3, Nramp5, Nramp 6, Metal tolerance protein 4 (MTP4), and Putative
Multidrug Resistance Protein (MRP) among others. Also, genes implicated in nutrient transport were
down-regulated, including high affinity nitrate transporter 2.5 (Nitrate transport, GO:0015706), [norganic
phosphate transporter 1-1 (Phosphate ion transmembrane transporter activity, GO:0015114), Potassium
transporter 5 (Potassium ion transport, GO:0006813), Sodium transporter HKT1 (Response to osmotic
stress, GO: 0006970; Sodium transporter, GO:0006814), Magnesium transporter MRS 2-3 (Magnesium ion
transport, GO:0015693), and Ammonium transporter 1 member 1 (Ammonium transmembrane transport,
GO:0072488). However, Sugar transporter ERD6-like 6, aquaporin TIP 2-1 and probable aquaporin PIP2-2
were up-regulated.

In addition, genes related to other abiotic and biotic stress were identified; transcription factors
MYB 102, MYB 74 and probable WRKY transcription factor 72 were down-regulated. While MYB 86,
Snakin-2 and Disease resistance protein RPP4 were up-regulated.

Several up-regulated genes involved in plant growth promotion via auxin production were
identified, including: Auxin-induced protein 22A, auxin-induced protein 22D, auxin-induced
protein AUX22, auxin-responsive protein IAA3, auxin-responsive protein IAA4, auxin efflux carrier
component 2, auxin-induced in root cultures protein 12 precursor, auxin-responsive protein SAURS0,
auxin-responsive protein SAUR78, and indole-3-acetic acid-amino synthetase GH3.17, which were
mainly included in GO terms: Auxin-activated signaling pathway (GO:0009734), response to auxin
(GO:0009733), positive regulation of cell growth (GO:0030307), auxin homeostasis (GO:0010252) and
root development (GO:0048364).
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Table 3. Details of differential expression genes involved in response to heavy metals stress and plant growth promotion in Eucalyptus globulus roots transcriptome.

Gene Description Ontology FPKM Control FPKM Treatment p-Value Up/Down
Stress responses
Metallothionein-like protein 1 ME: Metal ion binding (GO:0046872) 69932.98 32933.82 8.65x 1077 Down
. ME: Metal ion binding (GO:0046872), BP: Response to _135
Peroxidase 10 precursor oxidative stress (GO:0006979) 1370.02 615.98 1.61 x 10 Down
: g . BP: Metal ion binding (GO:0046872), Cellular 6
Probable 2-oxoglutarate-dependent dioxygenase response to toxic substances (GO:0097237) 1049.91 451.091 1.63 x 10 Down
Protein Cobra precursor BP: Response to salt stress (GO:0006950) 85.18 1617.25 0 Up
P ) . . BP: Detoxification of arsenic-containing substance 34
Protein High arsenic content 1, mitochondrial (GO:0071722) 1046.34 318.95 5.68 x 10 Down
Protein sensitive to proton rhizotoxicity 2 MF: Metal ion binding (GO:0046872) 234.41 103.58 4.83 x 10710 Down
. . . . MF: ATPase activity, coupled to transmembrane _41
Putative Multidrug resistance protein movement of substances (GO:0042626) 161.09 71.71 3.79x 10 Down
. ME: Cation transmembrane transporter activity
Metal tolerance protein 4 (GO:0008324) 723.47 280.76 0 Down
- BP: Response to osmotic stress (GO:0006970), 68
Transcription factor MYB102 response to salt stress (GO:0009651) 120.87 31.99 4.63 x 10 Down
Transcription factor MYB74 BP: Response to salt stress (GO:0009651) 181.21 66 2.09 x 1070 Down
Transcription factor MYB86 BP: Regulation of stomatal movement (GO:0010119) 35.69 153.43 3.96 x 1072 Up
Heat stress transcription factor A-2 BP: Cellular response to heat (GO:0034605) 298.08 124.75 7.8 x 10730 Down
Universal stress protein A-like protein MEF: AMP binding (GO:0016208) 62.21 24.3 2.78 x 10710 Down
Probable WRKY transcription factor 72 BP: Defense response (GO:0006952) 344.15 89.65 4.22 x 10762 Down
Disease resistance protein RPS4B BP: Defense response signaling pathway (GO:0009870) 269.97 960.33 0.003 Up
Disease resistance-like protein DSC1 ME: Defense response to bacterium (GO:0042742) 269.97 960.33 1.48 x 107> Up
Snakin-2 precursor BP: Defense response (GO:0006952) 70.25 323.33 5.25 x 10721 Up
. . . BP: Defense response (GO:0006952), response to biotic _76
Disease resistance response protein 206 stimulus (GO:0009607) 75.24 308.47 5.89 x 10 Up
3,9-dihydroxypterocarpan 6 A-monooxygenase BP: Defense response (GO:0006952) 234.72 1139.56 1.69 x 1072 Up
Cysteine protease X CP2 precursor ME: Defense response to bacterium (GO:0042742) 403.5 1270.23 0 Up
Disease resistance protein RPP4 BP: Defense response (GO:0006952) 239.78 628.32 7.88 x 10722 Up
g . L BP: Ethylene-activated signaling pathway _40
Ethylene-responsive transcription factor ERF043 (GO:0009873) 42.47 147.73 1.04 x 10 Up
Cell transport
BP: Iron ion homeostasis (GO:0055072), iron ion 23
Metal transporter Nramp1 transmembrane transport (GO:0034755) 1849.04 706.19 1.68 x 10 Down
Metal transporter Nramp3 BP: Iron ion transmembrane transport (GO:0034755) 1613.53 378.21 3.64 x 10734 Down
Metal transporter Nramp5 BP: Iron ion homeostasis (GO:0055072) 1849.04 706.19 0 Down
Metal transporter Nramp6 BP: Iron ion transmembrane transport (GO:0034755) 1613.53 378.21 7.81x 107 Down
Heavy metal-associated isoprenylated plant MEF: Metal ion binding (GO:0046872), BP: Metal ion o5
protein 28 transport (GO:0030001) 2010.9 1105 8.38 > 10 Down
. o BP: Cellular response to nitrate (GO:0071249), nitrate _»
High affinity nitrate transporter 2.5 transport (GO:0015706) 156.4 53.16 4.63 x 10 Down
High-affinity nitrate transporter 3.2 BP: Nitrate assimilation (CO:0042128), nitrate 7323.21 3085.33 8.34 x 1074 Down

transport (GO:0015706)
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Table 3. Cont.

Gene Description Ontology FPKM Control FPKM Treatment p-Value Up/Down
Inorganic phosphate transporter 1-1 BP: Phosphate ion tr;icr;lg%e(g ;{ zliz)e transporter activity 2858.46 50.92 8.77 x 107 Down
Potassium transporter 5 BP: Potassium ion transport (GO:0006813) 2330.51 570.91 4.86 x 1074 Down
. BP: Response to osmotic stress (GO:0006970), sodium 23
Sodium transporter HKT1 ion transport (GO:0006814) 116.31 50.95 117 x 10 Down
Magnesium transporter MRS2-3 BP: Magnesium ion transport (GO:0015693) 924.34 365.83 6.95 x 10713 Down
. BP: Ammonium transmembrane transport
Ammonium transporter 1 member 1 (GO:0072488) 3059.06 1050.29 0 Down
. . ME: Secondary activate sulfate transmembrane 10
High affinity sulfate transporter 1 transporter activity (GO:0008271) 433.26 100.61 1.59 x 10 Down
Aluminum-activated malate transporter 10 BP: Malate transport (GO:0015743) 379.74 126.8 3.78 x 1072 Down
Sugar transporter ERD6-like 6 BP: Glucose homeostasis (GO:0042593) 28.58 102.73 3.24 x 10736 Up
. MF: Water channel activity (GO:0015250), BP: _55
Probable Aquaporin PIP2-2 Response to water deprivation (GO:0009414) 78.13 1168.64 1.39 x 10 Up
. MEF: Water channel activity (GO:0015250), BP: Water 3
Aquaporin TIP1-3 transport (GO:0006833) 64.88 252.7 8.49 x 10 Up
Plant growth
Auxin-induced protein AUX22 MF: Auxin-activated signaling pathway (GO:0009734) 106.53 349.04 2.86 x 10720 Up
. . . BP: Auxin-activated signaling pathway (GO:0009734), _40
Auxin-responsive protein IAA3 response to auxin (GO:0009733) 18.84 167.76 5.82 x 10 Up
Auxin-responsive protein IAA4 BP: Auxin-activated signaling pathway (GO:0009734) 18.84 167.76 3.26 x 1074 Up
Auxin-induced protein 22D BP: Auxin-activated signaling pathway (GO:0009734) 18.84 167.76 1.33 x 1077 Up
. . BP: Auxin-activated signaling pathway (GO:0009734),
Auxin efflux carrier component 2 auxin efflux (GO:0010315) 10.46 115.46 0 Up
Auxin-induced in root cultures protein 12 BP: Auxin-activated signaling pathway (GO:0009734) 142.02 772.68 419 x 10748 Up
. . . BP: Auxin-activated signaling pathway (GO:0009734), _15
Auxin-responsive protein SAURS50 regulation of growth (GO:0040008) 18.44 108.18 111 x 10 Up
. . . BP: Positive regulation of cell growth (GO:0030307), _»
Auxin-responsive protein SAUR78 responsive to auxin (GO:0009733) 46.66 107.16 242 x 10 Up
Auxin- induced protein 22A BP: Auxin-activated signaling pathway (GO:0009734) 147.72 441.66 1.15 x 10760 Up
Indole-3-acetic acid-amino synthetase GH3.17 BP: Auxin homeostasis (GO:0010252) 41.6 137.52 0 Up
. BP: Response to auxin (GO:0009733), root 88
Transcription factor MYB61 development (GO:0048364) 35.69 153.43 1.29 x 10 Up
. 37 MF: Hormone activity (GO:0005179), BP: Cell-cell 23
Protein RALF-like 24 precursor signaling (GO:0007267) 182.13 487.29 3.06 x 10 Up
Metal-binding
ME: Copper ion binding (GO:0005507), 14
Laccase-15 precursor oxidoreductase activity (GO:0016491) 590.37 1885 6.34 x 10 Up
ME: Copper ion binding (GO:0005507), _51
Laccase-14 precursor oxidoreductase activity (GO:0016491) 675.65 2738.33 9.02 x 10 Up
Laccase-16 precursor MF: Copper ion binding (GO:0005507), 675.65 2738.33 1.01 x 107110 Up

oxidoreductase activity (GO:0016491)

9 of 15
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Expression patterns between control and treatment conditions of the most important DEGs related
to metal response and plant growth promotion are shown in Figure 6.

Lng FPKM
Inorganic phosphate transporter 1-1
Metal transporter NRAMP1 I 3.0
Potassium transporter 5
Peroxidase 10 precursor 25
Metal transporter NRAMP3 2.0
WRKY transcription factor 72
High affinity nitrate transporter 2.5 1.5
Transcription factor MYB 102

Auxin-induced in root cultures protein 12

Auxin-induced protein 22A

Aquaporin TIP1-3

Auxin-responsive protein IAA3
Sugar transporter ERD6-like 6
Auxin-responsive protein SAURT78

Transcription factor MYB 61

Control Inoculated

Figure 6. Heat map showing differential expression of the most important up/downregulated genes
between control (without microbial inoculation) and inoculated treatment (with fungal inoculation)
conditions in Eucalyptus globulus roots transcriptome.

4. Discussion

Within abiotic stress types, metal toxicity is one of the factors that causes serious deleterious
effects in plants. Nevertheless, the alleviation of heavy metal toxicity by endophytic fungi could be
an efficient strategy to enhance heavy metal tolerance in plants [9]. In this study, colonization of
C. cupreum was detected at the end of the experiment in samples of lateral roots and near to the stem of
plants, which suggests that inoculation of C. cupreum is persistent over time. Endophytic fungi establish
a chemical communication with the host through sugars, fatty acids, amino acids, polysaccharides,
flavonoids, among others [29], and enters the plant through degradation of the cell wall or by fissure
on roots [30]. Once inside the plant, the endophytic fungi can produce different chemical compounds
with a beneficial effect on the performance of plants under heavy metal stress.

Exposure to metals causes the formation of reactive oxygen species (ROS) in plants, which
leads to an imbalance in redox homeostasis [16]. Plants can counteract these negative effects by
intracellular mechanisms such as the action of metal chelating peptides (metallothioneins and
phytochelatins) and by activating antioxidant mechanisms. In our study, it was observed that
inoculation of C. cupreum caused a down-regulation of genes involved in the detoxification of metals
including, metallothionein-like protein 1 that acts by sequestering metals through thiol groups of their
cysteine residues, whose distribution influences the capacity of union and sequestration of metals
to maintain homeostasis [31]. The metallochaperone heavy metal-associated isoprenylated plant protein
28 (HIPP28), that acts against the excess of metals, binding them through their cysteine residues
and transporting them to intracellular compartments, helping with the detoxification of metals
and maintaining homeostasis [32], and peroxidase 10 precursor acts decomposing hydrogen peroxide
generated in response to oxidative stress in addition to participating in the oxidation of reducing toxins,
lignin biosynthesis, suberization and auxin metabolism, were also down-regulated [33].

On the other hand, several genes associated with the transport of metals were also down-regulated,
among them: Nramp1, Nramp3, Nramp5, Nramp 6, MTP4 and MRP. Nramp genes play an important role
in the uptake and translocation of a wide range of metal ions to the plant that include Cd, Zn, Fe, Cu
and Mn, and it has been described that an up-regulation of these genes improves the accumulation of
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metals in Arabidopsis thaliana [34]. MTP4 has been described as a divalent cation efflux transporter that
acts in the cytoplasm, being essential for the maintenance of metal homeostasis [35] and MRP realizes
a similar role transporting metal ions to the vacuole as a detoxification mechanism of plants [36].

This suggests that the inoculation of C. cupreum prevents the metals present in the soil from
being translocated to the roots of the plants of E. globulus, a finding which agrees with previous
works where C. cupreum inoculation contributes positively to decreasing indicators of stress such
as lipid peroxidation level and proline content because metal ions were adsorbed in the cell wall of
the fungus [7]. However, this response mechanism depends directly on the plant-microorganism
interaction, and on the type of host plant, because other studies showed that other endophytic species
such as Mucor sp. despite having a protective effect on Arabidopsis arenosa plants by accumulating a
lower amount of metals compared to the non-inoculated control, promotes translocation of metals
from roots to shoots, which is reflected in an up-regulation of genes associated with metal transport
and distribution such as HMA3, PCR2, ZIF1, and MTP1 [37]. Other transporters down-regulated were
high affinity nitrate transporter 2.5, inorganic phosphate transporter 1-1, potassium transporter 5, sodium
transporter HKT1, magnesium transporter MRS2-3, ammonium transporter 1 member 1 and high affinity
sulfate transporter 1, which are directly related to plant nutrition. According to this, an increase in plant
growth is not being promoted by an improvement in nutrient uptake. Other studies under C. cupreum
inoculation reported similar results attributing the improvement in plant growth to a probable action
of auxins [38]. Conversely, recent reports have shown an improvement in the absorption of nutrients
under colonization of endophyte fungi. For example, the endophyte fungus Serendipita indica improved
absorption and assimilation of phosphorus and nitrogen in Cunninghamia lanceolata plants under
phosphorus starvation [39]. Similarly, S. indica increased the expression of genes encoding nitrate
reductase in Arabidopsis thaliana [40]. While the endophyte fungus Mucor sp. increased the expression
of genes related to phosphorous homeostasis in A. arenosa plants that developed in mining tailings [37].
Metalliferous environments are characterized by scarce vegetation, acid soils severely eroded and show
high concentrations of metals, in addition to having a scarce supply of water and nutrients, which
directly affects the development of plants [1]. In our study, sugar transporter ERD6-like 6, aquaporin
TIP 2-1 and probable aquaporin PIP2-2 were up-regulated; these genes have important functions at the
physiological level of the plant including nutrition and growth, providing energy through hexose
accumulation and facilitating water transport respectively, besides participating in the adaptation to
several types of stress [41,42]. The storage of osmoprotectants such as sugars and amino acids allows
to maintain the cellular turgor pressure necessary for cell expansion under stressful conditions [43].
Previous reports suggest that endophytic fungi can promote sugar accumulation in adverse conditions,
which improves plant fitness, limiting water losses by decreasing the transpiration rate and through an
osmotic adjustment [44]. This could explain the up-regulation of genes related to sugar and water
transport as well as Transcription factor (TF) MYB86 that regulates the stomatic aperture.

In addition, DEGs related to other types of stress were identified, including TF MYB102 and
MYB74 (down-regulated), which were involved in the response to osmotic and saline stress respectively,
and MYBS86 (up-regulated) in the regulation of stomatal movement. It is well known that TFs can
modulate the expression of genes, allowing them to respond and adapt to different environmental
stimuli. MYB proteins participate in several important physiological processes, including control
of the cell cycle, regulation of metabolism, synthesis of hormones, and response to several types of
biotic and abiotic stresses [45]. Other genes were directly involved in plant defense response, among
them, Probable WRKY transcription factor 72 (down-regulated), whose expression is induced in the
presence of pathogens and also under saline and osmotic stress [46]. The role of WRKY transcription
factor 72 has been described to modulate the resistance against Xanthomonas oryzae pathovar oryzae
in rice plants [47]. Snakin-2 (up-regulated), a peptide with antimicrobial activity, which acts drilling
membranes of the microbial cells of pathogens [48]. Wherewith, it is inferred that the inoculation of
C. cupreum not only gives benefits to the plant in terms of protection against metal stress, but also plays
an important role in regulating the expression of genes related to other types of biotic and abiotic stress.
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In our study, we found genes related to biosynthesis and metabolism of auxins, which are
responsible for the division, elongation and differentiation of the plant cell, and therefore, are directly
involved with the growth of plants. We observed that genes classified as early response to auxins were
up-regulated, whose function is to regulate cellular responses to different levels of auxins present in
the plant [49]. Thereby, once the presence of auxins inside the cell is detected, several processes are
triggered that modulate the expression of auxin response genes where two main families of proteins
are involved, Auxin/Indole-3-acetic acid (Aux/IAA) and Auxin response factor (ARF). When there are low
auxin concentrations, the repressor proteins Aux/IAA (Auxin- induced protein AUX22, Auxin- induced
protein 22D, Auxin- induce protein 22A, Auxin- responsive protein IAA3 and Auxin- responsive protein
IAA4) form complexes with ARF proteins which regulate the expression of auxin-responsive genes,
preventing their actions as transcription factors; while, when the auxin concentration increases, it binds
to other receptors (TIR1 / AFB) together with other proteins (ASK1, CUL1 and RBX) and forms a
complex of ubiquitination that binds to the AUX /IAA repressor proteins and degrades them in the
265 proteasome, releasing the ARF proteins to activate or repress the transcription again [50]. Other
overexpressed genes were Indole-3-acetic acid amino synthetase GH3 which were involved in the synthesis
of IAA conjugates, providing a mechanism for the plant to counteract the excess of auxin, auxin efflux
carrier component 2, which transports this phytohormone between different cells and tissues of the
plant. Small auxin upregulated RNAs (SAURs) are the largest family of genes for early response to auxins
and are closely related to cell expansion and plant growth along with regular abiotic stress tolerance
responses such as saline and drought [51]. Auxin-induced roots cultures protein 12 (AIR12) was also
overexpressed and has been described as an induced auxin involved in the development of lateral
roots [52]. In previous studies, we observed that under the inoculation of fungal strain, plant growth
is stimulated [7] what was reflected in lateral roots proliferation and biomass production respect to
control, demonstrating the plant growth promoting effect of fungus C. cupreum.

5. Conclusions

Transcriptome changes in E. globulus inoculated with C. cupreum resulted in the detection of
several genes involved in stress response to heavy metals and plant growth promotion. The protective
effect showed by the inoculation of C. cupreum against metal stress is mainly due to the repression of
metal transporters in the plant, which added to the ability of C. cupreum to fix metal ions on its cell
surface (biosorption), preventing the generation of a ROS imbalance that subsequently triggers the
activation of metal chelation mechanisms and activates the antioxidant system. Furthermore, it was
found that the promoter effect of plant growth is given by a complex regulation of auxin biosynthesis
and metabolism, not by an improvement in nutrient uptake.
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