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Abstract: The discovery of new enzymes for industrial application relies on a robust discovery
pipeline. Such a pipeline should facilitate efficient molecular cloning, recombinant expression and
functional screening procedures. Previously, we have developed a vector set for heterologous
expression in Escherichia coli. Here, we supplement the catalogue with vectors for expression in
Bacillus. The vectors are made compatible with a versatile cloning procedure based on type IIS
restriction enzymes and T4 DNA ligase, and encompass an effective counter-selection procedure and
complement the set of vectors with options for secreted expression. We validate the system with
expression of recombinant subtilisins, which are generally challenging to express in a heterologous
system. The complementarity of the E. coli and Bacillus systems allows rapid switching between the
two commonly used hosts without comprehensive intermediate cloning steps. The vectors described
are not limited to the expression of certain enzymes, but could also be applied for the expression of
other enzymes for more generalized enzyme discovery or development.
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1. Introduction

Due to their wide application range, the discovery and development of proteases have a great
economic potential. An enzyme discovery pipeline should facilitate efficient molecular cloning,
recombinant expression and functional screening procedures [1,2], but often requires adaptation to the
enzyme of interest. Serine proteases constitute about a third of known proteolytic enzymes, including
the subtilisin family [3]. The subtilisins derived their name from Bacillus subtilis, from which the
enzyme was first isolated [4], but they are widespread, being found in bacteria, archaea, viruses and
eukaryotes [5]. Certain members of the subtilisin family, such as the extracellular subtilisin proteases
(ESPs), have been extensively researched and used in the detergent, leather and food industries [6].
Endogenous ESPs are produced as inactive precursor proteins consisting of a leader sequence [7]
that directs their export, a pro-sequence required for folding [8,9] and the catalytic domain. The latter
classifies as a Peptidase S8 (PF00082) domain in the Pfam classification [10]. The leader sequence in
ESPs is a typical secretory (Sec) sequence [11] directing export of the enzyme using the Sec-dependent
pathway, which is the most common pathway for secretion [11]. The pro-sequence has a dual role and
acts as both an inhibitor and as a molecular chaperone that guide correct folding of the enzyme [12–14],
and is removed by autoproteolysis. The autoproteolytic maturation poses a challenge for heterologous
production. It has, however, been shown that ESPs eliminated for the leader sequence but retaining
the pro-domain can be produced in the commonly used host Escherichia coli [12,15,16]. Furthermore,
a comprehensive pipeline has been generated that facilitates parallel, directional cloning of genes to
a vector set compatible with recombinant expression in E. coli [16]. The established system has proven
successful for expression of more than 100 enzymes, albeit not limited to proteases [17]. However,
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metagenomic discovery efforts, where E. coli is frequently used as a host, often suffer from a low
number of positive clones [18] despite the relatively high number of subtilisins per genome and their
wide representation in organisms [19]. The difficulties in expressing subtilisins and obtaining them in
an active form are likely due to the complex maturation and intrinsic proteolytic activity if unregulated.
However, yields for downstream characterization and application are often insufficient in E. coli.
Secretion of enzymes from the host is an attractive and cost-efficient production system due to limited
needs for cell processing and elaborate purifications. Bacillus subtilis is such an attractive host because
of its large capacity to export enzymes. Besides, it is non-pathogenic and is generally regarded as safe
(GRAS) by the US Food and Drug Administration, which make it a suitable host for enzymes that will
be used in food applications. However, regular B. subtilis species produce a number of extracellular
proteases that can potentially be detrimental for heterologous expression. Moreover, native proteases
pose a challenge for the assessment of recombinant proteases as they provide a background activity in
biochemical assays. For this purpose, protease-deficient strains, such as the WB800-derivatives [20],
are preferred.

To facilitate efficient molecular cloning of a large number of genes in parallel, a range of assembly
cloning techniques have recently been developed based on type IIS restriction enzymes and T4 DNA
ligase [21–23]. With several of these methods a counter-selection approach using the coupled cell
division B gene (ccdB) gene is used [23]. The negative selection is based on the presence of the
ccdB-gene in the cloning region of the vector which, upon sub-cloning, is replaced with the gene of
interest. This promotes the emergence of positive clones, as negative clones will express a cytotoxic
protein encoded by the ccdB-gene that cause gyrase-mediated chromosomal damage and ultimately
cell death [24]. For high-throughput cloning, counter selection is identified as particularly useful
to limited elaborate screening for positive clones. This has previously shown great advantages for
recombinational cloning [25,26].

In this study, we have developed three vectors for heterologous expression in Bacillus,
here‘explored in B. subtilis WB800N, and validated these by production of both intracellular
(green fluorescent protein) and extracellular (subtilisin) proteins. The vectors are compatible
with a versatile cloning regime based on fragment exchange (FX), encompassing an effective
counter-selection procedure and implementing secreted expression. The Bacillus system complement
the previously developed system for E. coli [16], and allows rapid switching between two commonly
used heterologous host systems without comprehensive intermediate cloning steps.

2. Materials and Methods

2.1. Construction of Fragment Exchange (FX)-Compatible Vectors for Bacillus Expression

Three vectors were designed for FX-compatible cloning [23] and recombinant expression in
Bacillus (Table S1). The p17-vector allows intracellular or secreted expression depending on the
absence or presence of native leader sequences in the sub-cloned gene, respectively. The p18-
and p19-vectors contain leader sequences reported to efficiently direct export of the recombinant
proteins [27]. All vectors contain C-terminal hexahistidine tags. As starting templates, two vectors
that had successfully been used in Bacillus, pSPLipA-hp and pSPYocH-hp (MoBiTec, Table S1),
were used [27]. To enable FX compatibility, a counter selection cassette containing the ccdB gene
and a chloramphenicol-resistance gene (camR) flanked by SapI restriction sites were added to the
cloning region of the templates using a megapriming polymerase chain reaction (PCR) cloning
method [28]. The cassette was amplified from the p1 vector [16,23] using cloning primers listed
in Table S2 and Phusion polymerase (New England Biolabs, Hitchin, UK) protocol and purified
with the QIAquick PCR purification kit (QIAGEN, Valencia, CA, US). The cassette was inserted to
BamHI linearized pSPLipA-hp and pSPYocH-hp vectors, and used as templates in the linear plasmid
amplification reaction as described elsewhere [16,28–30]. To identify whether product formation
occurred, the reaction mixture was screened by PCR using primers flanking the insertion site (Table S2).
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To remove template DNA, the PCR products were digested with 10 U DpnI (New England Biolabs,
Hitchin, UK) and transformed to E. coli MC1061 cells (Table S1). Plasmids were isolated using the
NucleoSpin plasmid purification kit (MACHEREY-NAGEL GmbH & Co, Düren, Germany). Sanger
sequencing was used to confirm correct cloning of all vectors. Plasmids and strains used in this study
are detailed in Table S1.

2.2. Sub-Cloning of gfp and apr Genes to the FX-Compatible Bacillus Vectors

The gfp gene (coding for residues 2–247 of green fluorescent protein, GFP) was sub-cloned from
the B. megaterium optimized pSSBm85 plasmid [27] into the pINITIAL cloning vector [23] and verified
by sequencing. Codon-optimized apr genes (Genscript, Piscataway, NJ, USA) encoding subtilisins
from B. licheniformis DSM13, B. paralicheniformis ATCC 9945A, B. subtilis subsp. subtilis str. 168 and
B. amyloliquefaciens (GenBank IDs: AAU40017, AGN35600, CAB12870 and AAB05345, respectively,
herein termed: B13, B9945, BSU and BAM) [16] served as templates for PCRs using Phusion polymerase
(NEB). Genes were integrated to the pINITIAL cloning vector [16,23] and sequenced to confirm correct
cloning. Sub-cloning of genes from pINITIAL to the FX-compatible Bacillus expression vectors were
carried out as described previously [16,23]. Empty vectors were generated by replacing the ccdB-camR
cassette with a GSGSGS (GS) linker to allow their propagation in E. coli MC1061 cells, as described
previously [16], and use as background controls in experiments.

2.3. Transformation of Bacillus subtilis by Natural Competence

The Bacillus subtilis WB800N strain [20], utilized for heterologous expression, was transformation-
based using a protocol developed by Anagnostopoulus and Spizizen [31]. A single colony of B. subtilis
WB800N from an lysogeny broth (LB) agar plate (1% (w/v) tryptone, 0.5% (w/v) yeast extract,
1% (w/v) NaCl, 1.5% (w/v) agar-agar) was inoculated in freshly prepared minimal medium (60 mM
K2HPO4, 40 mM KH2PO4, 3 mM trisodium citrate, 20 mM potassium-L-glutamate, 3 mM MgSO4,
1% glucose, 20 µg/mL L-tryptophane, 0.1% casamino acids) and grown for 16–20 h at 37 ◦C and
250 rpm. The culture was diluted to an optical density at 600 nm (OD600) of 0.2 with minimal medium,
and grown for 4 h at the conditions given above. Cells were harvested, diluted 10-fold and distributed
in 1 mL aliquots for individual transformations. Typically 0.5–1.0 µg plasmid DNA was added to
cells, and incubated for 6 h at the conditions given above. Cells were harvested and spread on LB agar
plates supplemented with 10 µg/mL tetracycline. Colonies were checked for the presence of correct
plasmid by PCR.

2.4. Heterologous Expression of Green Fluorescent Protein (GFP) and Subtilisins in Bacillus subtilis

1 mL LB media (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl) containing 10 µg/mL
tetracycline was added to deep 24-well plates, and inoculated with single colonies from agar plates and
grown at 37 ◦C and 750 rpm. 100 µL pre-culture was used to inoculate 4 mL 2YT media (1.6% (w/v)
tryptone, 1% (w/v) yeast extract and 0.5% (w/v) NaCl) with 10 µg/mL tetracycline. Cells were
incubated for 3–4 h to reach log phase, prior to the induction of expression with 0.1% (v/v) D-xylose
(Sigma-Aldrich, St. Louis, MO, USA) for 16–20 h at 20 ◦C (GFP) or 37 ◦C (proteases) and 750 rpm.
Cells were harvested using an Allegra X-12R benchtop centrifuge (Beckman Coulter, Brea, CA, USA)
at 4750 rpm for 15 min. Proteins in 1 mL supernatants were precipitated with trichloroacetic acid
(TCA; 10% final concentration) for 1 h at 37 ◦C, washed twice in 500 µL acetone, and resuspended
in 40 µL 1× Laemmli sample buffer (Bio-Rad Laboratories, Hercules, CA, USA) for sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis [32]. Cells were resuspended in 1 mL
8.5 N lysis buffer (50 mM Tris HCl pH 8.5, 50 mM NaCl, 0.25 mg/mL lysozyme, 10% (v/v) glycerol),
and lysed by ultrasound as previously described [16]. Cleared lysates (soluble fraction) and pellets
(insoluble fraction) were analyzed by SDS-PAGE [32].
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2.5. GFP Fluorescence Measurement

Fluorescence from 100 µL cell cultures containing GFP was measured with excitation at 485 nm
and emission at 520 nm using a Sense microplate reader (Hidex, Turku, Finland).

2.6. Detection of Recombinant Subtilisins by Immunoblotting

Proteins from supernatants and cleared lysates were analyzed by SDS-PAGE, and transferred
onto a nitrocellulose membrane [33] using the Trans-Blot Turbo (Bio-Rad Laboratories) transfer system.
A mouse monoclonal anti-polyhistidine antibody (Cat. No. H1029, Sigma-Aldrich) was used to
identify expression of recombinant subtilisins with C-terminal histidine affinity tags. The primary
antibodies were detected with a secondary rabbit horseradish peroxidase linked mouse IgG (NA931V,
GE Healthcare, Little Chalfont, UK). The HRP-reaction was developed with the Clarity Western ECL
Substrate (Bio-Rad Laboratories), and imaged in the Chemi-Doc gel imager (Bio-Rad Laboratories).

2.7. Subtilisin Activity Assays

Proteolytic activity was assessed using EnzChek™ Protease Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). 10 µg/mL BODIPY FL casein was prepared by resuspending the substrate in
50 mM Tris HCl pH 8.5 (at RT) and 50 mM NaCl. 12.5 µL of BODIPY-FL casein was used per reaction,
with 10 µL supernatant from expression in assay buffer I (50 mM NaCl, 50 mM TrisHCl pH 8.5 at room
temperature) in a final volume of 100 µL in MicroFluor 1 plates (Thermo Fisher Scientific). Samples
were incubated at 37 ◦C for 1 h unless otherwise stated, and fluorescence was read. Fluorescence
was measured at excitation 485 nm and emission 520 nm using the Hidex Sense microplate reader.
Routinely, Alcalase™ 2.4L (Sigma-Aldrich) was used at a dilution 1:10,000 in 8.5 N lysis buffer.

Temperature activity profiles for recombinant subtilisins were determined from 15 µL
supernatants in assay buffer II (80 mM NaCl, 80 mM TrisHCl buffer pH 8.2 at the experimental
temperatures) and 3.3 µM N-succinyl-L-Ala-L-Ala-L-Pro-L-Ala (AAPA) p-nitroanilide (Bachem, Weil am
Rhein, Germany; resuspended in dimethyl sulfoxide) in a total volume of 150 µL. The assay was
carried out for 10 min at the relevant temperatures, and stopped by addition of acetic acid at a final
concentration of 80 mM. 150 µL of the reaction volume was then transferred to a microplate for
absorbance reading at 405 nm in the Hidex Sense microplate reader. pH activity profiles were
determined for 15 µL supernatant as above, but using either 80 mM citrate buffer pH 3.0–6.0, 80 mM
Tris-HCl buffer pH 7.3, 8.1, 9.0 and 80 mM glycine buffer pH 10.0 Reaction was run at 37 ◦C and
increase in absorbance at 405 nm was monitored. In both experiments, the obtained absorbance data
were background subtracted (backgrounds are supernatants from cells expressing the GS-linker from
vectors), and presented in relative activity (% of maximum activity). The measurements were carried
out with two technical replicates in three biological replicates. GraphPad Prism 7 (GraphPad Software,
La Jolla, CA, USA) was used to prepare plots and to perform statistical analyses.

3. Results

3.1. Preparation of FX-Compatible Bacillus Vectors

To facilitate screening of industrially relevant enzymes, such as subtilisins, efficient systems
for high-throughput cloning and expression is essential. Here, we have developed three vectors
for heterologous expression in Bacillus [20], named p17, p18, and p19, by adapting existing
Bacillus-compatible plasmids to the FX-cloning principle (Figure 1). The ccdB-camR cassette was inserted
to the pSPLipA-hp and pSPYocH-hp plasmids by linear amplification using a PCR product containing
the cassette sequence as a megaprimer [28]. To confirm product formation before continuing with
transformation, the PCR reaction itself was screened using primers flanking the insertion site. In these
cases, the screening process identified a mix of both templates and products. During DpnI-digestions,
the templates were removed, and positive clones selected. The three vectors allow intracellular as well
as secreted expression. The p17 vector does not harbor a leader sequence, thus allowing exploitation of
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the putative native leader sequence from the enzyme of interest. The p18 and p19 vectors harbor known
LipA and YocH leader sequences, respectively, which are known to facilitate export in Bacillus [34].Microorganisms 2018, 6, x FOR PEER REVIEW  5 of 12 
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Figure 1. Design of fragment exchange (FX) compatible Bacillus expression vectors. (A) The vector
templates, pSPLipA-hp and pSPYocH-hp, have a common backbone consisting of two origins of
replication (one for E. coli and one for Bacillus), two antibiotic resistance genes (for ampicillin selection
in E. coli and tetracycline selection in Bacillus) and the Bacillus gene encoding the regulatory protein,
XylR. The highlighted regions (upper panel) consist of the Bacillus pXylA promoter, two different
leader sequences (LipA and YocH leader sequences, respectively), and C-terminal histidine affinity tags
(His-tag) for downstream purification of the recombinant proteins. The hatched boxes (F- and R-sites)
indicate the vector-specific regions used for insertion of the ccdB-camR cassette. BamHI indicates the
restriction site used for linearization, and arrows indicate position and direction of screening primers;
(B) The region inserted between the F-sites and the R-site of the pSPLipA-hp and pSPYocH-hp templates
to generate the three vectors p17, p18 and p19, as shown in A, by whole plasmid amplification.
The region contains the ccdB and camR genes, and flanking SapI sites. Hatched boxes marked F and R
are specific to each vector design and consists of two parts; it has an overlapping region for gene-specific
amplification (filled boxes), and extensions that are complementary to the insertion site (open boxes)
in the templates (F = either F1, F2 or F3; R = R1, as indicated in A). The insert region designates the
region in the final vectors that is replaced upon sub-cloning of recombinant genes, and arrows show
position and direction of sequencing primers.
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3.2. Expression of GFP in Bacillus subtilis

To validate the three vectors, the gfp gene encoding green fluorescent protein was used for simple
fluorescence-based monitoring of recombinant protein production. The gene encoding GFP was
sub-cloned from the B. megaterium optimized pSSBm85 plasmid [27] into the pINITIAL cloning
vector, and sub-cloned into the Bacillus vectors. Expression was achieved by xylose induction.
Fluorescence measurements were taken from the cultures directly. GFP, which does not contain
a leader sequence, was found to fluoresce in the p17-based cultures (Figure 2A), indicating soluble
expression of an intracellular GFP. SDS-PAGE analysis of fractions from expression revealed that
recombinant GFP was indeed expressed from p17, and primarily in the cellular fraction (Figure 2B).
Export was low or not obtained by adding the LipA or YocH leader sequences in front of the gfp
gene (Figure 2).
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Figure 2. Recombinant expression of green fluorescent protein (GFP) in B. subtilis WB800N.
(A) GFP expression from the p17 to p19 vectors was assessed by fluorescence measurements taken from
the expression cultures. Fluorescence was compared to background controls (in which a GSGSGS-linker
(GS) is replacing GFP in the vectors). Data is shown from one representative experiment, and error
bars represent deviation in two technical replicates; (B) Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) analysis of fractions from expression of GFP from the p17 to p19 vectors.
S1, supernatant fraction; T, total protein in the cellular fraction; S2, soluble fraction of protein in cells.
M, Precision Plus protein standard (Bio-Rad Laboratories).

3.3. Validation of Vectors by Expression of Active Recombinant Subtilisin Proteins in Bacillus subtilis

To assess the capacity for secreted expression, the apr gene encoding extracellular subtilisin
proteases from B. licheniformis DSM13 was used (Figure 3A). The entire apr gene, encoding subtilisin
with the native leader sequence (residues 1–379), was sub-cloned from pINITIAL to p17. The truncated
gene encoding pro-subtilisin (residues 30–379) without the leader sequence, was sub-cloned to p18
and p19. In the latter two constructs, the native leader sequences of subtilisin were replaced with



Microorganisms 2018, 6, 51 7 of 12

the LipA and YocH leader sequences encoded by the vectors, respectively. SDS-PAGE analysis from
heterologous expression showed that the recombinant subtilisin was secreted to the media after
induction and expression from all three vectors (Figure 3B). Recombinant subtilisin was not identified
in the cellular fractions. Immunoblots using anti-his antibodies against the C-terminal his-tags of
the recombinant subtilisins supported these findings (Figure 3C). To measure the activity of the
recombinant subtilisin, we used an in vitro casein-based protease assay. The activity detected in
the supernatant fractions was 3–11 times higher than in control samples depending on conditions
(Figure 3D), and all versions of the recombinant subtilisin showed comparable activity.
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Figure 3. Recombinant expression and activity of subtilisins from FX-compatible Bacillus vectors.
(A) Cartoon of recombinant subtilisin versions expressed from p17, p18 and p19 vectors, showing the
leader sequence (triangles), pro-domain (grey boxes), catalytic domain (white boxes) and C-terminal
histidine affinity tag (brown rectangles). Green pins point to residues involved in catalysis (catalytic
triad). Dotted line shows the region of the protein encoded by the sub-cloned Bacillus licheniformis DSM13
apr gene. In the p18 and p19 vectors, the vector-encoded LipA or YocH leader sequences (green triangles)
replace the native leader sequence (white triangle) in subtilisin, respectively. Arrows show processing
sites for leader sequence removal and pro-domain cleavage. Illustration is drawn to scale; (B) SDS-PAGE
analysis of recombinant subtilisins expressed in B. subtilis WB800N (left panel) and empty vector controls
(right panel). Lanes 1, 4 and 7 show supernatant fractions from cultures expressing subtilisin from p17,
p18 and p19, respectively. Lanes 2, 5 and 8 contains soluble fractions from cleared cell lysates. Lanes 3, 6
and 9 contains insoluble fractions from cell lysates. Lanes 10–18 are organized accordingly, but contain
fractions from cultures with empty vectors (subtilisin is replaced with the GS-linker). M, Precision Plus
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protein standard are shown to the left of both panels; (C) Immunoblot of recombinant subtilisin using
antibodies against the C-terminal his-tag. Supernatants and soluble fractions of subtilisin expression
from p17 (lanes 1–2), p18 (lanes 3–4) and p19 vectors (lanes 5–6) in B. subtilis WB800N, respectively.
As control, fractions from expression of empty p17 are shown in lanes 7–8. Asterisks indicate bands
that correspond to the expected mass of matured subtilisins (28 kDa). Two bands from the Precision
Plus protein standard are shown to the left; (D) The supernatants of B. subtilis WB800N expression
cultures containing the subtilisin versions (expressed from p17, p18 and p19 vectors, respectively)
were screened for proteolytic activity against BODIPY-conjugated casein for 1.5 and 20 h. Fluorescence
values were made relative to empty vector controls (GS-linker), and errors show deviation in three
biological replicates.

We performed a comparative study on four subtilisins, including the one encoded by the
B. licheniformis DSM13 apr gene and three other apr genes from B. paralicheniformis ATCC 9945A,
B. subtilis subsp. subtilis str. 168 and B. amyloliquefaciens previously used in a similar mini screen [16].
The three additional full-length apr genes with native leader sequences were sub-cloned into the p17
vector. Each of the four subtilisins was expressed, and the supernatants were tested for proteolytic
activity in the in vitro casein assay (Figure 4). All four subtilisins were exported from the host
cell and identified as soluble enzymes in the supernatant (Figure 4A), and found to be active
(p-value < 0.00001; Figure 4B).
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Figure 4. Four different subtilisin proteins expressed from FX-compatible Bacillus vectors.
(A) A representative SDS-PAGE showing the supernatant fraction of the B. subtilis WB800N host
after recombinant expression of native subtilisins from B. licheniformis DSM13 (B13), B. paralicheniformis
ATCC 9945A (B9945), B. subtilis subsp. subtilis str. 168 (BSU) and B. amyloliquefaciens (BAM). Asterisks
indicate recombinant enzymes (matured subtilisins expected mass is 28 kDa). Background represents
expression of the empty vector; (B) Supernatants in A were screened for proteolytic activity against
BODIPY-conjugated casein. Error bars show deviation in three biological replicates; (C) Temperature
activity profiles of recombinant subtilisins (B13, green; B9945, magenta; BSU, red; BAM, blue) screened
for proteolytic activity against the chromogenic succinyl-AAPA peptide, and compared to commercial
Alcalase™ 2.4L (orange). Error bars show deviation in three biological replicates; (D) pH activity
profiles of recombinant subtilisins screened against the peptide in C. Error bars show deviation in three
biological replicates.
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3.4. Initial Characterisation of Four Different Subtilisin Proteins

To demonstrate the functionality of the recombinant enzymes, we characterized their activity
profiles. The temperature activity profiles of the recombinant subtilisins were assessed with
a synthetic peptide, succinyl-L-Ala-L-Ala-L-Pro-L-Ala (AAPA), commonly used to address substrate
specificity [35,36]. The two recombinant subtilisins from B. licheniformis and B. paralicheniformis and
the commercial enzyme formula Alcalase™ 2.4L, that originates from B. licheniformis, peaked at
60 ◦C (Figure 4C). The B. subtilis homolog had an optimal temperature at 50 ◦C, and only 55% of
its activity remained at 60 ◦C. The B. amyloliquefaciens homolog had a broader temperature profile,
with optimal temperature at 50 ◦C, which remained largely unchanged at 60 ◦C. All of the enzymes
had lost most of the activity at 80 ◦C. The recombinant subtilisins were all active at pH 5.0 and above,
where a peak of activity was reached at pH 8.0–10.0 for all enzymes (Figure 4D). Subtilisins from
B. subtilis, B. licheniformis and B. amyloliquefaciens are, however, more active at pH 10 than the other
enzymes (p-value < 0.00001).

The two recombinant subtilisin homologs from B. licheniformis and B. paralicheniformis appeared to
share similar activity profiles, both in terms of temperature and pH preferences. They also aligned
well with the activity profile of the commercial Alcalase™ 2.4L (Figure 4C,D).

4. Discussion

The Bacillus fragment exchange (FX) vector system was designed to complement the intracellular
E. coli system [16] by facilitating secreted expression. These vectors would be useful for naturally
secreted proteins, but also for exploring the export of proteins that otherwise would be expressed in
the intracellular compartment.

The pSPLipA-hp and pSPYocH-hp plasmids, initially designed for mediating high-yield production
in B. megaterium [27], were used as templates to design FX-cloning compatible vectors for heterologous
expression. To develop the vectors, we used an approach exploring linear amplification that uses the
insert DNA fragment as a megaprimer for polymerase-mediated elongation [28]. The method has
previously been used to design new vectors [30,37,38]. Commonly, such long-range amplifications
are carried out on circular templates (plasmids), but we found that BamHI-linearized templates gave
higher product formation than circular templates as assessed by agarose gel electrophoresis [39].
Evaluation of this as a general optimization procedure for large and difficult plasmid amplifications is
outside the scope of this study.

The new vectors facilitate expression in the presence of xylose due to a strong inducible pXylA
promoter [38], which is repressed in the absence of inducer by the XylR repressor (Figure 1).
The promoter has previously been shown to drive heterologous expression in B. subtilis [40].
In a previous screen of leader sequences applicable for high-yield production, the YocH and LipA
were shown to mediate efficient secretion of a thermophilic ester-hydrolase into the growth medium in
B. megaterium [27]. The LipA and YocH leader sequences originate from an esterase and a cell wall
binding protein in B. megaterium [27,41], respectively, but are conserved in B. subtilis [11]. As addressed
in previous reports, the YocH and LipA leader sequence show high similarity with the consensus
sequence for type I leader sequences directing Sec-dependent export. We were, therefore, confident that
the vector systems would be suitable for heterologous expression not only in B. megaterium, but also in
B. subtilis WB800N.

The system was initially validated with expression of the GFP from the p17 vector (Figure 2).
Expression trials with p18 and p19 vectors were not giving traceable amounts of GFP (Figure 2),
which is likely explained by the fact that GFP is not directed for export using the Sec pathway [42].
To validate Sec-dependent export of proteins, subtilisin from B. licheniformis DSM13 was used and
shown to be successfully expressed in all vectors (Figure 3B). This study confirms that these vectors
can be used for secreted expression in B. subtilis. As such, the vectors could be explored for the
replacement of native leader sequences with known sequences, particularly useful when the native
enzyme sequence is divergent and may escape recognition by the Bacillus secretion systems.
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Comparison to protein yields in B. megaterium, for which the vector backbones were optimized,
is outside the scope of this study. In the aforementioned leader sequence screen, however, it was
found that the YocH leader sequence promoted higher yields of exported target enzyme than the LipA
sequence [27]. In our study, based on expression and activity levels of recombinant subtilisin from
B. licheniformis DSM13, it was not possible to discriminate between results obtained with native and
artificial leader sequences (Figure 3D). Induction at shorter intervals (1.5 h) did not change the results.
To identify the optimal leader sequence, empirical testing on a higher number of recombinant proteins
may be required, but the fact that results vary between reports demonstrates the merit of including
several construct designs in a screen at this time point.

The Bacillus system has been assessed by expressing four homologous subtilisins that are divergent
in sequence and expected to have different temperature activity profiles [16]. These were previously
expressed in an active form in E. coli. Using our p17 vector and exploring the native leader sequences
for export, all subtilisins were identified as soluble and active in the growth medium (Figure 4B).
These subtilisins used in the mini screen are all alkaline, as confirmed by their activity at high pH
(Figure 4D). They differ somewhat in the activity profiles, with the B. subtilis homolog having a lower
optimal temperature than the B. licheniformis and B. paralicheniformis homologs. Apparently, the latter
two homologs share similar activity profiles. This can be explained by a 98% sequence identity
according to a pairwise sequence alignment [16]. Moreover, they share a profile with the commercial
Alcalase™, which also originates from B. licheniformis. The B. amyloliquefaciens homolog has an optimal
activity at 50 ◦C, which aligns well with other reports [43], but appears to have a broader temperature
optimum range than the other homologs. This trait could be useful in industrial applications to avoid
the enzyme activity from dropping due to temperature fluctuation. Apparently, most activity is lost at
80 ◦C which aligns with industrial conditions for enzyme inactivation that commonly occur at 90 ◦C.

5. Conclusions

To conclude, the Bacillus system herein reported complements the previously developed E. coli
system [16], and allows rapid switching between two commonly used heterologous host systems for
comparative expression. Moreover, we show that the vectors described are not limited to the expression
of certain enzymes, here exemplified by the expression of both subtilisins and green fluorescent protein,
but could also be applied to other enzymes for more generalized enzyme discovery or development.
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