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Abstract: The emergence and spread of pathogenic fungi resistant to currently used antifungal 
drugs represents a serious challenge for medicine and agriculture. The use of smart antimicrobials, 
so-called “dirty drugs” which affect multiple cellular targets, is one strategy to prevent resistance. 
Of special interest is the exploitation of the AFP family of antimicrobial peptides, which include its 
founding member AFP from Aspergillus giganteus. This latter is a highly potent inhibitor of chitin 
synthesis and affects plasma membrane integrity in many human and plant pathogenic fungi. A 
transcriptomic meta-analysis of the afp-encoding genes in A. giganteus and A. niger predicts a role 
for these proteins during asexual sporulation, autophagy, and nutrient recycling, suggesting that 
AFPs are molecules important for the survival of A. niger and A. giganteus under nutrient limitation. 
In this review, we discuss parallels which exist between AFPs and bacterial cannibal toxins and 
provide arguments that the primary function of AFPs could be to kill genetically identical siblings. 
We hope that this review inspires computational and experimental biologists studying alternative 
explanations for the nature and function of antimicrobial peptides beyond the general assumption 
that they are mere defense molecules to fight competitors. 
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1. Introduction 

The antimicrobial peptide field is rapidly moving forward. PubMed lists about 9000 
publications for the year 2017 alone, and the Antimicrobial Peptide Database (APD, [1]) currently 
contains data on 2950 antimicrobial peptides (AMPs). The majority of currently studied AMPs are of 
mammalian origin (~75%), followed by plant (~13%) and bacterial AMPs (~10%). Only 1% of the 
currently known and studied AMPs are from fungi. Although AMPs are produced in 
phylogenetically very distant domains and kingdoms, they display a remarkable degree of 
structural and functional conservation. Unifying structural characteristics include high stability due 
to intramolecular disulfide bridge formation, predominant β-sheet formation, a net cationic charge, 
an amphipathic surface, high membrane activity, and the presence of a γ-core motif thought to 
mediate membrane interaction [2,3]. 

In the filamentous fungal community, Cys-stabilized antimicrobial peptides from filamentous 
fungi are of special interest because many of these peptides display efficient antifungal properties in 
the micromolar range without negatively interfering with the viability of bacterial, plant, or 
mammalian cells [4–7]. Historically, the focus has been on two peptides—AFP from Aspergillus 
giganteus and PAF from Penicillium chrysogenum—as these peptides were the first studied and 
considered as interesting lead compounds for the development of novel antifungal drugs to combat 
against devastating fungal pathogens threatening human welfare and food security [5,8]. Both AFP 
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and PAF are members of the AFP family (named after its founder member AFP, isolated for the first 
time in 1965 from the culture supernatant of Aspergillus giganteus [9]), which currently comprises 
about 50 peptides [10]. All orthologs identified so far are encoded in 35 Ascomycetes species and 
include Aspergillus, Beauveria bassiana, Botryotinia fuckeliana, Colletotrichum orbiculare, Diplodia seriata, 
Epichloe festucae, Fusarium spp., Gibberella zeae (teleomorph of F. graminearum), Monascus pilosus, 
Ophiocordyceps unilateralis, Penicillium, and Pyrenophora spp [10]. All peptides display the 
cysteine-spacing pattern CX(6)CX(11–12)CX(4–9)CX6CX10–13C present in AFP and PAF and are β-strand 
proteins possessing a γ-core motif (Fig 1), except for the AFP ortholog of P. oxicalum that lacks a 
γ-core motif [10]. 

 
Figure 1. Electrostatic surface potentials of AFP, PAF, and AnAFP. AFP and PAF were derived from 
PDB accession codes 1AFP or 1KCN, respectively, whereas the structure of AnAFP was generated by 
molecular modeling using the structure of AFP as the template. Negatively charged regions are 
colored red, positively charged ones blue, and uncharged ones white. Graphical representations 
displaying top, side, and bottom views of the peptides were generated using the program GRASP2 
[11]. An alignment of AFP, PAF, and AnAFP is given below. The box depicts residues of the γ-core 
motif. Arrows on top represent beta-strands. 

The last 10 years have witnessed an increasing interest in antifungal peptides of fungal origin. 
Their mode of action on fungal strains including model strains and human and plant pathogens was 
not only studied for AFP and PAF, but for many more peptides belonging to the AFP family, 
including AnAFP from A. niger, NAFP from N. fischeri, PAFB from P. chrysogenum, and AFPB from P. 
digitatum [10,12–14]. In this review, we discuss the current knowledge on their expression and mode 
of actions. We stress, however, that the review is meant to be representative and not comprehensive 
and aims to a radical change of perspective: a change from a purely applied perspective on AFPs to a 
nonanthropocentric view on these molecules. We are convinced that the narrow human conception 
of AFPs (and in general AMPs) as bioactive molecules valued for antifungal (antimicrobial) 
therapeutic applications completely neglects their role in controlling different biological processes in 
their producing organisms. With this review, we thus want to broaden the general conception of 
these peptides. We show that parallels exist to cannibal toxins in bacteria, and we will provide 
plausible arguments that AFPs are similarly important molecules for their hosts to ensure the 
survival of a subpopulation of its producing organism and, by this, survival of the whole species. 
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2. Antifungal Modes of Action of AFPs: Similar, but Not the Same 

Although the afp gene from A. giganteus was already identified 25 years ago [15], and despite its 
huge application potential, only 35 publications studying the molecular mechanisms behind its 
expression and the mode of action of AFP are listed in PubMed. The research community studying 
AMPs is huge; however, scientists are largely oblivious to research on AMPs of fungal origin, 
although this might provide insights into the general function of AMPs from other kingdoms or 
even domains. In brief, AFP is a 51-amino acid, cysteine-rich, 5.8 kDa amphipathic peptide with a 
positive net charge. A. giganteus secretes AFP into the surrounding medium under nonfavorable 
growth conditions including carbon starvation, heat shock, and pH stress [16,17]. It binds to the cell 
wall and plasma membrane of sensitive filamentous fungi, where it induces loss of plasma 
membrane integrity and eventually causes membrane permeabilization [18–20]. AFP has been 
shown to inhibit chitin synthase activity in sensitive filamentous fungi, which is thought to be 
mediated via its chitin-binding region [18]. AFP can also be found intracellularly in collapsed and 
dead cells of sensitive fungi [19,20], where it might bind to anionic molecules such as DNA and RNA 
via its oligonucleotide/oligosaccharide-binding (OB) fold [21]. Notably, filamentous fungi differ in 
their susceptibility towards AFP. Some species are highly sensitive (minimal inhibitory 
concentration (MIC): 0.1–10 µg/mL; e.g., A. niger, F. oxysporum), others are moderately sensitive (100 
< MIC < 400 µg/ml; e.g., A. giganteus), and some are even resistant (e.g., P. chrysogenum). We could 
show that AFP treatment of A. niger (AFP-susceptible) provoked clear ultrastructural aberrations of 
A. niger cells, which are absent in the AFP-resistant strain P. chrysogenum [19]. 

One fungal defense mechanism to counteract AFP inhibitory effects is induction of the highly 
conserved cell wall integrity (CWI) signaling pathway, whose function is to ensure cell surface 
protection during cell wall stress [22–25]. AFP-mediated induction of the CWI pathway in A. niger 
thus results in higher glucan synthesis due to increased expression of the α-1,3-glucan 
synthase-encoding gene agsA [18]. However, then, if the function of the CWI pathway is meant to 
ensure survival of A. niger during the presence of AFP, why does it get killed by AFP? One 
explanation for this puzzling observation, which we could prove, is that induction of CWI pathway 
is insufficient to protect fungi against the inhibitory effects of AFP [26]. Analysis of various 
AFP-sensitive and AFP-resistant fungal strains indeed showed that AFP resistance is linked to 
upregulated chitin synthesis. However, this is mainly mediated by the calcium/calcineurin/Crz1p 
signaling pathway [26]. Such a defense strategy is not observed in AFP-sensitive fungi. It seems that 
these fungi make the wrong decision and activate the classical CWI pathway as their main defense 
mechanism. This pathway simply fails to counteract AFP as its output, increased glucan synthesis, 
does not protect against AFP [18]. In support, the AFP-related protein AFPNN5353 (which differs 
from AFP by only 5 amino acids) and AnAFP do also elicit the CWI pathway and to a certain extent 
calcium signaling in A. niger and A. nidulans, respectively ([27] and [28]). Still, it is not known why 
calcium signaling is only weakly activated in AFP-sensitive fungi.  

Even though AFP and PAF are very similar in their structure and antifungal spectrum, their 
modes of action are significantly different. PAF elicits heterotrimeric G-protein and cAMP/protein 
kinase A signaling in PAF-sensitive A. nidulans, but not the CWI pathway [27,29,30]. It 
hyperpolarizes the plasma membrane of sensitive fungi [30–32] and provokes a rapid calcium influx, 
followed by a sustained perturbation of calcium homeostasis [27,31]. This in turn triggers apoptosis, 
as reflected by the detection of increased levels of reactive oxygen species and apoptotic markers 
[30]. Interestingly, addition of calcium to the growth medium decreases susceptibility of aspergilli to 
both PAF and AFP and counteracts perturbations of intracellular calcium resting levels [26,27,31]. It 
was recently proven in A. nidulans that induction of cAMP/PKA signaling and the sustained increase 
of intracellular calcium levels in response to PAF treatment are linked to each other and control PAF 
toxicity [33]. Most recently, insights into the mode of action of a novel representative of the AFP 
family were published: NAFP from Neosartorya fischeri. In A. nidulans, NAFP induces apoptosis and, 
like PAF, elicits heterotrimeric G-protein and cAMP/protein kinase A signaling, but not the CWI 
pathway [14]. 
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Remarkably, all producing strains are only moderately sensitive towards their own antifungal 
protein, but very sensitive towards AFPs from other filamentous fungi [10,20,34]. This implicates 
that they might utilize innate sensing or defense systems, enabling them to distinguish between own 
and alien antifungal peptides. 

3. Gene Regulation of AFP-Encoding Genes: from the General to the Particular 

Data on transcriptional regulation of antifungal peptides is available for only a few members of 
the AFP family: AFP (A. giganteus), PAF (P. chrysogenum), AnAFP (A. niger), and AFPB (P. digitatum). 
We and others could show that AFP, AnAFP, and PAF exhibit a temporal and spatial regulation in 
their native hosts and seem to be exclusively expressed in the vegetative mycelium during the 
developmental stage; that is, when competence for conidiophore formation is acquired [10,17,29] 
(see Figure 2). Notably, almost no expression of afp, anafp, or paf can be observed in conidiophores or 
conidia. Whereas the afp and anafp genes seem to be under control of the asexual developmental 
regulator StuA [5,10], deletion of the paf gene in P. chrysogenum is accompanied by transcriptional 
downregulation of the asexual developmental regulator BrlA. Concomitantly, spore production is 
severely reduced in a Δpaf strain of P. chrysogenum compared to the wild type [29]. These 
observations suggest that expression of antifungal peptides is connected with asexual development. 
In agreement with this, we could show that transcription of the afp and anafp genes in submerged A. 
giganteus and A. niger cultures, respectively, are strongly induced when the mycelium becomes 
subjected to carbon starvation [10,17], a condition that precedes sporulation of Aspergillus growing 
on solid media [35]. Furthermore, increased afp and anafp transcript levels can be detected during 
environmental stress conditions, pointing towards a defense-related function of these peptides 
[10,17,36]. Notably, constitutive expression of the afpB gene in its host disturbs vegetative growth 
and hyphal morphology of P. digitatum [37], suggesting that expression of AFPs must be tightly 
regulated to prevent detrimental effects if prematurely and/or overexpressed. 

The ecological advantage of expressing antifungal peptides remains a mystery. If their 
biological function is to provide protection against other fungal inhabitants in the same ecological 
niche, then why do afp, anafp, and paf expression start only after depletion of carbon; that is, when it 
would be too late to secure carbon for survival? Similarly puzzling is the fact that the level of 
secreted peptides is very low and that cocultivation of A. giganteus with highly AFP-sensitive strains 
such as F. oxysporum or A. niger does not kill them [17]. Could it be that AFPs have a biological 
function that goes beyond antifungal activity? 

3.1. The anafp Gene as a Paradigmatic Example 

An outstanding opportunity to study the biological function(s) of antifungal peptides for their 
producing fungus is to scrutinize the growing body of system biology data. The antifungal peptide 
AnAFP from A. niger represents an excellent model system for several reasons: Firstly, the genome of 
A. niger has been sequenced [38], and hundreds of transcriptomics and proteomics data are publicly 
available for the A. niger strain CBS 513.88 and its derivatives [39,40] (note that the genome of A. 
giganteus has not been sequenced yet). Secondly, various bioinformatics pipelines for the analysis of 
genomic and transcriptomic data are available for A. niger [41,42]. Thirdly, our in-house A. niger 
transcriptomic database encompasses genome-wide expression profiles for a total of 155 different 
cultivation conditions and includes data on various nutrient sources, developmental stages, stress 
conditions, and cocultivations [10]. This database constitutes an invaluable treasure chest allowing 
studying of the cellular functions of anafp in a system-wide manner and to prove or disprove 
hypotheses regarding its biological role. Using anafp expression data from A. niger under these 155 
cultivation conditions, we have recently published a meta-analysis [10], the result of which is briefly 
summarized as follows: 
• the choice of carbon or nitrogen source does not impact anafp expression; 
• carbon limitation and starvation strongly stimulate anafp expression, suggesting that anafp is 

under control of the carbon catabolite repressor CreA; 
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• the expression profile of anafp is similar to the expression profile of the early starvation 
response genes atg1 (predicted Ser/Thr kinase involved in autophagy) and nagA (predicted 
autolytic β-1,6-N-acetylglucosaminidase); 

• anafp, nagA, and atg1 expression peaked at 16 h after carbon depletion and gradually decreased 
at 60 h and 140 h post-carbon depletion in submerged batch cultures. The expression peaks 
were paralleled with the appearance of a second hyphal population with reduced hyphal 
diameters (1 µm in diameter instead of 3 µm); 

• under severe carbon and energy limitation resulting in very low growth rates (about 0.005 h-1), 
additionally to anafp, nagA, and atg1, other genes involved in nutrient mobilization, autophagy, 
N-acetylglucosamine metabolism, and carbohydrate transport are strongly upregulated; 

• anafp transcript levels are low in dormant conidia and young germlings, but increase about 
15-fold and 60-fold in aerial hyphae and the vegetative mycelium, respectively. This expression 
profile is similar to those of genes encoding chitin-remodeling enzymes (ctcB, cfcI, and nagA); 

• in A. niger wild-type colonies, anafp expression is highest in the center of a colony and 
gradually decreases towards its periphery; 

• in A. niger deleted for FlbA (displaying a nonsporulating, slow-growing, and autolytic 
phenotype), anafp expression is strongly upregulated (5-fold). Note that FlbA is conserved in 
aspergilli and known to stop vegetative growth during the process of conidiation. Its main 
function is to activate the transcription factor BrlA in response to the extracellular signaling 
molecule FluG. BrlA, in turn, is the central regulator of asexual development in aspergilli [43];  

• in A. niger deleted for BrlA (displaying a nonsporulating, slow-growing, but nonautolytic 
phenotype), anafp expression is upregulated as well (2-fold). However, induction of anafp 
expression precedes brlA expression in the wild type; that is, BrlA cannot be the first regulator 
of anafp; 

• anafp expression is not induced upon cell wall stress (provoked by caspofungin, 
fenpropimorph, FK506, aureobasidin A, natamycin), secretion stress (induced by DTT, 
tunicamycin), or confrontation with Bacillus subtilis; 

• anafp is not important for polar growth of A. niger, as morphology mutants (TORC2, RacA) do 
not show altered anafp expression; 

• although AnAFP is a secreted protein, it becomes detectable in culture supernatant only at 140 
h post-carbon depletion in the ΔflbA strain, although its transcription peaked at 16 h 
post-carbon depletion in wild-type (N402), ΔflbA, and ΔbrlA strains [44]. Similarly, a number of 
hydrolytic genes that displayed strong transcriptional upregulation during carbon starvation, 
including chitinases and mannanases, were not detectable in culture supernatants;  

• the anafp promoter is activated during osmotic stress provoked by different salts including 
NaCl, CaCl2, KCl, MgCl2, and KH2PO4; 

• the anafp promoter is activated in the presence of H2O2, but inhibited in the presence of 
menadione. Such an opposing effect of both oxidants is in good agreement with previous 
findings that autophagy-deficient A. niger strains deleted for atg1 (predicted Ser/Thr kinase) or 
atg8 (predicted autophagy-related ubiquitin modifier) are both more sensitive to H2O2, but less 
susceptible to menadione when compared to the wild-type strain [45]. 

A co-expression network analysis using data from all 155 different cultivation conditions and 
calculated with a very stringent Spearman’s rank correlation coefficient uncovered that 605 (381) of 
A. niger genes show a positive (negative) correlation with anafp expression. Gene ontology 
enrichment analyses revealed that the processes positively correlated with anafp expression belong 
to development, cellular polysaccharide catabolism, antioxidant activity, and O-glycosyl hydrolase 
activity, whereas processes negatively correlated with anafp expression include translation as well as 
amino acid, nucleobase, and pigment biosynthesis [10]. Among positively correlated genes, worth 
emphasizing are autophagy-related ones (orthologs of S. cerevisiae Atg4, Atg8, and A. nidulans 
metacaspase CasA). The network analysis also predicted that at least seven transcription factors 
control anafp expression [10], three of which are well-studied regulators in other aspergilli: CreA 
(carbon catabolite repressor, [46]), StuA, and VelC (regulators of asexual development and 
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secondary metabolism [47–50]). All three transcription factors were experimentally proven to 
modulate anafp promoter activity, with CreA and StuA being strong repressors ([10] and [51]). 

3.2. When and Where Is the anafp Gene Expressed? 

In the course of the experiments mentioned above, we noticed that generating an A. niger ΔstuA 
deletion strain in a wild-type background results in only a few, severely sick transformants, which is 
not the case in a ΔstuAΔanafp double deletion background [51]. This observation suggests that 
premature and strong overexpression of the anafp gene due to stuA deletion is highly detrimental for 
A. niger. Likewise, constitutive expression of AFPB in P. digitatum resulted in reduced growth [37]. 
These data indicate that expression of antifungal proteins is under tight control. Figure 2 depicts the 
expression profiles of the afp and anafp genes over time in A. giganteus and A. niger, respectively, 
visualized with appropriate reporter strains. Obviously, there is only a limited time window during 
growth and development of both A. niger and A. giganteus where afp and anafp become expressed. 
We propose that this is because the encoded AFPs fulfill an important function for their hosts only 
during this specific period. Outside this time window, gene expression of both genes is repressed to 
negligible levels. 

 
Figure 2. Expression of genes encoding antifungal peptides in aspergilli are under tight 
time-dependent control: (A) Oscillating expression of the afp gene as visualized in a 6-day old colony 
of an A. giganteus reporter strain. Here, the reporter gene β-glucuronidase (uidA) was put under 
control of the afp promoter. Induction of Pafp::uidA reporter expression results in blue color 
formation on agar plates in a circadian manner (indicated by arrows). Blue color formation is visible 
only in the vegetative medium and occurs when A. giganteus vegetative hyphae achieve the 
competence to form aerial hyphae/conidiophores. Picture is reproduced from [17] with permission 
from Springer Nature. (B) Luciferase expression under control of the anafp promoter was measured 
using the reporter strain PK2.9 (Panafp::luc). Reporter activity was measured as luminescent counts 
per second normalized to culture optical density during 4 days of submerged cultivation of strain 
PK2.9 in microtiter plates. Picture is taken from [10], licensed under CC-BY 4.0. LCPS, luminescent 
counts per second. 

Surprisingly, and in agreement with data for the afpB gene in P. digitatum [37], deletion of anafp 
in an A. niger wild-type background does not provoke any detectable phenotype when the mutant is 
cultivated on agar plates or under submerged conditions in shake flask cultures [10]. Neither 
germination rate nor sporulation efficiency were affected by the deletion. Likewise, biomass 
accumulation was not affected in the Δanafp strain [10]. Absence of any anafp/afpB deletion 
phenotypes suggests that their phenotype is very subtle or that other redundant proteins could take 
over AFP function. Still, discrepancies with the paf gene from P. chrysogenum are observed, where 
deletion of the gene results in markedly reduced sporulation [29]. 

Remarkably, time-dependent regulation of the anafp promoter does not occur homogeneously 
in all cellular compartments of A. niger mycelium. This is evident in a fluorescently-labeled reporter 
strain in which the anafp ORF (open reading frame) was replaced with the eyfp reporter gene [10]. 
Under severe carbon and energy limitation (achieved in a controlled manner in bioreactor 
retentostat cultivations), YFP fluorescence could only be detected in individual compartments. As 
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depicted in Figure 3, the anafp promoter is only active in older mycelia with strongly vacuolated 
compartments or in newly formed mycelium displaying very thin hyphae. We recently showed that 
high vacuolization in A. niger mycelial compartments is indicative of autophagy and precedes it; that 
is, drives cryptic growth of thin hyphae [45,52]. It is thus tempting to speculate that AnAFP has a 
role during this process. Newly formed spores do not show any anafp::eyfp expression. 

 
Figure 3. Morphological differentiation of A. niger during substrate-limited growth in retentostat 
cultures as visualized by DIC (differential interference contrast) microscopy (upper panel) and 
fluorescence microscopy (bottom panel). Mycelium of an Panafp::eyfp reporter strain after 1 day (µ < 
0.1 h−1), 2 days (µ ~ 0.01 h−1), and 6 days (µ ~ 0.005 h−1). Fluorescence represents the activated anafp 
promoter and is only visible in individual compartments. Note that after day 6, newly formed spores 
become visible (arrows). Picture is taken from [10], licensed under CC-BY 4.0. µ: growth rate. Bar = 20 
µm. 

Taken together, transcription of the anafp gene seems to be under the highest temporal and 
spatial control. Its expression profile is concomitant with the expression profile of early starvation 
response genes functioning in nutrient mobilization and autophagy during developmental 
processes. The gene-correlation network predicted that its function is somehow connected to 
autophagy-related processes and uncovered three nutritional and asexual developmental 
transcription factors controlling anafp expression (CreA and StuA: repressors, and VelC: activator), 
which we could verify in vivo using a reporter system ([10] and manuscript in preparation). Its 
expression not only parallels the expression of autophagic proteins, but is selectively activated in 
highly vacuolated compartments of the vegetative mycelium which are supposed to undergo 
autophagy for nutrient recycling. In view of the membrane activity of AnAFP and its subtle 
induction of cell wall stress in A. niger, we propose that the tight spatial and temporal control of its 
gene expression enables AnAFP to fulfill an important function for its producing host during 
nutrient starvation; that is, during autophagic processes. With this activity, AnAFP thus contributes 
to the survival of A. niger. This hypothesis is supported by publications from others who 
demonstrated that asexual sporulation of A. nidulans is accompanied by autolytic and apoptotic 
processes [53–56]. It is also in agreement with the observation that there is a considerable delay 
between induction of anafp gene expression and detection of AnAFP in the culture supernatant of A. 
niger [44,57]. Some AFPs (e.g., PAFB from P. chrysogenum and AFPB from P. digitatum) even 
remained undetectable in the medium although their encoding genes were transcribed at high levels 
[13,37]. It cannot be excluded that the proteins might have escaped detection; however, it is 
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conceivable that AFPs firstly localize at the cell wall or inside the cell before being released into the 
medium at later growth stages. The only AFP family member for which an intrinsic function has 
been demonstrated so far is the PAF protein from P. chrysogenum. It was observed that apoptosis 
rates and expression levels of autophagic genes are lowered during carbon starvation in a strain 
lacking a functional paf gene. Also, reduced sporulation was observed in the paf deletion strain, 
providing for the first time indirect evidence that the PAF peptide is important for the process of 
asexual sporulation in P. chrysogenum [58]. 

4. A Small Interlude: Sporulation in Bacteria and the Importance of Cannibal Toxins 

Cannibalism is a phenomenon occurring during early stages of sporulation of the 
Gram-positive bacterium Bacillus subtilis and involves the production of toxins of a sporulating 
subpopulation killing genetically identical but nonsporulating sibling cells [59]. In brief, endospore 
formation in Bacillus is considered as a last-resort [60] or bet-hedging (i.e., risk-spreading) strategy 
[61] under starvation conditions to ensure survival of the species. It is a process that takes about 8–10 
h and results in the formation of endospores resistant to UV stress, chemical stress, and heat [60]. 
The killing factors (“cannibal toxins”) are the sporulation killing factor Skf, a 26-amino-acid-long 
ribosomally synthesized and post-translationally modified cyclic sactipeptide, and the sporulation 
delaying protein Sdp, a 42-amino-acid-long ribosomally synthesized peptide [62]. Both are secreted 
and lyse nonsporulating sibling cells that have not developed immunity to them. Immunity is 
conferred on the one hand by expression of an ABC (ATP binding cassette) transporter that exports 
Skf out of the cell, thereby avoiding death of the producing cell, and on the other hand, by 
expression of the integral membrane protein SdpI, which acts as signal transduction protein and 
sequesters a repressor protein (for details, see [59]). About two-thirds of B. subtilis cells in a 
sporulating population eventually become killed by both killing factors [59]. 

Interestingly, skf and sdp mutants of B. subtilis do not lose the ability to sporulate. In contrast, 
the sporulation process is accelerated in these strains, demonstrating that wild-type cells try to delay 
the commitment to sporulation via production of both cannibal toxins. It is generally thought that 
delaying sporulation as long as possible is of advantage for B. subtilis because (i) sporulation as a 
developmental process is energetically costly, (ii) spores resume growth not as fast as vegetative 
cells when nutrients are available again, and thus (iii) sporulation confers an ecological 
disadvantage relative to cohabitating microorganisms [59]. The master regulator of the initiation of 
sporulation is Spo0A, which controls expression of about 120 genes [63]. Spo0A-responsive genes 
fall into two categories: those responding to low concentrations of Spo0A (because of having 
high-affinity bindings sites in their promoters) or to high concentrations (because of low-affinity 
bindings sites in their promoters). Operons involved in cannibalism (production of Skf and Sdp) as 
well as multicellular aerial structures (in which sporulation will take place in natural isolates; this 
trait has been lost during domestication of B. subtilis [64]) belong to the first category. Cannibalism 
and formation of aerial structures are thus considered as “a prelude to spore formation” [59]. If 
environmental conditions still favor sporulation, Spo0A is increasingly expressed, and cells are 
committed to sporulation and express genes important for spore formation [59]. 

Cannibal toxins are also active against other bacteria; for example, Skf inhibits growth of 
Xanthomonas oryzae [65] and Escherichia coli [66], and Sdp is known to kill Staphylococcus aureus and S. 
epidermidis at IC50 (half maximal inhibitory concentration) values similar to vancomycin [62]. This 
suggests that B. subtilis cannibal toxins also participate in defensive or predatory behavior directed 
at other species [59]. Purified Sdp was indeed shown to act as endogenously produced Sdp 
(delaying sporulation) and to collapse the proton motive force in Gram-positive species (B. subtilis, S. 
aureus, S. epidermidis) as well as in a gram-negative E. coli mutant strain with a compromised outer 
membrane. Loss of proton motive force induced autolysin-mediated lysis of the cells, demonstrating 
that a cannibalistic toxin can also be a defensive toxin. This also highlights an interesting survival 
strategy: Cannibal toxins induce an autolytic program in neighboring cells irrespective of whether 
they are from the same or from a different species. Affected cells cannot escape by simply moving 
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away; instead, their fate is determined: autolysis is induced, and lysed cells provide nutrients to 
immune cells to promote their own growth [67]. 

5. Are AFPs Cannibal Toxins? 

As discussed above, cannibalism is a phenomenon occurring during early stages of bacterial 
sporulation and aims to delay commitment to this process. We will show in the following that 
conceptual similarities exist to the process of asexual sporulation in filamentous fungi and propose 
that AFPs could, similarly to Skf and Sdp, function as cannibal toxins in ascomycetes. No 
experimental evidence is available so far for this hypothesis; however, parallels exist between the 
processes of sporulation at the heuristic level of decision-making processes and at mechanistic levels 
regarding the time- and space-dependent regulation of gene expression and mode of action of these 
antimicrobial peptides. 

Developmental transition from vegetative growth to asexual sporulation (conidiation) in the 
fungal class of ascomycetes is best studied in the model A. nidulans. Several negative key regulators 
(SfgA, VosA, and NsdD) inhibit precocious commitment to the formation of asexual spores, thereby 
allowing growth of vegetative hyphae as long as sufficient carbon sources are available [68]. 
Acquisition of developmental competence thus involves elimination of negative regulation and will 
be briefly summarized as follows (for more details, the reader is directed to [68]): The essential 
activator for conidiation is the transcription factor BrlA, which is expressed in response to the 
developmental FluG signal (a diorcinol–dehydroaustinol adduct [69]). BrlA in turn induces the 
transcription factor AbaA, which in turn activates the transcription factor WetA. All three regulators 
thus constitute a central regulatory hub that positively controls gene activation during conidiophore 
development and spore formation [35]. A genetic cascade upstream of BrlA–AbaA–WetA important 
to activate BrlA is the FluG–Flb cascade [70–72]. This cascade is controlled by the negative regulator 
SfgA, which acts between FluG and Flb proteins [73]. Note that inactivation of FluG or FlbA results 
in the absence of conidiation [74]. FlbA is a regulator of G-protein signaling (RGS) and arrests 
vegetative growth during conidiation by activating BrlA in response to FluG [43]. Note that anafp 
expression in A. niger takes place between expression of flbA and brlA; hence BrlA cannot be a 
regulator of anafp [10]. 

Do AFPs from ascomycetes play any role in asexual sporulation similarly to those of cannibal 
toxins during bacterial sporulation? We do not know yet. However, considering the data 
accumulated so far for AFP, AnAFP, and PAF (for details, see Section 3) and the Darwinian 
assumption that biological functions differ “in form but not in kind”, we provide here arguments for 
a functional relationship between bacterial cannibal toxins and fungal AFPs: 

• expression of these peptides is strongly repressed during vegetative growth; 
• expression of these peptides is derepressed during environmental stress conditions favoring 

sporulation; 
• expression of these peptides is under tight temporal and spatial control; 
• overexpression of these peptides is detrimental for the producing strain and causes autolysis; 
• expression of anafp, similarly to those of skf and sdp operons, occurs only in a subpopulation of 

cells; 
• expression of these peptides is concomitant with expression of autophagic and autolytic 

proteins; 
• expression of these peptides decreases when commitment to sporulation has been achieved; 
• deletion of the respective peptide-encoding genes does not prevent sporulation, but might 

affect timing and/or efficacy of sporulation; 
• sporulation causes death of a significant portion of the population, which releases nutrients to 

feed survivors; 
• host cells are immune against their own toxins; that is, in MIC assays, they appear less sensitive 

to their own AMPs compared to alien AMPs; 
• these peptides are membrane-interacting, whereby Skf and Sdp act specifically antibacterial 

and AFPs specifically antifungal; 
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• the primary function of these peptides could be to kill genetically identical siblings ( 
cannibalism); however, they can also function in the defense against other fungal (or bacterial) 
species. 

Several experimental approaches will be necessary to answer the question as to whether AFPs 
indeed act as cannibal toxins. Clearly, single-cell analytical approaches with high temporal 
resolution allowing detailed analysis of transcriptional and metabolic heterogeneity in mycelial 
cultures or colonies are required. Combining single-cell analytics with controlled deregulation of afp 
genes in wild-type and mutant backgrounds impaired in autophagic/autolytic processes will 
provide unique opportunities to resolve metabolic heterogeneity in mycelial populations and to 
verify the hypothesis proposed in this review. From an evolutionary point of view, it will be 
interesting to study further AFP orthologs from other ascomycetes to increase our understanding of 
programmed cell death in lower eukaryotes (note that AFP-encoding genes have so far not been 
identified in genomes of basidiomycetes, perhaps because they are not capable of asexual 
sporulation). Not only are cannibal toxins, such as Sdp and Skf of B. subtilis, known to induce 
programmed cell death; cannibalism is also prevalent in cancer cells, where neighboring cells 
become ingested upon carbon starvation, a process called entosis [75,76]. Cannibalism could thus be 
a conserved cellular response in prokaryotes and eukaryotes enabling cell survival through nutrient 
recycling from lysed neighbor cells. 

6. Conclusions 

Characterization of the antifungal peptides AFP and PAF has provided considerable biological 
understanding of processes underlying their antifungal activity, including genetic susceptibility 
factors, cell wall composition/remodeling enzymes, and signaling components involved in their 
toxicity. However, knowledge surrounding the gene regulation of members of the AFP family and 
the puzzling link to asexual developmental processes is severely limited. The so-far available data 
are descriptive, and mechanistic explanations of their temporal and spatial regulation are completely 
absent. We provide here a conceptual framework for the mode of action of AFPs that goes far 
beyond their antifungal activity, which is in agreement with accumulating evidence suggesting that 
AMPs are likely multifunctional [77,78]. Several hallmarks of afp, anafp, and paf gene expression 
during asexual sporulation of A. giganteus, A. niger, and P. chrysogenum, respectively, parallel 
hallmarks of cannibal toxin expression and function during sporulation of B. subtilis. We have 
summarized these and provided plausible arguments that members of the AFP family could indeed 
act as cannibal toxins in fungi. We believe that the knowledge gap regarding cellular functions of 
AFPs can be filled by learning from bacteria capable of asexual sporulation. The aim of our review is 
to stimulate fungal (and bacterial) scientists to think about their model organisms and model 
proteins in a broader context. 

A question arising is whether AFPs act as sensor, signaling, or effector molecules, leading to 
intracellular destabilization of plasma membranes and subsequent cell lysis. Given a recursive 
relationship such as in the immunobiology of higher eukaryotes [10], AFPs could be effector 
molecules activating their own sensor/signaling molecules in order to provoke a strong defense 
response. Hence, it is conceivable that all of these options are true. All technological requirements 
and molecular tools ranging from single-cell analytics and comparative genomics to targeted gene 
(in)activation are available and better than they have ever been to study these possibilities. The 
ultimate goal is to understand the molecular mechanisms behind AFP-related processes at the 
intersection of cell function and dysfunction, cell survival, and death. This knowledge will help us to 
identify the “Achilles’ heel” of filamentous fungi and thus new excellent drug target(s) for novel 
antifungal agents and strategies. Such an understanding will also assist in identifying new leads for 
improved growth of the industrial cell factories A. niger and P. chrysogenum during carbon 
starvation, which is frequently encountered during industrial fermentation processes. 
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