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Abstract: Outbreak management of extended spectrum B-lactamase (ESBL)-producing pathogens
requires rapid and accurate diagnosis. However, conventional screening is slow and labor-intensive.
The vast majority of the screened samples are negative and detection of non-outbreak-related resistant
micro-organisms often complicates outbreak management. In a CTX-M-15-producing Escherichia
coli outbreak, 149 fecal samples and rectal eSwabs were collected by a cross-sectional survey in
a Dutch nursing home. Samples were processed by routine diagnostic methods. Retrospectively,
ESBL-producing bacteria and resistance genes were detected directly from eSwab medium by
an accelerated workflow without prior enrichment cultures by an amplicon-based next-generation
sequencing (NGS) method, and culture. A total of 27 (18.1%) samples were positive in either test.
Sensitivity for CTX-M detection was 96.3% for the phenotypic method and 85.2% for the NGS
method, and the specificity was 100% for both methods, as confirmed by micro-array. This resulted
in a positive predictive value (PPV) of 100% for both methods, and a negative predictive value (NPV)
of 99.2% and 96.8% for the phenotypic method and the NGS method, respectively. Time to result was
four days and 14 h for the phenotypic method and the NGS method, respectively. In conclusion, the
sensitivity without enrichment shows promising results for further use of amplicon-based NGS for
screening during outbreaks.

Keywords: amplicon-based next-generation sequencing; E. coli; beta-lactamases; ESBL; CTX-M;
outbreak surveillance; molecular diagnostics

1. Introduction

The introduction of cephalosporins as a treatment option for infections caused by Enterobacteriaceae
was followed by the emergence of extended spectrum f3-lactamases (ESBL)-producing pathogens.
ESBLs are enzymes that can hydrolyze third generation cephalosporins produced by several
Enterobacteriaceae, including Klebsiella pneumoniae and Escherichia coli [1-3]. Among the different classes
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of ESBLs (TEM, SHV, CTX-M among others), the prevalence of CTX-M carrying Enterobacteriaceae is
rising [4-10].

Outbreaks with ESBL-producing Enterobacteriaceae are an increasing problem [11]. Outbreak
management, in general, requires rapid diagnosis for optimum quality of infection control measures.
Rapid action in order to limit the consequences and to contain the dissemination of ESBL-producing
Enterobacteriaceae is of utmost importance. However, conventional screening is usually slow
and labor-intensive, and therefore does not meet the requirements for a rapid diagnostic test.
The combination of efficient logistics, an optimal workflow and accelerated diagnostic procedures has
the potential to maximally support infection control during management and prevention of outbreaks.
One important option for acceleration is the use of molecular diagnostics on direct patient material,
since it circumvents the primary requirement for bacterial growth. With such methods, relevant
(partial) results can be obtained earlier. This has two positive aspects, provided that the sensitivity, and
subsequently, the negative predictive value (NPV) is high. One aspect is that patients with a negative
result can be rapidly cleared, and the other aspect is that labor intensive culture-based work can
be focused on the relatively small proportion of positive samples. An additional advantage is that
molecular diagnostics can be automated more easily with already commercially available equipment.

However, microbiological diagnostics for surveillance faces at least two additional challenges
which largely depend on the regional epidemiology of the studied pathogens. In a low prevalence
setting for a given micro-organism, most samples will be negative, thus leading to a large number of
negative tests which still bind laboratory capacity and resources. By contrast, in a high prevalence
setting, there will be substantial numbers of ‘by-catch’, i.e., accidental detection of micro-organisms
which are unrelated to the outbreak. To safely exclude negative patients from further screening,
it is desirable to have a rapid and easy screening test with a high sensitivity. In addition, a test
specific for the outbreak strain to avoid background noise in the screening will be extremely helpful in
guiding infection prevention measures [11]. Additionally, feces samples, often used in diagnostics, are
an extremely complex and bacteria-rich matrix.

In this study, an amplicon-based next-generation sequencing method, commercialized as the
Pathogenica Hospital Acquired Infection (HAI) BioDetection System, was used for detection and typing
of pathogens and resistance genes [12,13]. The HAI BioDetection system involves sequencing of short
DNA regions of interest which are targeted by a set of probes to bind specific genes [12,13]. However,
the original protocol includes an enrichment step, and in a standard workflow without 24/7 dedicated
staff, the advantage of rapid detection is largely lost with this enrichment step. Therefore, in the present
study, the amplicon-based next-generation sequencing method was used for the rapid exclusion of
negative samples and the detection of positive samples, without the pre-enrichment step, directly from
primary samples.

2. Materials and Methods

2.1. Samples

During a CTX-M-15-producing E. coli outbreak in a long-term care facility in the south of
The Netherlands, fecal samples or rectal eSwabs (Copan Diagnostics, Brescia, Italy) were collected
from all residents (n = 149) during a cross-sectional survey in October 2013.

2.2. Phenotypic Detection and Confirmation by Micro-Array

Samples were tested for the presence of ESBL-producing bacteria using a selective tryptic
soy broth containing 0.25 mg/L cefotaxime and 8 mg/L vancomycin that was sub-cultured on
a selective McConkey medium divided in two sections containing 400 mg/L cloxacillin, 64 mg/L
vancomycin, plus on either of the two sections 1 mg/L ceftazidime or 1 mg/L cefotaxime, respectively
(ESBL Screening Agar ([EbSA]), AlphaOmega, The Hague, The Netherlands). All media were
incubated overnight at 35 to 37 °C. Species identification and susceptibility testing were performed
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on all isolates that grew on either section of the EbSA medium using matrix assisted laser
desorption/ionisation—time of flight mass spectrometry (MALDI-TOF MS) with the Biotyper software
package (Bruker, Karlsruhe, Germany) and VITEK 2 (bioMérieux, Marcy 1" Etoile, France), respectively.
CTX-M f3-lactamases have higher hydrolyzing activities against cefotaxime than ceftazidime which is
usually very well hydrolyzed by SHV type ESBLs [14]. However, several CTX-M-1 group enzymes
also hydrolyze ceftazidime and cefepime efficiently [15]. Thus, the presence of ESBLs was confirmed
phenotypically with the combination disk diffusion test (CDT) for cefotaxime, ceftazidime and/or
cefepime, either alone or in combination with clavulanic acid (Rosco, Taastrup, Denmark). Isolates
were considered ESBL positive when the inhibition zone around the disk was 5 mm or larger for
the disk containing the antibiotic in combination with clavulanic acid, as compared to the disk
without clavulanic acid. For every non-duplicate ESBL-positive isolate of each patient, a Check-MDR
CT103 micro-array (Checkpoints, Wageningen, The Netherlands) was performed to confirm the
presence of ESBL resistance genes.

2.3. Next-Generation Sequencing

Different DNA extraction methods, including the DNeasy Blood and Tissue kit (Qiagen,
Gaithersburg, MD, USA), QlAamp DNA Stool Mini kit (Qiagen, Hilden, Germany), automatic DNA
isolation using the NucliSENS easyMag (bioMérieux, Marcy 1’Etoile, France) and UltraClean Microbial
DNA Isolation kit (MoBio, Carlsbad, CA, USA), were evaluated on six feces samples and six rectal
eSwabs. DNA concentration and purity were assessed using a NanoDrop 2000 ¢ spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and the Qubit double-stranded DNA (dsDNA) HS and
BR assay kits (Life Technologies, Carlsbad, CA, USA). Since the UltraClean Microbial DNA Isolation
kit appeared to be the most efficient method for this purpose, it was used for the DNA isolation of the
collected samples.

The feces and rectal eSwabs were thawed from —80 °C at room temperature. For DNA isolation,
500 uL eSwab medium was taken from the swab and centrifuged in a 1.5 mL Eppendorf tube for 1 min
at 14,000 x g. The supernatant was used for DNA isolation, using the UltraClean® Microbial DNA
Isolation Kit according to the procedure as described by the manufacturer.

Library preparation was performed as described in the procedure of the HAI BioDetection
Kit (Biolnnovation Solutions SA, Lausanne, Switzerland), which utilizes targeted set of around
300 probes to bind and amplify the specific DNA regions, but omitting the enrichment step of
12 to 16 h pre-incubation. To optimize the DNA concentration for the clonal amplification, the
library concentration was diluted in two steps and measured using the Qubit 2.0 Fluorometer
(Life Technologies, Blijswijk, The Netherlands). In the first dilution step, the library was diluted
to 1 ng/pL in water, and in the second dilution step, the library was diluted 1:528. Template
preparation was carried out using the lon PGM Template OT2 200 Kit (Life Technologies, Carlsbad,
CA, USA) and the PGM Ion Torrent (Life Technologies, Carlsbad, CA, USA) was used for sequencing
of the library. Subsequently, automatic data analysis was performed using the HAI software
version 1.2 (Biolnnovation Solutions SA, Lausanne, Switzerland) which is based on a mapping
approach. The software compares sequencing data of the each sample to both the Genbank database
and to Pathogenica’s constantly updated sequencing database to determine the best matches to
microbial strains and resistance genes as indicated in the manufacturer’s user guide (Pathogenica
HAI BioDetection Kit Software Version 1.2.0 User Guide 2012). The HAI BioDetection kit can detect
12 bacteria (Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus faecalis, Enterococcus
faecium, Acinetobacter baumannii, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella pneumoniae,
Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Clostridium difficile), as well as 18 antibiotic
resistance genes (CARB, CMY, CTX-M, GES, IMP, KPC, NDM, ampC, OXA, PER, SHV, VEB, VIM,
ermA, vanA, vanB, mecA and mexA). However, the kit cannot differentiate between wild-type (WT)
and ESBL alleles for SHV.
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2.4. Statistical Methods

The non-parametric test for related samples of binary data was performed using the software
package SPSS version 20.0 (IBM Corporation, New York, NY, USA).

3. Results

3.1. DNA Isolation

Pilot experiments were performed prior to the study in order to optimize the workflow and
the use of the software for data analyses. During these initial experiments, it appeared that the
method used for DNA isolation was crucial for the performance of the amplicon-based next-generation
sequencing method. Due to the low microbial DNA concentrations in the rectal swabs, we were
not able to determine the quality of the isolated DNA (A260/A280 ratios). Therefore, sequencing
results, i.e., the number of positive samples and the number of reads, were used to determine which
isolation kit could be best used for our study. The QlAamp DNA Stool Mini Kit did not yield any
results. Automated DNA isolation using the NucliSENS easyMag yielded results for five of 12 samples.
The DNeasy Blood and Tissue kit gave results for eight of 12 samples, whereas the UltraClean®
Microbial DNA Isolation kit gave results for all samples with higher numbers of reads compared to
the DNeasy Blood and Tissue kit (Supplementary Table S1).

3.2. Detection of CTX-M-15-ESBL-Producing E. coli

The conventional phenotypic method (culture + CDT) detected an ESBL-producing E. coli isolate
in 26 of 149 (17.4%) of the samples. Subsequent microarray analysis revealed these were all carrying the
CTX-M-15 gene. The amplicon-based next-generation sequencing method on direct samples detected
an E. coli and a CTX-M gene in 23 of 149 (15.4%) samples, including one sample that was tested
negative with the phenotypic method. In total, 27 of 149 (18.1%) patients were positive for E. coli and
a CTX-M gene with at least one method (Table 1).

Table 1. Detection of CTX-M-15 ESBL genes by the amplicon-based next-generation sequencing
method (NGS) on direct patient material, compared to conventional method (culture + CDT, followed
by microarray).

Phenotypic/Microarray Method

— - Total
No. (%) Positive No. (%) Negative
NGS positive 22 (84.6) 1(0.8) 23 (100)
NGS negative 4(15.4) 122 (99.2) 126 (100)
Total 26 (100) 123 (100) 149 (100)

3.3. Statistical Analyses

A pooled sensitivity was assumed as the gold standard. Samples that tested positive in either test
were confirmed as CTX-M-15 ESBL-positive by micro-array, and hence 100% specificity was inferred
for both tests. Sensitivity for the CTX-M detection was 26 of 27 (96.3%) for the phenotypic method
and 23 of 27 (85.2%) for the amplicon-based next-generation sequencing method. The specificity
of 100% resulted in a positive predictive value (PPV) of 100% for both methods. The NPVs were
99.2% and 96.8% for the phenotypic method and the amplicon-based next-generation sequencing
method, respectively (Table 2). The proportion of samples tested positive was not statistically different
(p = 0.375) between the two methods (17.4% versus 15.4%), resulting in an absolute difference of
2 percentage points.
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Table 2. Sensitivity, specificity, PPV and NPV for the amplicon-based next-generation sequencing

method (NGS) and the phenotypic/microarray method.

50f8

Sensitivity Specificity o o
PPV (% . PV (% .
(% [No.) (% [No.) (%INo.D NPV (% [No.
NGS 85.2 (23) 100 (122) 100 (23/23) 96.8 (122/126)
Phenotypic/microarray 96.3 (26) 100 (122) 100 (26/26) 99.2 (122/123)
Total 100 (27) 100 (122) - -

3.4. Discrepant Results

Five samples showed discrepant results depending on the method used.
a CTX-M gene was detected by the amplicon-based next-generation sequencing method only, but no
resistance was detected by the phenotypic method. In contrast, four samples tested CTX-M positive
with the phenotypic method and subsequent micro-array, were negative using the amplicon-based
next-generation sequencing method. Therefore, the positive CTX-M samples missed with the
amplicon-based next-generation sequencing method were tested again in three ways: (1) samples were
enriched in Brain heart infusion (BHI) medium for 16 h before being plated on blood agar plates and
being tested by the amplicon-based next-generation sequencing method, (2) a fresh DNA isolation was
performed from the samples followed by testing using the amplicon-based next-generation sequencing
method, and (3) the previously isolated DNA was again used for the amplicon-based next-generation
sequencing method. In addition, all isolates were identified by MALDI-TOF and phenotypic antibiotic
susceptibility testing was performed to confirm the presence of ESBL-producing E. coli. Only the first
approach revealed one extra sample positive for E. coli and CTX-M. The second and third method did
not result in any additional positive samples.

In one sample,

3.5. Times to Result

The times to result for the phenotypic culture-based method and the amplicon-based
next-generation sequencing method were four days and 14 h, respectively, if no more than 24 samples
were processed in parallel using the amplicon-based next-generation sequencing method (Figure 1).
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Figure 1. Accelerated workflow for the amplicon-based next-generation sequencing method used in
the present study.
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4. Discussion

In the present study, we used an amplicon-based next-generation sequencing method for the rapid
detection of negative samples and the detection of expected positive patients using an accelerated
workflow without enrichment culture, a step included in the original protocol of the manufacturer.
This study showed that the sensitivity for CTX-M detection with the phenotypic method was 96.3%,
and with the amplicon-based next-generation sequencing method 85.2%. The latter is promising, but
still lower than desirable and a reported sensitivity of 98% for the same kit when used directly on
DNA extracted from isolates [12]. The specificity was assumed 100% for both methods, resulting in
a PPV of 100% for both methods and a NPV of 99.2% and 96.8% for the phenotypic method and the
amplicon-based next-generation sequencing method, respectively. The proportion of samples tested
positive, 17.4% versus 15.4%, was not statistically different between the two methods.

From the initial experiments, the extraction protocol used to isolate the DNA from the samples
appeared to be crucial for the subsequent performance of the amplicon-based next-generation
sequencing method. The difference in the results using different DNA extraction methods could
be due to a difference in the quality of the DNA obtained by the specific kits. Unfortunately, DNA
concentrations in our e-swab samples were too low to measure the quality of the DNA.

The sensitivity with the accelerated workflow with no enrichment showed promising results.
However, one sample was found to be positive for E. coli and CTX-M using the amplicon-based
next-generation sequencing method, and this was not observed by the phenotypic method.
Furthermore, four samples from which a CTX-M-producing E. coli could be detected using the
phenotypic method were negative using the amplicon-based next-generation sequencing method.
Such discrepant results have not been observed in a previous study, in which the results of the
amplicon-based next-generation sequencing method were compared with results obtained by PCR and
sequencing [13]. However, another study also observed the failure of the detection of CTX-M in one
isolate using the amplicon-based next-generation sequencing method [12]. These discrepancies could
be explained by the loss of the plasmid carrying the CTX-M gene along with performing these two
methods retrospectively from thawed samples. Indeed, the microarray assay was not able to detect
the CTX-M gene strongly suggesting that the plasmid carrying the gene is not present (anymore).
Although the positive CTX-M samples missed by the amplicon-based next-generation sequencing
method were tested again by enriching on an unselective BHI media, only one extra positive sample
was detected. It is already known that, enrichment of resistant bacteria in an unselective medium may
result in isolates losing their resistance genes, located on plasmids over time. Further optimization
of the DNA isolation from direct material (such as eSwabs) by reducing human DNA, as well as
optimal sample handling, may further increase the sensitivity of the amplicon-based next-generation
sequencing method. An automated DNA isolation method is preferred to standardize the workflow
and to reduce hands-on time. Furthermore, the amplicon-based next-generation sequencing method
can be used for sequence-based typing of isolates in addition to identification of species and resistance
genes [13]. Also, this targeted-based sequencing approach is more efficient and cost effective for the
processing of high number of samples in comparison to conventional PCR [13]. As well as, generation
of smaller data sets makes the bioinformatics analysis easier and shorter in processing time compared
to a whole genome sequencing approach.

Although the automated data analysis of the provided software has several advantages, as, e.g.,
its simplicity and generating an easy-to-read output report, it also limits in depth analyses of the
sequence data as users are not able to adjust any parameters. This may affect quality aspects of the
data analysis. However, the raw sequencing reads can be downloaded and processed with any other
bioinformatics tool.

Despite the somewhat lower sensitivity of the amplicon-based next-generation sequencing method
compared to the phenotypic method, the time to result for the amplicon-based next-generation
sequencing method was only 15% of that of the phenotypic method (14 h and four days, respectively).
However, the trade-off between sensitivity and speed of having results with either the phenotypic
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method or the amplicon-based next-generation sequencing method is inevitable. It is still likely
to exclude ESBL-positive samples by having an ideal target of a NPV of 100% whereas no false
positives were obtained either one of the methods in this study. In conclusion, methods such as
the amplicon-based next-generation sequencing method should eventually find their way to the
microbiology diagnostic laboratories. However, further studies are required to shorten duration of the
library preparation and the run on the PGM Ion Torrent instrument. We conclude that a molecular
screening method for outbreak management offers several advantages, most prominently, a substantial
increase in the time to result.

Supplementary Materials: The following are available online at www.mdpi.com/2076-2607/6/1/6/s1, Table S1:
Comparison of different DNA isolation methods.

Acknowledgments: This study was funded by the Interreg IVA project SafeGuard. N.P. has received funding from
the European Union’s Horizon 2020 Research and Innovation 555 Program under the Marie Sklodowska-Curie
grant agreement 713660 (MSCA-COFUND-2015-556 DP “Pronkjewail”). BioInnovation Solutions provided the
HAI BioDetection kits at a reduced price, and LifeTechnologies made the IonTorrent PGM available at a reduced
price. Neither of these companies had any influence on the design of the study, the interpretation of the data, or
the writing of the manuscript.

Author Contributions: B.S., JW.AR,, J.V. and P.C.L. conceived and designed the experiments; P.C.L. and E.G.C.R.
performed the experiments; E.G.C.R., N.P, PC.L., RH.D. analyzed the data; J W.A.R,, N.P, PC.L. and RH.D.
wrote the paper; AWE, B.S,, J.LAK, JW.AR. and ].V. revised the paper and discussed the results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended Spectrum Beta-lactamases: Definition,
Classification and Epidemiology. Curr. Issues Mol. Biol. 2015, 17, 11-21. [CrossRef] [PubMed]

2. D’Andrea, M.M.; Arena, F; Pallecchi, L.; Rossolini, G.M. CTX-M-type 3-lactamases: A successful story of
antibiotic resistance. Int. J]. Med. Microbiol. 2013, 303, 305-317. [CrossRef] [PubMed]

3. Pfaller, M.A.; Segreti, J. Overview of the epidemiological profile and laboratory detection of
extended-spectrum beta-lactamases. Clin. Infect. Dis. 2006, 42 (Suppl. 4), S5153-5163. [CrossRef] [PubMed]

4. Bradford, P.A. Extended-Spectrum [3-Lactamases in the 21st Century: Characterization, Epidemiology, and
Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933-951. [CrossRef] [PubMed]

5. Paterson, D.L.; Hujer, K.M.; Hujer, A.M.; Yeiser, B.; Bonomo, M.D.; Rice, L.B.; Bonomo, R.A. Extended-spectrum
beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread
prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob. Agents Chemother. 2003, 47, 3554-3560.
[CrossRef] [PubMed]

6. Rawat, D.; Nair, D. Extended-spectrum (-lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2010, 2,
263-274. [CrossRef] [PubMed]

7. Castanheira, M.; Farrell, S.E.; Deshpande, L.M.; Mendes, R.E.; Jones, R.N. Prevalence of 3-Lactamase-
Encoding Genes among Enterobacteriaceae Bacteremia Isolates Collected in 26 U.S. Hospitals: Report from
the SENTRY Antimicrobial Surveillance Program (2010). Antimicrob. Agents Chemother. 2013, 57, 3012-3020.
[CrossRef] [PubMed]

8. Hara, T.; Sato, T.; Horiyama, T.; Kanazawa, S.; Yamaguchi, T.; Maki, H. Prevalence and molecular
characterization of CTX-M extended-spectrum [3-lactamase-producing Escherichia coli from 2000 to 2010 in
Japan. Jpn. ]. Antibiot. 2015, 68, 75-84. [PubMed]

9.  Flokas, M.E,; Karanika, S.; Alevizakos, M.; Mylonakis, E. Prevalence of ESBL-Producing Enterobacteriaceae in
Pediatric Bloodstream Infections: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0171216.
[CrossRef] [PubMed]

10. Moremi, N.; Claus, H.; Vogel, U, Mshana, S.E. Faecal carriage of CTX-M extended-spectrum
beta-lactamase-producing Enterobacteriaceae among street children dwelling in Mwanza city, Tanzania.
PLoS ONE 2017, 12, e0184592. [CrossRef] [PubMed]


www.mdpi.com/2076-2607/6/1/6/s1
http://dx.doi.org/10.21775/cimb.017.011
http://www.ncbi.nlm.nih.gov/pubmed/24821872
http://dx.doi.org/10.1016/j.ijmm.2013.02.008
http://www.ncbi.nlm.nih.gov/pubmed/23490927
http://dx.doi.org/10.1086/500662
http://www.ncbi.nlm.nih.gov/pubmed/16544266
http://dx.doi.org/10.1128/CMR.14.4.933-951.2001
http://www.ncbi.nlm.nih.gov/pubmed/11585791
http://dx.doi.org/10.1128/AAC.47.11.3554-3560.2003
http://www.ncbi.nlm.nih.gov/pubmed/14576117
http://dx.doi.org/10.4103/0974-777X.68531
http://www.ncbi.nlm.nih.gov/pubmed/20927289
http://dx.doi.org/10.1128/AAC.02252-12
http://www.ncbi.nlm.nih.gov/pubmed/23587957
http://www.ncbi.nlm.nih.gov/pubmed/26182812
http://dx.doi.org/10.1371/journal.pone.0171216
http://www.ncbi.nlm.nih.gov/pubmed/28141845
http://dx.doi.org/10.1371/journal.pone.0184592
http://www.ncbi.nlm.nih.gov/pubmed/28898269

Microorganisms 2018, 6, 6 80f8

11.

12.

13.

14.

15.

Zhou, K.; Lokate, M.; Deurenberg, R.H.; Tepper, M.; Arends, ]J.P; Raangs, E.G.C.; Lo-Ten-Foe, J.;
Grundmann, H.; Rossen, ].W.A; Friedrich, A.W. Use of whole-genome sequencing to trace, control and
characterize the regional expansion of extended-spectrum -lactamase producing ST15 Klebsiella pneumoniae.
Sci. Rep. 2016, 6, 20840. [CrossRef] [PubMed]

Veenemans, J.; Overdevest, 1T, Snelders, E., Willemsen, I, Hendriks, Y., Adesokan, A.;
Doran, G.; Bruso, S.; Rolfe, A.; Pettersson, A.; et al. Next-generation sequencing for typing and
detection of resistance genes: Performance of a new commercial method during an outbreak of
extended-spectrum-beta-lactamase-producing Escherichia coli. ]. Clin. Microbiol. 2014, 52, 2454-2460.
[CrossRef] [PubMed]

Arena, F; Rolfe, P.A.; Doran, G.; Conte, V.; Gruszka, S.; Clarke, T.; Adesokan, Y.; Giani, T.; Rossolini, G.M.
Rapid resistome fingerprinting and clonal lineage profiling of carbapenem-resistant Klebsiella pneumoniae
isolates by targeted next-generation sequencing. J. Clin. Microbiol. 2014, 52, 987-990. [CrossRef] [PubMed]
Wang, P; Hu, F; Xiong, Z.; Ye, X.; Zhu, D.; Wang, Y.F.; Wang, M. Susceptibility of Extended-Spectrum-f3-
Lactamase-Producing Enterobacteriaceae According to the New CLSI Breakpoints. J. Clin. Microbiol. 2011, 49,
3127-3131. [CrossRef] [PubMed]

Naas, T.; Oxacelay, C.; Nordmann, P. Identification of CTX-M-Type Extended-Spectrum-f-Lactamase Genes
Using Real-Time PCR and Pyrosequencing. Antimicrob. Agents Chemother. 2007, 51, 223-230. [CrossRef]
[PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1038/srep20840
http://www.ncbi.nlm.nih.gov/pubmed/26864946
http://dx.doi.org/10.1128/JCM.00313-14
http://www.ncbi.nlm.nih.gov/pubmed/24789184
http://dx.doi.org/10.1128/JCM.03247-13
http://www.ncbi.nlm.nih.gov/pubmed/24403299
http://dx.doi.org/10.1128/JCM.00222-11
http://www.ncbi.nlm.nih.gov/pubmed/21752977
http://dx.doi.org/10.1128/AAC.00611-06
http://www.ncbi.nlm.nih.gov/pubmed/17088478
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Samples 
	Phenotypic Detection and Confirmation by Micro-Array 
	Next-Generation Sequencing 
	Statistical Methods 

	Results 
	DNA Isolation 
	Detection of CTX-M-15-ESBL-Producing E. coli 
	Statistical Analyses 
	Discrepant Results 
	Times to Result 

	Discussion 
	References

