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Abstract: Biofilm-associated infections pose a complex problem to the medical community, in
that residence within the protection of a biofilm affords pathogens greatly increased tolerances
to antibiotics and antimicrobials, as well as protection from the host immune response. This results in
highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as
80% of human bacterial infections are biofilm-associated, many researchers have begun investigating
therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells
into their more vulnerable, planktonic mode of life. This review addresses the current state of
research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes
(including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and
dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules).
Throughout our discussion, we provide detailed lists and summaries of some of the most prominent
and extensively researched dispersal agents that have shown promise against the biofilms of clinically
relevant pathogens, and we catalog which specific microorganisms they have been shown to be
effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal
agents, and contemplate what needs to be done to overcome them.
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1. Introduction

Biofilms are communities of microorganisms protected by a self-synthesized layer of complex
polysaccharides, proteins, lipids and extracellular DNA, collectively called the extracellular polymeric
substance (EPS) [1]. Biofilms form when a microbe irreversibly attaches itself to a surface and
commences cell division and recruitment of other microorganisms by providing more diverse adhesion
sites to the substrate [2]. Being in a biofilm provides microbes with a host of advantages, including,
but not limited to: physical protection from the host immune system and antimicrobials/antibiotics,
retention of water and tolerance to desiccation, nutrient sorption and storage, high extracellular
enzymatic activity, adhesion to the infection site, and cell aggregation leading to coordination of
virulence factor expression via quorum sensing [1,3,4]. Particularly troubling to the medical field,
it has been estimated that as much as 80% of all human bacterial infections are biofilm-associated,
including more than 90% of all chronic wound infections [5,6]. Additionally, the biofilm mode of
microbial life is responsible for up to a 1000-fold increase in antibiotic tolerance [7] due to the physical
impedance and enzymatic inactivation of the drugs, coupled with lowered metabolic rates in many
biofilm-associated cells [8]. Thus, biofilm infections are highly recalcitrant, and are associated with
chronic, non-healing infections.

Traditionally, infections have been treated by directly targeting the causative pathogens. However,
biofilms change the game by providing microbes with greatly increased protection from antimicrobials,
causing the effective concentrations to be elevated to dangerous levels. Therefore, some researchers
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have switched their focus to anti-biofilm agents that deny the pathogens the protection of the biofilm,
thereby increasing the effectiveness of traditional, antimicrobial therapies. One such avenue of research
has been the testing of compounds and strategies that lead to a dispersal event: dispersal agents.

Nearly all mature biofilms undergo dispersal, which can be divided into two main subtypes: active
and passive, both of which result in the release of planktonic, free-floating cells into the environment
(Figure 1). Passive dispersal simply refers to a physical sloughing event brought on by external forces
such as fluid and solid shear, and mechanical interventions (e.g., tooth brushing). For example, a biofilm
streamer may be torn off of the main mass by the flow of interstitial fluid, or a wound-resident biofilm
may be physically debrided by a surgeon. Active dispersal, on the other hand, refers to dispersal
events triggered by the biofilm microbes themselves in response to environmental changes such as
nutrient starvation, toxic byproducts, bacteriophages, phagocyte challenge, antimicrobial stress, and
unfavorable oxygen levels. Thus, active dispersal is a vital stage in the life-cycle of a biofilm that
contributes to bacterial survival and disease progression.
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Figure 1. Schematic representations of passive and active biofilm dispersal. In passive dispersal,
an external force (sharp debridement, in this example) causes the complete or partial destruction of
the biofilm. In active dispersal, the biofilm microbes respond to an antibiofilm stimulus (nutrient
starvation/sequestration, dispersal signal release, quorum sensing inhibition, or stringent response
interference, in this example) by actively degrading the matrix, thereby releasing planktonic cells.

Clinically, dispersal can be accomplished by utilizing enzymes, small molecules, or any other
means to trigger a massive dispersal event, either passive or active, that releases the biofilm-associated
microbes into their more vulnerable, planktonic state. In this review, we will summarize the current
state of three major classes of medical biofilm dispersal agents as a therapeutic avenue: enzymes,
antibiofilm peptides, and dispersal molecules. It should be noted that this review will be concentrating
on molecular methods of biofilm dispersal. However, there are a wide variety of mechanical dispersal
methods, such as improved debridement techniques, blue light irradiation, and nonthermal plasma
therapy, currently being developed.

2. Enzymes

One of the main mechanisms by which bacteria achieve active biofilm dispersal is by the
production of extracellular enzymes that act on various structural components of the EPS; namely
proteins, extracellular DNA (eDNA), and exopolysaccharides. By targeting that which encloses and
protects the microbes, these enzymes facilitate the detachment of cells from the biofilm colony, and
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their planktonic release into the environment. By isolating and purifying these enzymes, clinicians
can theoretically add them exogenously to pre-formed biofilms at elevated concentrations in order
to achieve interventional dispersal, making the biofilm-associated microbes more susceptible to the
host immune system and antibiotics/antimicrobials. Here, various classes of enzymes that have
been investigated for the dispersal of medical biofilms will be reviewed: specifically proteases,
deoxyribonucleases, and glycoside hydrolases.

2.1. Proteases

Extracellular proteins are a major EPS component that can represent a substantial portion of
the biofilm’s dry mass [9–12]. Exoproteins are crucial for the ability of microbes to maintain and
modify the EPS [13,14], and certain proteins, such as DNA-binding proteins (DNABPs), functional
amyloids/amyloid-like proteins (FA/ALPs), and other biofilm-associated proteins (Baps), are vital
contributors to surface and EPS scaffolding adhesion, and the overall physical stability of the biofilm
matrix [10,15]. Thus, enzymatically degrading EPS exoproteins has the potential to cause a massive
dispersal event.

A plethora of proteases that contribute to biofilm dispersal have been identified. For example,
considering the Gram-positive pathogen Staphylococcus aureus alone, ten secreted proteases have been
identified, and to date, four of those (V8 serine protease (SspA), two staphopains (SspB and ScpA),
and aureolysin (Aur)) have been shown to be involved in biofilm disruption [16–20]. Of those four,
Aur, ScpA, and SspB have all been shown to promote dispersal of established S. aureus biofilms when
they were purified and exogenously added in vitro [20], with Aur being the most effective. Table 1
summarizes many of the proteases that have been shown to have anti-biofilm activity to date.

Table 1. Proteases that Disperse Biofilms.

Enzyme Summary References

Aureolysin (Aur) A staphylococcal metalloprotease that has been shown to disrupt S. aureus
biofilms by degrading Bap and clumping factor b. [17,20]

LapG Protease
A protease produced by Pseudomonas putida that has been shown to trigger
dispersal through modification of the outer membrane-associated,
exopolysaccharide-binding protein, LapA.

[21]

Proteinase K

A highly reactive and stable serine protease that exhibits a broad range of
cleavage by targeting peptide bonds adjacent to the carboxylic group of
aliphatic and aromatic amino acids. It is active against the biofilms produced
by a range of bacteria, including S. aureus, Listeria monocytogenes,
Staphylococcus lugdunensis, Staphylococcus heamolyticus, Gardnerella vaginalis, and
Escherichia coli, Heamophilus influenza, and Bdellovibrio bacteriovorus.

[22–29]

Spl Proteases
A group of six Staphylococcal serine proteases that have been shown to be
involved in S. aureus biofilm dispersal, possibly by cleaving the cell
wall-associated protein, EbpS.

[30,31]

Staphopain A (ScpA),
Staphopain B (SspB)

Staphylococcal cysteine proteases that have been shown to disperse S. aureus
biofilms through degradation of (an) unknown target(s). [19,20]

Streptococcal Cysteine
Protease (SpeB)

A Streptococcus pyogenes cysteine protease that is historically known to be
involved in immune evasion by the pathogen, owing to its cleavage of host
immune molecules, as well as tissue invasion by way of host ECM degradation.
However, SpeB has more recently been shown to be involved in dispersal of
in vivo S. pyogenes biofilms via hydrolysis of surface proteins M and F1, which
are hypothesized to be involved in microcolony formation.

[32,33]

Surface-protein-releasing
enzyme (SPRE)

An endogenous Streptococcal protease that has been shown to cause
Streptococcus mutans monolayer biofilm detachment from a colonized surface
via the release of the surface protein, antigen P1.

[34]

Trypsin

A pancreatic serine protease that cleaves peptides at the carboxyl side of lysine
or arginine. It is active against biofilms made by multiple bacterial species,
including Pseudomonas aeruginosa, Streptococcus mitis, Actinomyces radicidentis,
Staphylococcus epidermidis, and Gardnerella vaginalis.

[25,26,35,36]

V8 Serine Protease
(SspA)

A staphylococcal serine protease that degrades fibronectin binding proteins
and Bap in S. aureus biofilms. [17,37]



Microorganisms 2017, 5, 15 4 of 16

2.2. Deoxyribonucleases

In many biofilms, extracellular DNA (eDNA) functions as a structural scaffolding within the EPS,
and can help facilitate bacterial adhesion, aggregation, and horizontal gene transfer [38–42]. Initially, it
was assumed that the DNA found within biofilms was merely a remnant of lysed cells, and the first
study that showed that eDNA can be a vital, contributing component of bacterial biofilms was done
by Whitchurch et al. in 2002 [41]. The authors showed that exogenously added deoxyribonuclease
(DNase I) was able to inhibit the formation of P. aeruginosa biofilms in vitro without significantly
affecting bacterial viability. Additionally, they found that treating established P. aeruginosa biofilms
up to 60 h with DNase I led to dispersal [41]. This finding triggered a wave of research into targeting
eDNA with various DNases as a means to eradicate biofilm infections. Table 2 summarizes many of
the DNases that have been shown to have biofilm-disrupting activity to date.

Table 2. DNases that Disperse Biofilms.

Enzyme Summary References

DNase I

A pancreatic DNase that has been shown to deconstruct the established
biofilms of a wide range of microbes, including P. aeruginosa, Vibrio cholerae,
E. coli, S. pyogenes, Klebsiella pneumoniae, Acinetobacter baumannii,
Aggregatibacter actinomycetemcomitans, Shewanella oneidensis, S. heamolyticus,
Bordetella pertussis, Bordetella bronchiseptica, Campylobacter jejuni, H. influenza,
B. bacteriovorus, S. aureus, Enterococcus faecalis, Listeria monocytogenes,
Candida albicans, and Aspergillus fumigatus.

[27–29,41,43–57]

DNase 1L2 A human DNase found in keratinocytes that has been shown to degrade the
established biofilms of P. aeruginosa and S. aureus. [58]

Dornase alpha
A highly purified form of recombinant human DNase I (rhDNase I) that has
been shown to be effective against the established biofilms of S. aureus and
Streptococcus pneumoniae.

[59,60]

λ Exonuclease A viral DNase that disrupts established V. cholerae biofilms. [43]

NucB

A bacterial DNase produced by the marine bacterium, Bacillus licheniformis,
which has been show able to degrade the established biofilms of multiple
bacterial species, including B. licheniformis, S. aureus, S. epidermidis,
Staphylococcus salivarius, Staphylococcus constellatus, S. Staphylococcus
lugdunesis, Staphylococcus anginosus, E. coli, Streptococcus intermedius,
Micrococcus luteus, and Bacillus subtilis.

[61–63]

Streptodornase A streptococcal DNase that disrupts the established biofilms of P. aeruginosa. [56]

2.3. Glycoside Hydrolases

Most biofilms are highly dependent on the presence of secreted extracellular polysaccharides,
or exopolysaccharides, as major EPS constituents [1,64,65]. They provide many important functions
for the establishment and persistence of biofilms including, but not limited to, structural stability,
physical and chemical defense against antimicrobials and the host immune system, adhesion and
aggregation of microbial cells, desiccation tolerance, sorption of organic and inorganic compounds, and
can provide a carbon source in times of nutrient starvation [1,66,67]. Due to their importance for the
establishment and maintenance of biofilm architecture, a significant amount of research into targeting
exopolysaccharides with glycoside hydrolases as a means for dispersing biofilms has been performed.
Table 3 lists many of the glycoside hydrolases that have exhibited biofilm-disrupting ability.

3. Antibiofilm Peptides

In response to the rampant and alarming rise of antibiotic resistance, many researchers have
pursued the use of antimicrobial peptides as a novel approach to treating infection. To date, more
than 2600 peptides with antimicrobial properties have been discovered, with 2169 of those being
antibacterial [68]. These peptides have been isolated from a wide range of sources, including animals,
plants, fungi, and bacteria. In higher-order organisms, antimicrobial peptides serve as host defense
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molecules of the innate immune system, while in simpler organisms, they can be utilized in antagonistic
interactions with other microbes for nutrient competition. In recent years, peptides with antibiofilm
activity have also been identified and generated, beginning with the discovery that the human
cathelicidin, LL-37, is able to inhibit and diminish P. aeruginosa biofilms at concentrations far below
antimicrobial levels [69].

Table 3. Glycoside Hydrolases that Disperse Biofilms.

Enzyme Summary References

Alginate lyase
A glycoside hydrolase that that degrades the exopolysaccharide,
alginate, common in mucoid P. aeruginosa biofilms, causing bacterial cell
dispersal and increasing antibiotic efficacy and phagocytosis.

[70–73]

α-amylase

A glycoside hydrolase that hydrolyzes α(1,4) glycosidic linkages and is
derived from multiple sources, such as certain microbes and the
mammalian pancreas. It has exhibited dispersal of mature biofilms
formed by V. cholerae, S. aureus and P. aeruginosa.

[74–77]

α-mannosidase An acid hydrolase that has been shown to disrupt P. aeruginosa biofilms. [35]

β-mannosidase A glycoside hydrolase that targets β(1,4)-linked terminal mannose
residues, and disrupts P. aeruginosa biofilms. [35]

Cellulase
A glycoside hydrolase produced by multiple microbes that hydrolyzes
the β(1,4) glycosidic linkage. It has been shown to cause the dispersal of
S. aureus and P. aeruginosa biofilms.

[77]

Dispersin B

A glycoside hydrolase produced by the bacterium,
A. actinomycetemcomitans, that has been shown to degrade the
polysaccharide, poly(1,6)-N-acetyl-D-glucosamine (PNAG), by
hydrolyzing β(1,6) glycosidic linkages. This enzyme has been effective
against the biofilms made by multiple bacteria, including S. aureus,
A. actinomycetemcomitans, S. epidermidis, A. baumannii, K. pneumoniae,
E. coli, Burkholderia spp., A. pleuropneumoniae, Yersinia pestis and
Pseudomonas fluorescens.

[57,78–84]

Hyaluronidase

An enzyme that cleaves hyaluronic acid (HA), which has been found to
be incorporated into the biofilms made by multiple pathogens,
including S. aureus, and S. intermedius in vivo. When utilized against
HA-containing biofilms, dispersal has been observed.

[85,86]

PelAh A glycoside hydrolase that disrupts the P. aeruginosa polysaccharide,
Pel, causing dispersal of mature biofilms. [87]

PslGH A glycoside hydrolase that disrupts the P. aeruginosa polysaccharide,
Psl, causing dispersal of mature biofilms. [87]

Unlike a majority of the dispersal agents listed so far in this review, antibiofilm peptides have
the added advantage that many are also bactericidal, limiting the need for concurrent treatment
with additional antimicrobial agents. Conversely, having bactericidal activity may lead to a higher
likelihood of resistance being developed. To date, multiple antibiofilm peptides have been identified,
and Table 4 summarizes many that have displayed the ability to disperse established biofilms. It should
be noted that, based on the current literature, it cannot be determined that all of these peptides cause
dispersal by means other than simply penetrating the EPS and killing the microbes (as is currently
understood to be that case for lipopeptide antibiotics, such as colistin and polymyxin b). However, as
mentioned above for LL-37, certain peptides cause biofilm destruction at sub-MIC levels, suggesting
that they are acting on the EPS, or on the microbe’s ability to form or maintain a biofilm.

4. Dispersal Molecules

Other strategies that have been pursued for biofilm eradication include the utilization of
molecules that trigger biofilm degradation by various means, such as acting as dispersal signals
when recognized by the causative microbes (Table 5; Dispersal Signals), physically destabilizing
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EPS structure (Table 5; Anti-Matrix Molecules), or interfering with other, biofilm-sustaining signals
(Table 5; Sequestration Molecules).

Many key dispersal signals have been identified. For example, endogenously produced nitric
oxide (NO) is a highly conserved dispersal mediator that is generated by, and recognized by, an
eclectic range of microbes, both prokaryotic and eukaryotic, and it has been brilliantly reviewed by
Barraud et al. [88]. Another widely conserved biofilm mediator is the secondary messenger, cyclic
di-GMP (c-di-GMP) [89], which has been shown to be important in the establishment and maintenance
of biofilms, as well as other key processes, in a plethora of bacterial species. Unlike NO, elevated
c-di-GMP levels are almost always associated with increased biofilm production, therefore molecules
that bind c-di-GMP, or inhibit diguanylate cyclases, represent potential dispersal agents.

Table 4. Antibiofilm Peptides that Disperse Biofilms.

Peptide Summary References

1018

A synthetic, modified form of the cationic antimicrobial peptide bactenecin, which triggers
the degradation of the (p)ppGpp bacterial stringent response signal. This peptide has been
shown to be effective at disrupting the established biofilms of P. aeruginosa, E. coli,
A. baumannii, K. pneumoniae, S. aureus, Salmonella Typhimurium, and Burkholderia cenocepacia.

[90,91]

1037
A 9-amino-acid, synthetic, cationic peptide derived from the human cathelicidin LL-37,
which has demonstrated efficacy against biofilms made by P. aeruginosa, B. cenocepacia, and
L. monocytogenes.

[92]

17BIPHE2 A 17-amino-acid derivative of the human cathelicidin, LL-37, that has had exhibited
efficacy in disrupting S. aureus biofilms. [93]

Bac8c A 12-amino-acid, synthetic peptide modified from bactenecin that has exhibited efficacy
against S. mutans biofilms. [94]

Battacin
A native, cyclic lipopeptide produced by Paneibacillus tianmunesis, whose synthetic
derivatives, especially lipopeptide 17, have been shown to degrade P. aeruginosa and
S. aureus biofilms.

[95]

BMAP-27 A synthetic, bovine cathelicidin-derived peptide that has exhibited efficacy against
S. aureus, P. aeruginosa, and Stenotrophomonas maltophilia biofilms. [96]

BMAP-28 A synthetic, bovine cathelicidin-derived peptide that has exhibited efficacy against
S. aureus, P. aeruginosa, and S. maltophilia biofilms. [96,97]

CAMA
A hybrid, synthetic peptide that combines amino acid sequences from the silk moth
peptide, cecropin-A, and the bee venom peptide, melittin. It has exhibited the ability to
degrade P. aeruginosa and S. aureus biofilms.

[98,99]

DJK-5
A synthetic, D-enantiomeric, protease-resistant peptide that works, in part, by degrading
the (p)ppGpp bacterial stringent response signal. It has been shown to be effective at
disrupting P. aeruginosa, A. baumannii, Salmonella enterica and K. pneumoniae biofilms.

[100]

DJK-6
A synthetic, D-enantiomeric, protease-resistant peptide that works, in part, by degrading
the (p)ppGpp bacterial stringent response signal. It has been shown to be effective at
P. aeruginosa, A. baumannii, S. enterica and K. pneumoniae biofilms.

[100,101]

GF-17 A 17-amino-acid derivative of the human cathelicidin, LL-37, that has exhibited efficacy in
disrupting S. aureus biofilms. [93]

LL-31 A synthetic fragment of the human cathelicidin, LL-37, in which the last 6 amino acid
residues are removed. The peptide has been shown to disrupt P. aeruginosa biofilms. [102]

LL-37 A 37-amino-acid, native human cathelicidin that has been shown to disrupt A. baumannii
and P. aeruginosa biofilms. [69,103–105]

LL7-31
A synthetic fragment of the human cathelicidin, LL-37, in which the first 6, and last 6,
amino acid residues are removed. The peptide has been shown to disrupt
P. aeruginosa biofilms.

[102]

LL7-37 A synthetic fragment of the human cathelicidin, LL-37, in which the first 6 amino acid
residues are removed. The peptide has been shown to disrupt P. aeruginosa biofilms. [102]

Melittin
A native, 26-amino-acid, haemolytic peptide, isolated from the venom of the European
honey bee, Apis mellifer. The peptide has been efficacious against P. aeruginosa, E. coli and
K. pneumonia biofilms.

[106]

P10 A synthetic, 24-amino-acid peptide derived from the P60.4AC (which itself is a derivative
of the human cathelicidin, LL-37) that has been shown to degrade S. aureus biofilms. [107]

P60.4Ac A synthetic, 24-amino-acid peptide derived from the human cathelicidin, LL-37, which has
been shown to be effective at degrading S. aureus biofilms. [107,108]

SMAP-29 A synthetic, sheep cathelicidin-derived peptide that has exhibited efficacy against
S. aureus, P. aeruginosa, and Stenotrophomonas maltophilia biofilms. [96]
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Another class of biofilm dispersal molecules is those that actively target the EPS matrix, also
called, ‘anti-matrix molecules.’ Prime examples of this type of molecule are rhamnolipids, which
are microbial-synthesized biosurfactants that were first found to be associated with P. aeruginosa
biofilms [109]. Interestingly, while normal rhamnolipid concentrations are important for the
maintenance of mature biofilms, particularly for fluid channel maintenance and cellular migration,
elevated levels cause biofilm dispersal for a range of bacterial species [109–112].

Other dispersal molecules act by binding or interfering with other molecules involved in the
production or persistence of biofilm. These ‘sequestration molecules’ may not directly act upon
biofilm microbes, but by reducing the levels of important secondary messengers, metabolites, and
nutrients, active dispersal can be triggered. For example, BdcA is a protein produced by E. coli that
binds free c-di-GMP, indirectly inhibiting biofilm by blocking the molecule’s biofilm-producing and
biofilm-sustaining cellular pathways [113–115].

Research into utilizing molecules such as these to disperse biofilms is extensive, and Table 5
summarizes some of the most prominent, representative examples in the literature. Because of the
smaller size of many of these molecules, some that have been shown to be effective against biofilms
simply act by penetrating the biofilm and directly killing the microbes. Since such molecules, such
as silver or zinc oxide nanoparticles, or chlorhexidine, are not technically dispersal agents, they are
beyond the scope of this review and will not be discussed. Additionally, even though anti-biofilm
peptides can be classified as dispersal molecules, they were discussed in the previous section.

Table 5. Biofilm Dispersing Molecules.

Molecule Summary References

Dispersal Signals

Cis-2-decenoic
acid (CDA)

A type of fatty acid cross-kingdom signaling molecule, also known as a diffusible
signal factor (DSF), which was originally found to be produced by P. aeruginosa.
This particular DSF has been shown to trigger the dispersal of P. aeruginosa,
E. coli, K. pneumoniae, P. mirabilis, S. pyogenes, B. subtilis, S. aureus, C. albicans,
S. enterica, and S. mutans biofilms. It should be noted that other DSF’s, such as
Burkholderia diffusible signal factor (BDSF) [116] and Xanthomonas diffusible
signal factor (XDSF) [117], have been isolated and exhibit similar inductions of
dispersal events.

[118–121]

Nitric oxide

An endogenously produced dispersal signal that is highly conserved across a
wide range of microbial species. It has been shown to be involved in the
dispersal of biofilms formed by P. aeruginosa, E. coli, Fusobacterium nucleatum,
Serratia marcescens, V. cholerae, B. licheniformis, Shewanella woodyi, N. gonorrhoeae,
Pseudoalteromonas, Vibrio fischeri, S. aureus, B. subtilis, Legionella pneumophila,
Nitrosomonas europaea, P. putida, C. albicans, Candida tropicalis, and Ulva linza.

[88]

Anti-Matrix Molecules

Chitosan

A polycationic macromolecule derived from the polysaccharide, chitin that has
been shown to penetrate and possibly disrupt Cryptococcus neoformans,
L. monocytogenes, P. fluorescens, Bacillus cereus, S. enterica, C. albicans, and
P. aeruginosa biofilms. It is important to note that it has not been proven that
chitosan has any direct effect on the biofilm matrix, and it is possible that the
molecule achieves biofilm disruption by penetrating the matrix and acting on the
microbes themselves.

[122–126]

D-amino acids

D-isoforms of certain amino acids, including D-Leu, D-Met, D-Trp, D-Tyr, and
D-Phe have been shown to cause the disassembly of biofilms though to multiple,
hypothesized mechanisms, including (1) inhibition of genes involved in EPS
production; and (2) incorporation of D-amino acids into the bacterial cell wall,
resulting in the loss of cell-surface fibers vital to biofilm formation. D-amino acids
have exhibited efficacy against S. aureus, P. aeruginosa, and B. subtilis biofilms.

[127–130]
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Table 5. Cont.

Molecule Summary References

Anti-Matrix Molecules

Rhamnolipids

A microbial-produced surfactant that, at normal levels, is important for biofilm
maturation in the form of fluid channel maintenance and cellular migration.
At elevated levels, however, these rhamnolipids have been shown to trigger the
dispersal of P. aeruginosa, E. coli, S. aureus, B. subtilis, M. luteus, and
Yarrowia lipolytica biofilms.

[109–112]

Urea
An amide that is theorized to break down biofilms by disrupting the hydrogen
bonds that are vital for EPS mechanical stability. The compound has exhibited
dispersal ability against S. epidermidis, P. aeruginosa and K. pneumoniae biofilms.

[131,132]

Sequestration Molecules

BdcA

A protein that directly reduces unbound c-di-GMP concentrations by binding,
but not degrading, the molecules, causing biofilm-related cellular mechanisms
not to be activated. BdcA has been shown to cause the dispersal of E. coli,
P. aeruginosa, P. fluorescens, and Rhizobium meliloti biofilms.

[113–115]

EDTA
Ethylenediaminetetraacetic acid (EDTA) is a metal-ion chelator that can sequester
integral, EPS-matrix-stabilizing ions, and triggers dispersal in P. aeruginosa,
H. influenzae, S. epidermidis, C. tropicalis, and E. faecalis biofilms.

[133–138]

Lactoferrin

An iron-binding protein from the innate immune system that is found in a
variety of bodily fluids. By chelating iron, an essential bacterial nutrient and
global regulator of a variety of functions, including biofilm development and
growth, lactoferrin can trigger active dispersal. It has been shown to be effective
against P. aeruginosa, E. coli, S. aureus, E. faecalis and S. epidermidis biofilms.

[139,140]

Lastly, many quorum sensing inhibitors (QSIs) have been shown to be effective against established
biofilms by inhibiting the cell-to-cell communication systems that are responsible for the coordination
of virulence factors, including biofilm formation. Although these QSIs could be categorized as dispersal
agents, the research in this area is extensive and not all quorum sensing systems positively control
biofilm formation. For those reasons, QSIs will not be included in this review. For an excellent resource
on utilizing QSIs see Brackman and Coenye, 2015 [141].

5. Hurdles to Development

With the given breadth of research into the utilization of dispersal agents for the eradication of
medical biofilms, there remains a paucity of in vivo studies and clinical trials. In reality, that vast
majority of studies have been performed in vitro on monospecies biofilms, and it is extremely difficult
to extrapolate these results to complex, multispecies biofilms in living environments. As such, several
hurdles exist that have hindered the progress towards the practical application of dispersal agents
in healthcare, such as potential host-toxicity, especially when considering the utilization of proteases
and other enzymes that may cause collateral damage. Also, inhibitory interactions within the host
environment, such as proteolytic degradation or small-molecule inhibition of therapeutic agents, may
further complicate the transition to clinical application. Further, while dispersing microbes from
biofilms may improve therapeutic outcomes by increasing access by antibiotics/antimicrobials and
host immune cells, it has been suggested that this may not be the best approach for fungal species.
That is, since fungal biofilm dispersal is often initiated from the hyphal layers, perhaps it would be
advantageous to instead prevent dispersal in fungal biofilms so as to contain the infection and avert the
dissemination of the disease [142].

Finally, for those agents that have no inherent antimicrobial activity, it is unknown whether
triggering a massive dispersal event within a host will effectively overload the immune system with
a planktonic cell burden, leading to spread and sepsis. It has even been shown that dispersed cells
may in fact be more virulent than not only biofilm cells, but also regular planktonic cells [143,144].
Thus, concurrent treatment with traditional antimicrobial agents and/or therapies may be necessary.
Despite these complications, research into biofilm dispersal is a booming, promising field, and the
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likelihood of applicable therapies coming into use in the near future appears high, especially when
considering the alarming rise of antibiotic resistance, and the resulting, growing need for alternative
treatment strategies.

6. Conclusions

The rise of antibiotic resistance has led to a decrease in the efficacy of traditional treatments
for the elimination of biofilm infections. Because of the up to 1000-fold increase in antibiotic
tolerance of biofilm-embedded pathogens [7], and the fact that as many as 80% of all human bacterial
infections are biofilm-associated [6], researchers and clinicians have begun concentrating their efforts
on coupling biofilm destruction with traditional antimicrobial therapy. However, current biofilm
removal practices are purely mechanical, and, as such, it is extremely difficult to eradicate the entire
infection, leading to recurrence. To address this, clinicians couple mechanical biofilm removal, such
as sharp or hydrosurgical debridement, with antibiotics/antimicrobials. For example, the current
gold standard for the treatment of chronic wound infections is repeated sharp debridement followed
by topical administration of antimicrobials or other therapies [5,145,146]. Nonetheless, even with
these interventions, these recalcitrant wounds all too often fail to heal, and antimicrobial resistances
fortify. Thus, novel biofilm dispersal strategies that can more effectively release biofilm-associated
microbes from the protection of the EPS could serve to bolster the arsenal of anti-biofilm therapeutics.
Dispersal agents that can target the EPS on a molecular scale, or cause the microbes themselves to
actively degrade their own biofilms, may represent the next logical step towards total eradication of
biofilm-afforded protection of infectious microorganisms. In this review, we examined the current
state of the three main avenues of research into molecular biofilm dispersal agents: matrix-degrading
enzymes, antibiofilm peptides, and dispersal molecules. We find that, despite the plethora of potential
agents, few clinical trials, or even in vivo studies, have been performed. Thus, even though the future
use of dispersal agents for the treatment of medical biofilms looks promising, progress needs to be
made on translating the work to the patient care setting.
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