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Abstract: A global model of the lactic fermentation step of gowé was developed by assembling blocks
hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation.
Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was
modeled using Rosso’s primary model and the gamma concept as a secondary model. The optimum
values of pH and temperature were 8.3 + 0.3, 44.6 £ 1.2 °C and 8.3 + 0.3, 3.2 = 37.1 °C with pmax
values of 1.8 + 0.2 and 1.4 & 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory
concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum,
respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a
yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model
was developed to predict the pH drop during gowé fermentation. The global model was partially
validated during manufacturing of gowé. The global model could be a tool to aid in the choice of
suitable starters and to determine the conditions for the use of the starter.
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1. Introduction

Fermentation is one of the oldest methods of preserving food and involves microorganisms
whose metabolic activity and growth determine both organoleptic properties and shelf-life [1].
Most fermented foods consumed worldwide are produced by lactic fermentation from different
raw materials such as milk, meat, fish, vegetables, cereals, roots and tubers, with a prominent place for
fermented starchy foods: cassava, maize, millet, rice and sorghum, which are an important part of the
diet in developing countries [2,3].

In the past, the need to produce fermented foods in large quantities increased in parallel with
the advancement of knowledge about the identity of microflora responsible for lactic fermentation.
This led to the selection of microbial starters that allowed industrial-scale production of fermented
food products of reliable and predictable quality from milk, cereals, and meat. Many of the processes
used to prepare traditional fermented foods in developing countries are poorly understood and
controlled [4], which limits the ability to produce food of controlled quality at an industrial scale,
especially due to the lack of suitable microbial starters [5]. Whatever the context, improving the quality
of fermented foods remains an important objective that can be achieved in the case of lactic acid
fermentations by using starter cultures that lead to rapid acidification of the raw material used [6].
According to [7], modeling lactic fermentation must include the growth of microbial strains and their
functional properties. Modeling can be a valuable tool to help select appropriate strains, design the
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right equipment, determine the values of the control parameters to ensure greater food security and the
quality of end products, and reduce financial losses. For example, modelling the simultaneous effects
of fermentation temperature, total solids level of milk and total inoculum level helped to optimize
the rheological properties and acidification kinetics of milk fermentation with starter bacteria [8].
In the same way, predictive microbiology helped for the selection of suitable starters for table olive
fermentation [9]. Historically, the first models of predictive microbiology were developed to predict
the growth of pathogenic bacteria [10]. These models are very useful to describe and simulate the
growth of a microbe in environmental conditions. The growth of a population can be modeled using
mechanistic or empirical approaches but most models are not entirely one or the other [11]. Empirical
models aim for the best fit to the observed data without explaining the phenomena causing the
observed response. An example of a widely used empirical model is described in [12]. Mechanistic
or semi-mechanistic models are based on knowledge of the biological processes involved, such as
the model described in [13]. Predictive microbiology modeling uses primary and secondary models.
Primary models, like in the useful logistic growth model proposed by [14], describe changes in the
microbial population over time using various parameters such as the initial number of cells, the final
number of cells and the maximum growth rate. Secondary models predict changes in the bacterial
growth rate as a function of environmental factors such as temperature, pH, water activity (aw) oxygen
tension, etc. In empirical models, the effects of the environmental factors are described simultaneously
through a polynomial function or response surface models [15,16]. In the gamma concept, introduced
by Zwietering et al. [17] and the cardinal model proposed by Le Marc et al. [18]), each environmental
factor acts independently through empirical models, for example, polynomial functions, and their
combined effect is multiplicative. In order to better describe and simulate the fermentation process,
global models were tentatively built by including equations describing the consumption of substrates,
the production of metabolites, changes in the physical and chemical characteristics of the raw material.
However, most authors pointed to the difficulty of coping with the increasing complexity of the
models and the need for multidisciplinary approach to build complex models that account for the main
changes that occur during the fermentation process, while offering user friendly and easily adaptable
models [7,19,20].

This paper reports on the first studies in a global project that aims to provide a global but
simple model for optimizing batch fermentations such as the fermentation of gowé, a traditional
fermented Beninese beverage made from malted and non-malted sorghum flour that is produced by
spontaneous fermentation involving mixed cultures of lactic acid bacteria (LAB) and yeasts [21-23].
The predominant LAB in gowé are Lactobacillus fermentum, Wissella confusa, Lactococcus mucosae,
Pediococcus acidilactici, Pediococcus pentosaceus and Wissella kimchii [24] and the predominant yeasts are
Kluyveromyces marxianus, Pichia anomala, Candida krusei, Candida tropicalis and Clavispora lusitaniae [25].
The quality of gowé recognized by consumers is complex: it should have a light and smooth texture,
sweet taste, the aroma of a fermented product but low acidity [23-26]. During the process of preparing
gowé, amylolysis of starch, which gives the product its lightly sugary taste and its light texture, occurs
during the fermentation step, but is rapidly inhibited by acidification caused by the growth of the
lactic acid bacteria [27,28]. Controlling fermentation to satisfy consumer demand for quality of gowé is
thus very complex, and a modeling approach would be very useful to identify the optimum conditions
that meet consumer demand.

The model is designed as an assembly of blocks as proposed by [29]. Each block hosts
mathematical equations that model the reactions or processes linked to the fermentation process.
In the case of the lactic fermentation of gowé, the main blocks are (Figure 1) the kinetic of lactic
acid bacteria growth, the production of lactic acid, the calculation of the pH value, the activity of
amylase, and the release of free sugars from starch due to the action of amylase. Undissociated lactic
acid and the drop in the pH have a retro-action on both bacterial growth and amylase activity [27].
The temperature influences the whole set of biological reactions.
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Figure 1. Schematic representation of the global fermentation model of gowé. Each block hosts the

model of one process, and interactions are represented by the arrows with dotted lines. LAB: lactic
acid bacteria.

In this first study, we focused on the first three blocks linked to LAB growth; starch amylolysis
and yeast growth models will be presented in following papers. Growth models of Lactobacillus brevis
(CNCM 1-2002) and Lactobacillus plantarum (CNCM 1-3069) in De Man Rogosa and Sharpe (MRS) broth
were built using Rosso’s primary model [30] and the gamma concept for the impact of pH, lactic acid
content and temperature. A semi-mechanistic model predicting a drop in the pH of sorghum flour and
malt due to acid production was developed and, the predictability of the model was evaluated during
gowé fermentation using raw materials decontaminated by irradiation.

2. Materials and Methods

2.1. Raw Material

Grains of red sorghum (Sorghum bicolor, (Linnaeus) Moench), traditionally used for preparing gowsé,
were purchased at the local market in Cotonou (Benin). Raw sorghum flour was prepared by directly
grinding the grains in a Laboratory Mill 3100 (Perten Instruments, Hagersten, Sweden) equipped with
a 0.5 mm sieve. Malting was performed at the laboratory as detailed in [27], and the malted grains
were ground in the same way as raw grains.

Malted and non-malted sorghum flours were treated by gamma irradiation with 2 kGy
(Ionisos Company, Danieux, France). After this treatment, the residual yeast population
was 1.3 x 10* colony forming unit (CFU)-g~! and the residual lactic acid bacteria population was
below the threshold of detection (30 CFU-g 1)

2.2. Microbial Strains

L. brevis (CNCM 1-2002) and L. plantarum (CNCMI-3069) were provided by Lesaffre,
(Marcg-en-Baroeul, France) as dry active bacteria stored at 4 °C. For all experiments, dry active
bacteria were inoculated directly.

2.3. Microbiological Methods

2.3.1. Batch Cultures

Six-hundred-milliliter glass double wall fermenters with a useful volume of 300 mL without
aeration were used. The temperature of the outer jacket was controlled with a thermostatic water
bath. Mild but constant homogenization was achieved with a magnetic stirrer. The pH of the media
was monitored and automatically adjusted with sterile 1 M sodium hydroxide. Bacterial growth
in MRS broth pH 6.4 (Biokar-diagnostics, Beauvais, France) was monitored using an in-line near
infrared turbidity sensor (Optek FC20-ASD19-N, Elscolab, Arcueil, France). Cell count was expressed
as CFU-mL~! according to a calibration curve that was pre-established for each strain.

For pilot manufacturing of gowé, the medium was a mixture of 25 g of malted sorghum flour and
75 g of non-malted sorghum flour dispersed in deionized water. One part (15 g) of the non-malted
flour was pre-cooked with 75 mL of deionized water at 65 °C for 10 min. When the temperature
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dropped to 30 °C, the rest of the malt flour, non-malted flour, and 125 mL of demineralized water was
added. In this case, the bacterial load was monitored using the plate counting method.

For the determination of the minimum inhibitory concentration (MIC) of undissociated lactic acid,
tubes containing MRS broth buffered at pH 5 (with 1 M phosphate buffer) and lactic acid concentrations
ranging between 0 and 50 mM were inoculated with L. brevis or L. plantarum at a concentration
of 10° CFU-mL~!. The tubes were incubated at 37 °C, and growth was visually evaluated after five
days. The final pH was measured, and ranged between 4.7 and 4.8.

2.3.2. Plate Counting Methods

Tenfold serial dilution of homogenized samples (0.1 mL) was prepared in sterile 9% NaCl
water and plated on the surface of De Man Rogosa and Sharpe agar plates (MRS-agar, pH 5.7,
Biokar-diagnostics, Beauvais, France) for LAB and on Sabouraud chloramphenicol agar medium
(Biokar-diagnostics, Beauvais, France) for yeasts. The MRS plates were incubated at 37 °C for 48 h.
Sabouraud plates were incubated at 30 °C for 48 h.

2.4. Chemical Analyses

Lactic acid and glucose contents were measured by HPLC with separation on an Aminex HPX-87H
column (Biorad, Hemel Hempstead, UK. and detection with both refractive-index and ultraviolet
(UV) (210 nm) detectors. Elution was performed at 30 °C with 5 mM sulfuric acid at a flow rate
of 0.6 mL-min~!. Samples were centrifuged at 7200 rpm for 5 min and filtered through 0.45 um pore
size filter before injection.

2.5. Mathematical Modeling

2.5.1. Primary and Secondary Models

The logistic growth model with delay [14] was chosen to describe microbial growth according to
Equation (1):
AN —0ift<A 0
%:pmet( —%)iﬂ»)\

where Nt and Ny, (CFU/mL) are the values of microbial population at time ¢ and at the end of the
growth curve, respectively, ptmax the maximal growth rate (h~1) and A the lag time (h).

The gamma concept model [17] was used as secondary model to describe the impact of
temperature, pH and the undissociated lactic acid concentration ([AH]) on the maximum growth rate
(Mmax) according to Equation(2).

Hmax = Hopt*r)/(T) *’)’(pH) *7([AHD ()

with <y values ranging between 0 and 1
The effect of the pH on pumax was expressed using the Cardinal Temperature and pH Model
(CTPM) proposed by [30] according to Equation (3).

X < Xopin; 0
(X_Xmin)n(X_anx)
(Xupf_xmin)n71{(Xopt_sz‘n)(X_Xopr)_(X—Xmux)[(”_1)Xopt+xmin_nx]}
X 2 Ximax; 0

CM, (X) = (©)]

where X corresponds to environmental factors such as pH, temperature, and n values are 1 for pH
and 2 for temperature, respectively.

Temperature and pH minimum cardinal values were determined by surface inoculation of MRS
agar medium with drops of pre-cultivated strains on MRS broth at 37 °C for 8 h (achieving an
absorbance of 1.4 at 600 nm). For the determination of the minimum pH value, MRS agar broth was
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buffered with phosphate buffer to achieve a pH ranging from 2.8 to 4, and incubated at 37 °C for 48 h
in anaerobic conditions using an anaerobic jar and an Anaerocult kit (MERCK, F-67120, Molsheim,
France) to produce CO;. For the minimum temperature, Petri dishes were incubated at 10 °C and
15 °C for two weeks. The temperature and maximum pH values were determined experimentally on
batch cultures.

Optimum cardinal values for pH, temperature and popt in MRS broth were adjusted from a set of
experiments: with pH ranging from 4.0 to 9.5 at 37 °C and with temperature ranging from 20 °C to
55 °C, at pH 6.5.

The effect of the raw material (sorghum malt and flour dispersion) on pmax was calculated as the
ratio of the maximum growth rate in the raw material to the maximum specific growth rate in MRS
broth at the same pH (6.5) and temperature (37 °C) as shown in Equation (4).

Hmax (65, 37 °C)gym
Hmax (6‘5r 37 OC)MRS

4)

Wmaxatio =

The effect of undissociated lactic acid on bacterial growth was determined using the Equation (5)
proposed by [31]:
[AH] > '

7(am) =1- (G

where [AH] represents the undissociated lactic acid concentration in mM, MIC is the minimum
inhibitory concentration of the undissociated lactic acid and « reflects the shape of curves. We applied
a value of 1 for « according to [31,32] for Lactobacillus strains.

The lag time (A) is linked to the adaptation of a strain to a new environment. It is often considered
as inversely correlated with pmax [33], and the work to be done by the strain to adapt to a new
environment is given by the product pmax-A. Several expressions have been proposed to model this
work and we used Equation (6) cited in [34]:

©)

umaX'/\ =a+ ﬁu‘max (6)

2.5.2. Modeling Lactic Acid Production

The lactic acid content (g-L~!) in the model represents total lactic acid production without
distinguishing between the D and L isomers, or between dissociated and undissociated lactic acid.
The kinetics of lactic acid production was set directly proportional to bacterial growth as shown in
Equation (7), as a simplification of Luedeking and Piret equation [29]:

d (lactic)

dt = Y(lactic)/N X uN ()

where Y (jactic)/N is the yield for lactic acid production over population (without distinction between D
and L lactic acid), N, the population and  is the growth rate.

2.5.3. Modeling the pH Value of Gowé

A semi-mechanist model (Equation (8)) was used to predict the pH of sorghum flour depending
on the lactic acid content of the medium ([LA], in g-L~1):

PHry — PHcia

pH:pHucid+ [LA] X BP +1

®)

with pH,s, the pH of the lactic acid in pure water which was calculated from the classical dissociation
equation of weak acids as shown in Equation (9), with lactic acid pKa of 3.8

1 1
pPH, s = 5 X pKa — 5 X log <90> )



Microorganisms 2016, 4, 44 6 of 15

with pHgy, the pH of the raw material in pure water which was modeled with a power law equation
(Equation (10)) from the sorghum flour concentration, [RM] (g~mL_1):

pHry = @ x [RM] 77 (10)

To determine the coefficients ¢ and p of Equation (10), sorghum flour was dispersed in pure water
at concentrations ranging from 0.04 to 0.4 g-mL~! and the pH was measured. The coefficients were
calculated by performing a linear regression after log-log transformation.

The buffering power (BP) of the medium was directly proportional to the sorghum flour content
(grmL 1) according to Equation (11):

BP = & x [RM] (11)

To determine the coefficient € of Equation (11), sorghum flour was dispersed in pure water at
concentrations ranging from 0.04 to 0.4 g-mL~!. The dispersion was then titrated with 0.1 N lactic acid.
The ¢ coefficient was determined by fitting the pH calculated with Equation (8) with the experimental
pH for each sorghum flour content using non-linear regression.

2.6. Statistical Methods

The confidence intervals of means (at 95% probability) for non-linear and linear regressions were
calculated using XLstat (Addinsoft, Paris, France). The cardinal values of Equation (3) were fitted
using Tablecurve3Dsoftware (Jandel scientific, San Rafael, CA, USA); the confidence intervals were
calculated using the Levenberg-Marquardt method.

3. Results and Discussion

3.1. Modeling Bacterial Growth

The primary logistic model in Equation (1) fits the experimental data well for both strains, as can
be seen in Figure 2. Determining the growth rate with great accuracy for each experimental condition
is essential for secondary modeling but the residual standard deviations of pymax were 0.22 h~1 for
L. brevis (five duplicates in similar conditions) and 0.28 h~! for L. plantarum (four triplicates in similar
conditions), respectively. This may be linked to perturbations of the signal in the case of high bacterial
populations (as evidenced in Figure 2), due to cell aggregation and/or CO, degassing, in particular for
L. brevis.

OL. brevis

log Population (CFU.mL")
oo

OL. plantarum

Time (h)

Figure 2. Growth of Lactobacillus brevis (¢) and Lactobacillus plantarum (O) in De Man Rogosa and Sharpe
(MRS) broth at 37 °C, pH 6.5. Experimental data (symbols) and predicted data (continuous lines).

In addition, large standard deviations for A were observed; 1.6 h and 1.2 h for L. brevis and
L. plantarum, respectively, for the same set of replications. Poor estimates of A are indeed described
in the literature, which can have several explanations [33]. In particular, a low level of inoculation,
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which was especially true for L. brevis, corresponded to the limit of detection of the sensor. Indeed [35]
underlined the difficulty in determining A at low levels of inoculation. Nevertheless, overall trends of

7 of 15

the fermentation can be described satisfactorily even when the estimation of the A is poor [36].

In the whole set of experiments, there was a weak linear correlation (R? = 0.67 for both strains)
between the work for adaptation to the environment (A-pmax) and pmax, as shown in Figure 3
for L. brevis. The values of the regression parameters of Equation (6) were thus tainted by quite
large uncertainties (Table 1). In contrast, [34] found a strong linear correlation between A-pimax and

tmax(R? = 0.99). This discrepancy was largely linked to our poor estimates of experimental A.

12

y=2.81x+4.40
R>=0.67

2

0.5 1.0

"lmax (h_l)

2.0

Figure 3. limax-A as a function of pmax for L. brevis.

The kinetic parameters of the two strains are listed in Table 1. The minimum and maximum
cardinal values for pH and temperature were determined experimentally, and three parameters were

adjusted: popt, pHopt and Topt.

Table 1. Parameters of the models of umax, lactic acid production rate and pH. CI = confidence

intervals (o = 0.05).

. . Value + CI Value £ CI
Modeled Variable Equation Parameter (L. brevis) (L. plantarum)
PHmin 3.8 3.2
PHmax 9.3 9.2
PHopt 8.3 (£0.3) 8.3 (£0.3)
Monax 3) Hopt (b 1.8 (+0.2) 1.4 (+0.1)
Tmin (°C) 15 12
Tmax (°C) 53 52
Topt (°C) 44.6 (£1.2) 37.1(£3.2)
4) Kmax ratio 1.57 (£0.1) 1.36 (0.06)
MIC (5) [AH] mM 23.73 35.59
A ©) o 4.4 (£1.2) 1.17 (£1.4)
B 2.8 (£1.0) 5.6 (£1.5)
Lactic acid Y (tactic)/N 11.3 (£0.3) *
production rate 7) (10~% mg-CFU™ ) 2.71 (+0.08) 8.5 (£0.6)
6.30 (£0.006
PHy (10) ¢ (£0.000)
€ 0.028 (£0003)
BP (11) (mL-g™1) 0.16 (0.02)

* for pH > 5; * for pH < 5.
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Although the confidence intervals for these parameters were quite large, the residual error of the
predicted pmax was moderate and a quite good fit of the predicted values. This can be observed in

Figure 4.
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Figure 4. Effect of environment factors on growth rate of L. brevis. (a) pH effect and (b) temperature
Experimental data (symbols) and predicted (continuous lines).

The popt values calculated with Equation (4) were 1.8 + 0.2 h~'and 1.4 + 0.1 h~! for L. brevis and
L. plantarum, respectively. The popt values determined for the two strains in MRS broth are slightly
higher than those cited in literature for L. plantarum (0.64 h~! by [37], and between 1.15 and 1.2 h~!
by [38]) and for L. brevis (between 0.9 and 1.4 h! by [39] and 0.68 h-! by [40]).

Cardinal pHpin and pHmax values for L. plantarum are similar to those cited by [41-44]. However,
the optimum pH values in the literature are generally lower than those found in our work. In [41]
an optimum pH of 6 for L. plantarum was cited, while [39] cited an optimum pH of 5.5 for L. brevis.
The optimum temperatures determined in this work are slightly higher than those cited in the literature.
In [45,46], optimum temperatures were reported to be between 28 °C and 37 °C for L. plantarum,
and [47] reported optimum temperatures between 30 °C and 37 °C for L. brevis.

Our strains thus evidenced quite original cardinal and optimum values compared with those cited
in the literature. Lactobacillus strains can indeed present a wide range of genomic and technological
properties, as shown for example for L. plantarum in red wine [48].

The minimum inhibitory concentration (MIC) of undissociated lactic acid was o 35.6 mM and
23.7 mM for L. plantarum and L. brevis, respectively. In the literature, the MIC of lactic acid are in the
same range: [32] reported an MIC value of lactic acid of 53 mM for L. helveticus. It should be noted
that the MIC of undissociated lactic acid did not perturb the determination of the y([pH]). In our
conditions, the maximum concentration of lactic acid at or above pH 5 in MRS inoculated with L. brevis
or L. plantarum was of 6-8 mg/mL (Figure 5) which gave a v([AH]) of 0.9 for both strains. It was of
0.8 for L. plantarum at pH 4, for which the maximum lactic acid concentration was 2 mg/mL. Indeed,
these values, which are close to 1, did not really affect the growth rate and hence did not significantly
bias the calculation of y([pH]) which was, by comparison, 0.41 and 0.31 at pH 5.0 for L. plantarum and
L. brevis, respectively.
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3.2. Acid Lactic Production

The integration of Equation (7) means that the production of lactic acid is directly proportional
to the size of the bacterial population. For L. brevis (Figure 5a) a constant production ratio of
2.71 (£0.08) x 10~? mg-CFU~! was found whatever the pH, between 5 and 7. The yield of glucose
conversion to lactic acid (M/M) was close to 0.8 M/M at any pH, like the value cited by [49] for
obligatory heterofermentative Lactobacillus. For L. plantarum (Figure 5b), we identified two distinct
coefficients depending on the pH. When the pH was over 5, the ratio was 11.3 (+0.3) x 10~? mg-CFU !,
but when the pH was under 5, the ratio was 8.5 (+:0.6) x 1077 mg-CFU~!. The yield of glucose
conversion to lactic acid (M/M) was between 2 and 1.5 for L. plantarum at pH < 5 and pH > 5,
respectively. These results are consistent with homofermentative metabolism [50]. The same effects of
pH on lactic acid production and glucose conversion to lactate for L. plantarum were described by [51].

The characteristics of each strain are consistent with the common properties of their species.
L. plantarum, a homolactic fermentative strain, is mesophilic (Topt = 37.1 °C), acid tolerant (pHpin = 3.2)
with a minimum inhibitory concentration (MIC) of undissociated lactic acid of 35.6 mM and a yield
of glucose conversion to lactic acid (M/M) close to 2. L. brevis, a heterolactic fermentative strain,
is mesophilic (Topt = 44.6 °C), less acid tolerant (pHpin = 3.8) with a MIC of undissociated lactic acid
of 23.7 mM and a yield of glucose conversion to lactic acid (M/M) close to 0.8.

2] @)
8 4
7 4
36 Q" @’
;b 5 4 % ApH 5
E 4 A 'Y OpH 5.5
<3 p‘ O ®pH 6
2 % OpH 7
] 4
0 @@ : : ‘
0.E+00 1.E+09 2.E+09 3.E+09
Microbial load (CFU.mL™")
> (b) g
8 7
Pd
7 - L
2 &£
g5 s *pH 4
on Q p
E 4 . ApHS
3 4
23 P> OpH 5.5
2 4 ’+/|- &pH 6
1

N ui
0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08
Microbial load (CFU.mL")

T T 1

Figure 5. Regression between lactic acid concentration and microbial load for L. brevis (a) and
L. plantarum (b) at pH 4 (+), 5 (A), 5.5 (O), 6 (#).

3.3. Modeling the pH of Raw Material

The pH of a dispersion of sorghum flour with various amounts of added lactic acid was modeled
according to Equation (8) with a coefficient of determination of 0.98. The mean standard error of
prediction was 0.17. The predicted pH was indeed very close to the actual pH (Figure 6) for values
above 4, while for lower values, the predicted pH was slightly under-estimated.
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2 3 4 5
[lactic acid] (mg.mL-")

Figure 6. Changes in the experimental (symbols) and predicted (continuous lines) pH of sorghum
flour dispersions (<, 0.4 g/ML; O, 0.2 g/mL; [, 0.08 g/mL; A, 0.04 g/mL) with different lactic
acid concentrations.

It was also possible to apply the model when the dispersion of sorghum flour was titrated
with sulfuric or acetic acid, leading to a change in Equation (9) by calculating pH for a strong acid
or changing the pKa of the weak acid, and calculating the acidity in meq-L~! and expressing ¢ in
mL-meq~!. Without modification of the parameters, the model fit quite well (Figure 7) for strong or
weak acid. In addition, it was also possible to use it for a dispersion of sorghum malt by simply taking
the initial lactic acid content of the malt into account. This clearly showed that pHgys and BP are quite
robust parameters that do not change significantly after malting and that can thus be used for different
sorghum flours. Quite similar semi-empirical approaches for predicting the pH of fermenting media
have been proposed by [20,34]. The advantage of our model is that provided the initial lactic acid
content is known, the pH can be calculated irrespective of the concentration of raw material and with
various types of materials (sorghum flours or malts). A model with more extensive applications (wider
range of raw materials) could be developed in the future using the approach of [52].

7
6.5§
6 4
5.5
5 -
z4.5
= 4 -
3.5 -
3 -
2.5
2

0 5 10 15 20 25 30
[Acid] (meq.L")
Figure 7. Changes in the experimental (symbols) and predicted (continuous lines) pH of sorghum flour

dispersion with the addition of sulfuric acid (¢, 2 g/mL) and of malt dispersion with the addition of
lactic acid (A, 2 g/mL) (the arrow points to the initial pH of the malt dispersion).

3.4. Validation of the Global Model

The implementation of the models and the corresponding Equations from (1) to (9), led to a
global model that was tested in real conditions during the manufacture of gowé at laboratory scale
in conditions close to those of the traditional process. To avoid interactions with the wild microbial
flora such as lactic bacteria or yeasts, the raw materials were decontaminated by irradiation. During
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fermentation, the population of lactic acid bacteria was enumerated by plate counting on MRS agar
medium because the turbidity of the suspension of flour and malt indeed prevented the use of an
Optek turbidity sensor.

In the first step, we determined the pmax ratio with the raw material. These values are higher than
those calculated by the gamma model in MRS broth in the same conditions. This gave a max ratio
of over 1 for both strains (Table 1). This ratio was thus used as a multiplier to calculate of changes in
the population of lactobacilli in the raw material from the model developed in MRS. The free sugar
(glucose and maltose) content of the raw material indeed ranged from 20 to 30 g-L~! throughout the
process of fermentation of the raw material, greater than 16 g-L~! for MRS broth at the beginning of
the fermentation and then declined to 0 at the end.

In the second step, we performed the fermentation at 30 °C (close to ambient temperature in
Benin), with no control of pH but under gentle agitation. Figure 8 compares the experimental data
obtained for the fermentation of the raw material inoculated with each strain with the data predicted
by the global model we developed. For the bacterial growth of L. plantarum (Figure 8a), the model
predicts a lag phase of about 7 h, longer than the experimental lag phase, which was between 4 and
5 h. Nevertheless, it is possible to consider that the models fit the experimental data quite well
because the difference between the experimental data and the calculated values is less than 1 log unit,
which seems acceptable considering the method of enumeration. An improvement of the model is
however necessary to better predict the lag phase, which is indeed tainted by large uncertainties
(see above). Figure 8b shows changes in pH during the fermentations of each strain. The model indeed
predicted very different behavior for each strain: L. plantarum, a homolactic strain, results in much
more rapid acidification than L. brevis, a heterolactic strain. For L. plantarum, the pH predicted by the
model fits the experimental pH very well, with only a later start of acidification, due to the prediction
of a longer lag phase. It should be noted that when y([AH]) was omitted in the model, the predicted
pH largely deviated from the experimental pH after 15 h of fermentation. This clearly shows that the
concentration of undissociated lactic acid stops bacterial growth, not pH alone. Similarly [32,53,54]
demonstrated that the undissociated lactic acid is the main inhibitor of the growth of lactobacilli.
However, this effect was much less clear on bacterial growth (Figure 8a) as it is expressed in log values.
In the case of L. brevis, the model does not fit the experimental data well.
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0 - (b)
S (a) 6.0
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Figure 8. Changes in the log population (a) and in pH (b) for the validation tests. Experimental data
for L. plantarum (M, OJ) and L. brevis (A, /). Modeled curves for L. plantarum (complete model, —;
model without dissociated lactic acid gamma parameter ---) and L. brevis (complete model, - - -; model
without dissociated lactic acid gamma parameter, -).

In the experimental data, the pH dropped within two steps. The first drop of pH occurred between
6 and 15 h; it cannot be linked to lactic acid production for maintenance of L. brevis, as its level of lactic
acid production for maintenance would have to be 10 times higher than that needed for growth in
order to explain the observed drop in pH, whereas it is generally 10 times lower [34] and consequently
neglected by most authors. This drop may be linked to the growth of yeasts whose residual population
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was of 1.3 x 10* CFU-g~! in malted and non-malted irradiated flours i.e., 6.10° CFU-mL~! of gowé.
The second drop, linked to the growth of L. brevis, was predicted with a delay by the model. This may
be linked to overestimation of lag time by the model, like for L. plantarum. The difficulty of the model
to correctly predict the latent phase is an obstacle that needs to be overcome to improve the quality
of the prediction. This will be addressed in particular by improving the accuracy of determination
of lag time (increase in the level of inoculation). Nevertheless, the model can already be used to
test inoculation (choice of the inoculation strain, level of inoculation) and fermentation conditions
(temperature and duration of fermentation) that directly affect the amount of lactic acid and hence the
drop in pH, which will directly affect the quality of final gowé. A rapid acidification, after inoculation
with homolactic L. plantarum will lead to a safer product, but as the acidification is detrimental to
starch amylolysis [28], this will lead to a less sugary product. A global model, integrating models
for amylolysis and yeast growth, is thus necessary to define the optimal fermentation conditions for
producing safe and appreciated gowé.

4. Conclusions

A global model of the lactic fermentation of gowé was developed on a synthetic medium step by
step (block by block) through the implementation of different specific models (blocks) that can predict
(i) the kinetics of bacterial growth in different temperature and pH conditions; (ii) the production
of lactic acid; (iii) the pH of the medium depending on the concentration of lactic acid; and (iv) the
inhibition of the growth of lactic strains due to the concentration of undissociated lactic acid. The
global model was used to simulate the behavior of two commercial strains during the fermentation
of sorghum flour and malt to produce gowé. Greater attention will be paid in the future to the
determination of the kinetic parameters of the two strains, in particular to improve the determination
of the lag phase, which should make it possible to improve the performance of the model as a whole.

The global model can already predict the acidity of gowé, but to take into account the sweet taste,
which is also a major quality attribute of gowé, the global model can be enriched by adding blocks to
model yeast growth and sugar release by amylases whose activity depends on temperature, pH and
sugar content.
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