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Abstract

Mink (Neogale vison) is a commercially farmed animal of global importance. However,
disease outbreaks during farming not only cause significant economic losses but also
substantially increase the risk of zoonotic infections. The identification and characterization
of pathogenic bacteria remain a major bottleneck restricting the development of healthy and
sustainable mink farming. In this study, an LB medium was used to isolate a pale-white,
rod-shaped, Gram-negative bacterial strain, Qf-1, from minks with pneumonia. Based
on morphological characteristics, biochemical properties, 165 rRNA gene sequencing,
and average nucleotide identity (ANI) analysis, strain Qf-1 was identified as Huaxiibacter
chinensis Qf-1. Under laboratory conditions, H. chinensis Qf-1 induced typical pneumonia
symptoms in Kunming mice. Furthermore, whole-genome sequencing of H. chinensis Qf-1
revealed its genome to be 4.77 Mb and to contain a single chromosome and one plasmid.
The main virulence genes of H. chinensis Qf-1 were primarily associated with figB, flgC,
flgG, aceA, hemL, tssC1, csgD, hofB, ppdD, hepA, and vgrGA, functioning in motility, biofilm
formation, colonization ability, and secretion systems. Our findings contribute to a better
understanding of their pathogenic mechanisms, thereby laying a theoretical foundation for
further investigation into the complex interactions between gut microbiota and the host.
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1. Introduction

The mink (Neogale vison), belonging to the order Carnivora, family Mustelidae, and
genus Neovison, is an economically important fur-bearing animal that is widely farmed
in Europe, North America, and China [1]. However, due to the lack of standardized
breeding requirements and protocols, the occurrence and spread of bacterial diseases in
minks have severely threatened the healthy development of the mink farming industry,
resulting in significant economic losses. Bacterial diseases in minks are characterized by
mixed infections, easily confused clinical symptoms, difficulties in pathogen isolation, and
increasing antibiotic resistance [2—4].

At present, research on viral diseases in minks has been relatively thorough and
comprehensive. Mink enteritis virus (MEV), Aleutian mink disease virus (AMDV), and
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canine distemper virus (CDV) have emerged as the three major viral pathogens posing
significant threats to the mink farming industry. These viruses are responsible for causing
highly contagious viral enteritis, Aleutian disease, and canine distemper in minks, respec-
tively [5,6]. Significant breakthroughs have been achieved in research on mink viruses,
particularly in areas such as taxonomic classification, genome structure, gene function,
pathogenic mechanisms, and vaccine development. These advances have played a pivotal
role in promoting the ecological prevention and control of viral diseases in minks [7].

Compared with viral diseases, research on bacterial diseases in minks began rel-
atively late. With the rapid expansion of mink farming, bacterial outbreaks have oc-
curred with increasing frequency, causing irreversible impacts on the industry. In recent
years, the pathogenesis and ecological prevention of bacterial diseases in minks have
gradually become research hotspots. Various bacterial pathogens have been detected in
mink hosts, including Escherichia coli, Pseudomonas aeruginosa, Streptococcus canis, Strepto-
coccus dysgalactiae, Staphylococcus delphini, Staphylococcus aureus, Staphylococcus schleiferi,
Pasteurella multocida, Staphylococcus intermedius, Staphylococcus aureus, and Klebsiella pneumo-
niae [8,9]. However, existing studies have primarily focused on the antimicrobial resistance
of these opportunistic pathogens, with limited investigation into their specific pathogenic
mechanisms [2,10].

In summary, the isolation and identification of pathogenic bacteria are critical steps for
the precise prevention and control of mink diseases. This study focused on minks affected
by bacterial pneumonia and employed culturomics and genomics approaches to isolate
and identify opportunistic bacterial pathogens, as well as to analyze their pathogenicity.
The findings of this research will not only contribute to the establishment of stable exper-
imental models between pathogens and mink hosts, providing a foundation for further
investigation into their virulence mechanisms, but they will also offer theoretical support
for the precise prevention and control of bacterial diseases in mink farming.

2. Materials and Methods
2.1. Sample Collection

In December 2023, the Youan Mink Breeding Co., Ltd. in Qingdao, China, housed
a total of 3200 minks, of which 74 displayed typical symptoms of pneumonia, including
respiratory distress, elevated body temperature, anorexia, lethargy, and the presence of
red, bubble-like discharge from the nostrils. The mink exhibiting signs of pneumonia were
isolated and treated at the farm with intramuscular injections of florfenicol and doxycycline.
Following treatment, no instances of transmission were observed, and all 74 minks fully
recovered. Therefore, the feces of mink exhibiting symptoms of pneumonia were collected
into 5 mL centrifuge tubes pre-filled with glycerol and transported back to the laboratory
on the same day of collection.

2.2. Bacterial Isolation

The fecal samples were collected from mink with pneumonia. The samples were
diluted 10-fold with an appropriate volume of normal saline, and subsequently serially
diluted 10-fold up to a dilution factor of 10~°. From each dilution, 30 pL of the bacterial
suspension was cultured on an LB liquid medium at 35 °C for 24 h using the dilution
and spread plate method. After overnight incubation, single colonies with different mor-
phologies and sizes were selected and further purified by streaking using the three-zone
streaking technique. This purification process was repeated 4-5 times to ensure strain
purity. The purified bacterial isolates were preserved at —80 °C in 30% (v/v) glycerol for
future use.
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2.3. Morphological, Physiological, and Biochemical Analysis of Strain QF-1

During the bacterial isolation and purification stage, the morphological characteristics
of individual colonies were visually examined and documented through photography.
Gram staining of strain Qf-1 was performed using a Gram staining kit (G1065, Servicebio,
Wauhan, China). The cellular morphology of strain Qf-1 was observed using both scanning
electron microscopy (SEM, JOUQDSM-840, JEOL, Akishima, Japan) and transmission
electron microscopy (TEM, JEM-1200EX, JEOL, Japan), following the protocol described by
Zhang et al. [11].

The growth of strain Qf-1 was monitored by measuring the optical density at 600 nm
(ODggp) every 2 h. A standard growth curve was plotted based on these measurements,
following the method reported by Tsutsuki H. et al. [12]. A linear regression model was
applied in Origin (2021; OriginLab Corp., Northampton, MA, USA) to generate the standard
growth curve and calculate the corresponding R? value. To ensure data transparency and
reproducibility, both the growth curve and the standard curve were established using three
biological replicates and three technical replicates.

The biochemical and physiological characteristics of strain Qf-1 were evaluated using
the Biolog Gen III MicroPlate system (Biolog, Hayward, CA, USA) according to the manu-
facturer’s instructions. The strain was first cultured in an LB liquid medium at 33 °C for
24 h. Subsequently, the bacterial suspension was adjusted to 98% turbidity using Biolog
Fluid A. A volume of 100 pL of the bacterial suspension was inoculated into each well of
the Gen III MicroPlate. After incubation at 33 °C for 24 h, the results were automatically
recorded at 600 nm using the standardized MicroStation™ system (Biolog Inc., Hayward,
CA, USA). Two wells were designated as negative and positive controls, indicated by
colorless and purple reactions, respectively.

2.4. 16S rRNA Gene Sequencing and Construction of Phylogenetic Tree

The 165 rRNA gene of strain Qf-1 was amplified by PCR using the universal primers
27F and 1492R [13]. The PCR products were examined by electrophoresis on a 2% agarose
gel. Purification of the amplified products was carried out using the AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, Union City, CA, USA), according to the manufacturer’s
instructions. The purified 165 rRNA gene fragments were subjected to paired-end sequenc-
ing using the Sanger method. The assembled 165 rRNA gene sequence was subsequently
submitted to the National Center for Biotechnology Information (NCBI) database.

Preliminary identification of strain Qf-1 and comparison with closely related type
strains were carried out using the EzBioCloud server (http://www.ezbiocloud.net, accessed
on 8 October 2024) [14] and the BLAST (v2.2.25) tool provided by the NCBI database
(http:/ /www.ncbi.nlm.nih.gov, accessed on 8 October 2024). Phylogenetic analysis was
performed using MEGA (vX) [15], and the phylogenetic tree was reconstructed using the
neighbor-joining (N]) algorithm [16]. The Kimura two-parameter model [17] was applied
for the calculation of evolutionary distances. The robustness of the phylogenetic tree
topology was evaluated by 1000 bootstrap replications [18].

2.5. Genome Sequencing and Analysis of Average Nucleotide Identity (ANI)

The EZ-10 Spin Column Bacterial Genomic DNA Isolation Kit (B610423-0050, Sangon
Biotech, Shanghai, China) was used to extract genomic DNA from strain Qf-1. A whole-
genome shotgun (WGS) sequencing strategy was employed, with libraries of varying insert
sizes constructed for both second-generation and third-generation sequencing. Illumina
NGS and single-molecule long-read sequencing were performed on the Illumina platform
at Paisonor BioTech Co., Ltd. (Shanghai, China). Raw short-read data were quality-
filtered using fastp (v0.24.1) [19]. Long reads were assembled de novo with Unicycler
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(v0.5.1) [20], Flye (2.9.5) [21], Hifiasm (0.25.0) [22], and Necat (v0.0.1_update20200803) [23],
and assemblies were polished with Pilon (v1.24) [24] using high-quality Illumina reads.
Assembly completeness and contamination were assessed with CheckM (v1.2.3) [25]. Aver-
age nucleotide identity (ANI) was calculated via the ANI/AAI-Matrix online tool (Kostas
Laboratory; http://enve-omics.ce.gatech.edu/g-matrix/, accessed on 10 October 2024,
North Avenue, Atlanta) [26].

For functional annotation, genome annotation was performed using the genome
analysis tool available at the Type Strains Genome Database (https://gctype.wdcm.org/,
accessed on 14 October 2024), in combination with the Clusters of Orthologous Groups
(COG) database [27]. Additionally, functional annotation was conducted using the
eggNOG online server (http://eggnog5.embl.de/#/app/home, accessed on 13 Octo-
ber 2024) [14]. KEGG Orthology assignments were generated via KAAS (BlastKOALA,;
https:/ /www.kegg.jp/blastkoala/, accessed on 14 October 2024) [28]. Virulence-associated
genes were identified using the VFDB online server [29]. Carbohydrate-active enzymes
(CAZymes) were annotated via the dbCAN3 meta server (https://bcb.unl.edu/dbCAN2/,
accessed on 15 October 2024) [30]. Protein secretion systems were predicted with Mac-
SyFinder (2.1.4) [31], and type III secretion effectors were identified using EffectiveT3
(Version 3.0) [32]. Finally, two-component regulatory systems were cataloged based on
Pfam domain annotations.

2.6. Bacterial Challenge Infection Assay

Before conducting the bacterial challenge infection assay, the Qf-1 strain was activated.
First, Qf-1 was brought to room temperature, and a loop was used to pick up the bacte-
rial suspension, which was streaked onto an LB liquid medium for incubation at 35 °C
for 8 h. Single colonies were then picked and inoculated into 100 mL of the LB liquid
medium, followed by incubation in a shaking incubator (35 °C, 150 rpm) for 8 h. Subse-
quently, a passage culture was prepared by transferring 1 mL of the bacterial suspension
to 100 mL of a fresh LB liquid medium and cultured until the ODgpy = 0.40 (equiva-
lent to 1.0 x 108 CFU/mL), indicating that the bacterial culture was in the logarithmic
growth phase.

For the infection experiment, 3-week-old Kunming mice purchased from Shandong
Pengyue Laboratory Animal Technology Co., Ltd. (Jinan, China), were used. After
3 days of standard feeding in the laboratory, 0.2 mL of the Qf-1 bacterial suspension
(ODgpp = 0.40) was injected into the peritoneum of the mice. The mice were monitored
every 2 h for changes in their general condition, and their body weight was recorded
every 24 h. After 5 days of observation, the mice were euthanized, and their lung tissues
were collected for hematoxylin and eosin (HE) staining, which was carried out by Wuhan
Servicebio Co., Ltd. (Wuhan, China).

3. Results
3.1. Morphological Characteristics of Pathogenic Bacterial Strain of Qf-1

The Qf-1 strain was identified as Gram-negative (Figure 1A) and exhibited a light white
coloration on the LB culture medium, forming circular colonies with diameters ranging
from 0.80 to 1.20 mm (Figure 1B). SEM (Figure 1C) and TEM (Figure 1D) revealed that the
cells were rod-shaped, measuring approximately 1.20-1.79 pm in length and 0.72-0.98 pm
in width, and lacked flagella.
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Figure 1. Morphological characteristics of Qf-1. (A) Qf-1 colonies on LB culture medium (bar = 1 cm).
(B) Gram staining of QF-1 (bar = 10 pm). (C) Morphology of XP-2 observed by SEM (bar = 500 nm).
(D) Morphology of XP-2 observed by TEM (bar = 500 nm).

3.2. Growth Curve and the Standard Growth Curve of Qf-1

As shown in Figure 2, the growth curve indicates that Qf-1 enters the logarithmic
growth phase at 2 h, when ODygy is 0.40. From 2 to 10 h, Qf-1 remains in the logarithmic
growth phase, and Qf-1 enters the stationary phase after 10 h when ODgg reaches 1.00.
The standard curve for Qf-1 is denoted as y = (4.63x — 1.77) x 109, R? = 0.92.
(A) B);]
1 Equation for solid line:
309 y=(4.63x— 1.77) x 10°% R?=0.92
x: ODg, value
y: CFUs/mL

0.8 2.5

OD, 600

04

Bacterial concentration
(CFUs/mL)

0.2

Oh 2h 4 6h 8h 10h 12h 14h 16h 03 04 05 06 07 08 09 10 1Ll

Time ODg

Figure 2. Growth curve and the standard growth curve of Qf-1. (A) The growth curve of Qf-1.
(B) The standard growth curve of Qf-1.
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3.3. Molecular Identification and Phylogenetic Analysis

The partial 165 rRNA gene sequence of strain Qf-1 was 1392 bp. A neighbor-joining
phylogenetic tree was constructed based on 165 rRNA gene sequences, showing the phylo-
genetic positions of strain Qf-1 and the related Huaxiibacter species. The strain Qf-1 was
most closely related to H. chinensis 1550471 with 99.93% similarity (Figure 3). An analysis of
the average nucleotide identity (ANI) between strain Qf-1 and H. chinensis 155047" revealed
that the similarity was 98.77% (Table S1).

010523672

Vibrio albus E4404™
000361422 Enterobacter mori LMG 257067

00015288 Enterobacter huaxiensis 0900087

- |
Q000

I A Enterobacter asburiae JCM 60517
= Enterobacter cancerogenus ATCC 332417
00032805 - Enterobacter bugandensis EB-247"
R00e Enterobacter sichuanensis WCHECI1597"
000140701 Enterobacte is WCHEW 1200027
J— - AL Lelliottia NBRC 105700™

Huaxiibacter chinensis Qf-1
Huaxiibacter chinensis 1550477

- Lelliottia jeotgali PFLO1"
L — N " Lelliottia steviae LST-1T
5 Lelliottia nimipressuralis LMG 102457
Figure 3. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences. Percentage

bootstrap values above 50% (1000 replicates) are shown at branch nodes. Bar = 0.020, substitutions
per nucleotide position. Vibrio albus E4404T was used as an outgroup.

000648211

3.4. Biochemical Characterization of Qf-1 Using Biolog Gen 11l Microtest System

Strain Qf-1 exhibited its ability to react positively to 47 (50.00%), weakly positive
to 16 (17.02%), and negatively to 29 (30.85%) out of the 94 different physiological and
biochemical traits. Qf-1 grew on a wide range of sugars (e.g., D-Turanose, D-Galactose,
L-Rhamnose, Sucrose, Gentiobiose, and o-D-Glucose), hexose-PO4 (e.g., D-Glucose-6-PO4
and D-Fructose-6-PO4), and amino acids (e.g., D-Glucuronic Acid, D-Gluconic Acid, L-
Glutamic Acid, Acetic Acid, Bromo-Succinic Acid, and L-Lactic Acid), as shown in Table 1.

Table 1. Characterization of strain Qf-1 based on the Biolog Gen III MicroPlate.

Positive Reaction with the Following Substrates/Tests

D-Turanose

D-Glucuronic Acid

N-Acetyl-f-Dmannosamine

Glucuronamide D-Saccharic Acid N-Acetyl-D-Galactosamine )
L-Histidine D-Gluconic Acid D-Glucose-6-PO4
L-Glutamic Acid D-Galactose * D-Fructose-6-PO4
Acetic Acid Glycyl-L-Proline Bromo-Succinic Acid
L-Rhamnose * Citric Acid D-Lactic Acid Methyl Ester
Sucrose Gentiobiose * N-Acetyl-D-Glucosami

L-Lactic Acid

«-D-Glucose *

b-Methyl-D-Glucoside

D-Cellobiose * D-Sorbito * D-Mannose
Methyl Pyruvate L-Alanine D-Trehalose
3-Methyl Glucose D-Maltose * L-Malic acid

Glycerol Melibiose * L-Aspartic Acid
L-Arginine L-Serine D-Mannitol *
Inosine a-D-Lactose * D-Galacturonic Acid
D-Fructose * D-Salicin * L-Galactonic Acid Lactine
Mucic Acid L-Fucose *

Weak Positive Reaction with the Following Substrates/Tests

Pectin Nalidixic Acid L-Pyroglutamic Acid
Quinic Acid PH6 c-Amino-Butyric Acid
Acetoacetic Acid Vancomycin B-Hydroxy-p, 1 -Butyric Acid
Dextrin Sodium Lactate a-Keto-Glutaric Acid
D-Raffinose D-Malic Acid
Tween40 Formic Acid
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Negative Reaction with the Following Substrates/Tests
1%NaCl Potassium Tellurite Fusidic Acid
D-Fucose * D-Serine Minocycline
Propanoic Acid Sodium Bromate a-Hydroxy-Butyric Acid
4%NaCl Guanidine HCl Rifamycin SV
Myo-Inositol * Aztreonam a-Hydroxy-Butyric Acid
pH5 Troleandomycin Lincomycin
D-Arabitol * Sodium Butyrate N-Acetyl-D-Galactosam
Gelatin Lithium Chloride D-Aspartic Acid
Stachyose 8%NaCl p-Hydroxy-Phenylacetic Acid
D-Serine Niaproof 4

Note: *, described by He et al., 2022 [33].

Based on the high similarity between 16S rRNA gene sequences of strain Qf-1 and H.
chinensis 1550477, as well as the chemical characterization of strain Qf-1, it was designated
as H. chinensis Qf-1.

3.5. Observations of HE Staining and Bacterial Changes in Infected Tissue by H. chinensis Qf-1

Following HE staining, there were no pathological alterations in the control group, and
the cellular morphology remained intact and uniform (Figure 4A,B). In the experimental
groups, infection with H. chinensis Qf-1 in Kunming mice induced inflammatory responses
in the lung tissues. The primary pathological changes included extensive hemorrhage
(Figure 4C-G; yellow arrows), edema of bronchial epithelial cells (Figure 4D,FH; red
arrows), proliferation of connective tissue (Figure 4FH; green arrows), and infiltration
of granulocytes (Figure 4D,F H; black and orange arrows). Additionally, the presence of
macrophages (Figure 4D; gray arrows) and lymphocytes (Figure 4D,EH; blue arrows) was
observed in the pulmonary tissue.

Control Group

40 x

40 x

1000 pm

G

Figure 4. Histopathological observation of lung tissue in Kunming mice infected with H. chinensis Qf-1.
Note: Extensive hemorrhage (yellow arrows); mild edema of bronchiolar epithelial cells (red arrows);
mild infiltration of granulocytes (black arrows); numerous macrophages in the alveolar spaces (gray
arrows); prominent peribronchiolar and perivascular lymphocytic (blue arrows); granulocytic (orange
arrows) infiltration forming ring-like patterns; and proliferation of connective tissue (green arrows).
The black box indicates the magnified area shown. Bar: (A,C,E,G) = 1000 pm; (B,D,F,H) = 100 pm.
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(A)

Function class

3.6. Whole-Genome Analyses of Strain H. chinensis Qf-1

As shown in Table 2, the clean reads of H. chinensis Qf-1 were 9,768,592 bp. The genome size
of H. chinensis Qf-1 was 4.77 Mb with a GC content of 48.99%. There were approximately 4445
protein-coding genes, and 4149, 2916, 3573, and 3841 genes were annotated against the Evolution-
ary Genealogy of Genes: Non-Supervised Orthologous Groups (eggNOG), Kyoto Encyclopedia
of Genes and Genomes (KEGG), Gene Ontology (GO), and Swiss-Prot databases, respectively. In
addition, 80, 7, 192, 143, and 7 genes were annotated against the two-component signaling or
regulatory system (TCS) (Table S2), Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPRs), Virulence Factor Database (VFDB) (Table S3), Comprehensive Antibiotic Resistance
Database (CARD) (Table S4), and type III secretion system (T3SS) (Table S5), respectively.

Table 2. Qf-1 whole-genome sequencing result statistics.

Characteristic Genome Characteristic Gnome
Size of raw reads (bp) 9,991,278 CRISPRs 7
Size of total reads (bp) 1,508,682,978 VFDB 192
Size of clean reads (bp) 9,768,592 CARD 143

Genome size (Mb) 4.77 T3SS 7

GC content (%) 48.99 Coding gene annotated 4445

Total gene size (bp) 4,168,185 Coding gene assigned to eggNOG 4149
rRNA 22 Coding gene assigned to KEGG 2916
tRNA 86 Coding gene assigned to GO 3573
ncRNA 130 Coding gene assigned to Swiss-Prot 3841

TCS 80

Inorganic ion transport and metabolism, transcription, carbohydrate transport and
metabolism, amino acid transport and metabolism, cell motility, coenzyme transport and
metabolism, replication, recombination, and repair were revealed by the genomic functional
annotation of H. chinensis Qf-1 against the eggNOG database (Figure S1). Moreover, the cellular
component, molecular function, and biological process terms of XH1 were also classified by
genome functional annotation against the GO database (Figure 5A). Additionally, the human
diseases, metabolism, not included in the pathway of Brite, organismal systems, Brite hierarchies,
cellular processes, environmental information processing, and genetic information processing
terms of H. chinensis Qf-1 were also classified by genome functional annotation against the KEGG
database (Figure 5B).

GO classfication (B) KEGG classfication
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Figure 5. The genome functional annotation of H. chinensis Qf-1 against the GO and KEGG databases
(A), the GO annotation of H. chinensis Qf-1; (B) the KEGG annotation of H. chinensis Qf-1.
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3.7. Pathogenic Potential Analysis of Strain H. chinensis Qf-1

As shown in Figure 2, 34 virulence genes have different biological functions in H.
chinensis Qf-1, mainly including the functions of CARD, T3SS, and TNSS. Among them,
tssM1, clpV1, tssK1, hepA, and vgrGA belong to T6SS coding genes. In addition, fIgB, fIgC,
flgD, fIgE, fIgF, figG, figK, flgL, and fIgL are flagella genes of the flagella system. Furthermore,
hofB and ppdD are the coding genes of type IV fimbriae.

3.8. Genome Assembly Completion Mapping of Strain H. chinensis Qf-1

The circle map of the H. chinensis Qf-1 genome was shown in Figure 6, which includes
one chromosome (4,763,487 bp) and one plasmid (3843 bp). Circle 1 (from inside to outside)
represents the scale; Circle 2 represents GCSkew; Circle 3 represents GC content; Circle
4 and Circle 7 represent COGs, to which each CDS belongs; and Circle 5 and Circle 6
represent the positions of CDS, tRNA, and rRNA on the genome.
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Figure 6. Circular representation of the H. chinensis Qf-1 genome. From the inside to the outside, the
first circle represents the scale; the second circle represents GCSkew; the third circle represents GC
content; the fourth and seventh circles represent COGs, to which each CDS belongs; and the fifth and
sixth circles represent the positions of CDS, tRNA, and rRNA on the genome.

4. Discussion

In this study, based on morphological observations, physiological and biochemical
characteristics, phylogenetic analysis, and average nucleotide identity (ANI) calculations,
strain Qf-1 was identified as H. chinensis Qf-1. This is the first report of H. chinensis Qf-1
isolated from the intestinal tract of mink. In the infection experiment, H. chinensis Qf-1 was
capable of inducing typical pneumonia symptoms in Kunming mice (Figure 4). In addition,
whole-genome sequencing analysis revealed that H. chinensis Qf-1 harbors multiple viru-
lence factors, providing valuable reference data for the clinical prevention and control of
epizootic diseases in mink. H. chinensis Qf-1 is a pathogenic bacterium responsible for the
pneumonia disease of mink, suggesting that H. chinensis Qf-1 may be a natural component
of the gut microbiota of mink, which requires further validation with a larger sample size
in future studies. However, it should be noted that dysbiosis of the gut microbiota may
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increase susceptibility to pneumonia [34]. In this context, our study focused on the gut
microbiota of mink, further isolating and identifying intestinal bacteria from pneumonic
mink to identify opportunistic pathogens potentially associated with pneumonia. There-
fore, we chose mink feces for bacterial isolation and identification. Additionally, the gut
can influence distal pulmonary responsiveness and inflammation via microbial metabolites,
immune cell trafficking, and neuroendocrine signaling pathways [35-38]. Moreover, in-
traperitoneal injection is a commonly used technique in laboratory rodents [39]. As a result,
in this study, we chose intraperitoneal injection rather than respiratory administration.

H. chinensis 1550477 was first reported by He et al. in 2022 and was isolated from the
sputum of a patient in China [33]. The strain is positioned within the Enterobacter—Leclercia—
Lelliottin—Pseudenterobacter lineage; however, both its average nucleotide identity (ANI)
and average amino acid identity (AAI) values fall below the genus-level thresholds [40],
indicating that it represents a novel genus within this lineage. Based on its genotypic and
phenotypic characteristics, the authors proposed the name Huaxiibacter for the novel genus
and H. chinensis for the novel species. The type strain is 1550477 [33].

In terms of morphology, cells of H. chinensis Qf-1 are Gram-negative (Figure 1A)
and exhibit a light white coloration, forming circular colonies with diameters ranging
from 0.80 to 1.20 mm (Figure 1B), which is similar to H. chinensis 155047". Secondly, in
terms of physiological and biochemical characteristics, acid is produced when H. chinensis
Qf-1 is cultured with N-Acetyl-D-Galactosamine, D-Galactose, L-Rhamnose, Gentiobiose,
o-D-Glucose, D-Cellobiose, D-Sorbito, D-Mannose, D-Trehalose, D-Maltose, Melibiose,
D-Mannitol, a-D-Lactose, D-Fructose, D-Salicin, and L-Fucose but not in the presence of
D-Fucose, myo-Inositol, and D-Arabitol. The carbon source utilization profile of H. chinensis
Qf-1 is similar but not identical to that of H. chinensis 155047", which may be attributed
to evolutionary divergence between the strains and differences in the detection kits used.
Based on morphological characteristics and physiological and biochemical tests alone,
the taxonomic placement of strain Qf-1 could not be conclusively determined. Therefore,
whole-genome sequencing was performed for strain Qf-1, and a complete genome map
was constructed. Firstly, phylogenetic analysis revealed that H. chinensis Qf-1 is most
closely related to H. chinensis 1550477, with a similarity of 99.93% (Figure 3). Second,
the average nucleotide identity (ANI) between strain Qf-1 and H. chinensis 155047" was
calculated to be 98.77% (Table S1), which exceeds the commonly accepted threshold for
species delineation [40]. These molecular identification results provide strong evidence
that strain Qf-1 isolated in this study belongs to the species H. chinensis. It is worth noting
that, owing to the clarity provided by the phylogenetic analysis and ANI calculation,
the taxonomic status of strain Qf-1 could be reliably determined without the need for
additional comprehensive characterization. In contrast, the original study describing H.
chinensis 1550477 involved more extensive analyses, including assessments of motility,
anaerobic growth capacity, and fatty acid composition, as it was a newly discovered species
at the time.

Research on H. chinensis remains in its early stages. Notably, H. chinensis 1550477
has not been explored for its pathogenic potential, focusing exclusively on its taxonomic
classification [33]. Furthermore, using 165 rRNA amplicon sequencing and culturomics,
the study revealed the diversity of gut microbiota in hibernating bats and successfully
isolated and cultured H. chinensis, which is potentially pathogenic to humans [41]. There-
fore, to investigate the pathogenicity of H. chinensis, we first employed H&E staining in
this study to assess the pathogenicity of H. chinensis Qf-1. The results demonstrated that
H. chinensis Qf-1 can induce typical pneumonia symptoms in Kunming mice, including
extensive hemorrhage, edema of bronchial epithelial cells, proliferation of connective tissue,
and infiltration of granulocytes, while the presence of macrophages and lymphocytes is
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observed in the pulmonary tissue. Therefore, based on the results of H&E staining, we
performed whole-genome sequencing of H. chinensis Qf-1 and constructed its complete
genome map. Furthermore, genes potentially associated with pathogenicity in H. chinensis
Qf-1 were analyzed. The genome of H. chinensis Qf-1 is 4.77 Mb in size and consists of
one chromosome and one plasmid. Functional annotation of the genome revealed that
its pathogenic potential is primarily associated with genes encoding flagella, the type III
secretion system (T3SS), type IV pili, and the type VI secretion system (T6SS), including the
following key components: flgB (chr_1651), flgC (chr_1652), flgG (chr_1656), aceA (chr_223),
hemL (chr_723), tssC1 (chr_842), csgD (chr_1620), hofB (chr_713), ppdD (chr_722), hcpA
(chr_844), and vgrGA (chr_845), where all encoding genes are virulence genes (Table 3).
Previous studies have shown that fIgB, flgC, and fIgG encode the basal body rod proteins of
the flagellar system, which play a crucial role in bacterial motility and, consequently, influ-
ence the pathogenicity of the bacterium [42]. Inhibition of AceA can “freeze” Acinetobacter
baumannii in a low-virulence viable but nonculturable (VBNC) state [43]. hemL influences
the antibiotic resistance of Salmonella enterica, thereby affecting its pathogenicity [44]. CsgD
is considered a central regulator controlling the transition of Salmonella between motile
(planktonic) and sessile (biofilm) lifestyles, thereby influencing both its motility and biofilm
formation capacity—factors that are critical determinants of its pathogenicity [45]. hofB
plays a role in pilus formation, which initiates pathogen attachment, invasion, and biofilm
formation [46]. Additionally, it is an important component of the type II secretion (T2SS)
system, which contributes to bacterial survival and biofilm development [47]. Prepilin
peptidase-dependent protein D (PpdD) is the major subunit of bacterial type IV pili (T4P),
which are essential for host colonization and virulence in many Gram-negative bacteria. In
enterohemorrhagic Escherichia coli, the T4P, known as hemorrhagic coli pili (HCP), facilitates
cell adhesion, motility, biofilm formation, and signal transduction [48]. VgrG is an impor-
tant virulence factor of the type VI secretion system in Rahnella aquatilis. VgrG mediates
interactions between pathogenic bacteria and host macrophages, thereby influencing the
pathogenicity of the bacteria [49]. In summary, the pathogenicity of H. chinensis Qf-1 may be
associated with its motility, biofilm formation, colonization ability, and secretion systems.

Table 3. Qf-1 whole-genome sequencing results.

ORF Name Gene Name VE_ID CARD T3SS TNSS
chr_223 aceA VFG009263 - TRUE -
chr_232 pgi VFG013531 - TRUE -
chr_532 IpxC VFG013414 ARO: 3003574 - -
chr_713 hofB VFG042799 - - T4aP_pilB
chr_722 ppdD VFG042800 - - T4aP_pilA
chr_723 hemL VFG013618 - TRUE -
chr_769 IpxA VFG01339%4 ARO: 3003573 - -
chr_794 tssM1 VFG035488 - - T6SSi_tssM
chr_834 clpV1 VFG035568 - - T6SSi_tssH
chr_836 tssK1 VFG035613 - - T6SSi_tssK
chr_842 tssC1 VFG035762 - TRUE -
chr_844 hepA VFG041172 - T6SSi_tssD
chr_845 vgrGA VFG035855 - - T6SSi_tssl
chr_875 phoE VFG043568 ARO: 3004122 - -
chr_1031 acrB VFG049136 ARO: 3000216 - -
chr_1032 acrA VFG049125 ARO: 3004042 - -
chr_1081 fimF VFG042684 - TRUE -
chr_1471 gspE VFG007101 - - T2SS_gspE
chr_1473 outG VFG040912 - - T255_gspG
chr_1532 msbA VFG013253 ARO: 3003950 - -
chr_1569 ompA VFG043544 ARO: 3005044 - -
chr_1620 csgD VFG045791 - TRUE -
chr_1651 flgB VFG043022 - - Flg flgB
chr_1652 flgC VFG043075 - - Flg flgC
chr_1653 flgD VFG043024 - TRUE -

chr_1654 flgE VEG043077 - TRUE -




Microorganisms 2025, 13, 1604 12 of 15
Table 3. Cont.

ORF Name Gene Name VF_ID CARD T3SS TNSS
chr_1655 flgF VFG043078 - TRUE -
chr_1656 fleG VFG043079 - TRUE Flg flgC
chr_1660 flgk VFG043083 - TRUE -
chr_1661 flgL VFG043032 - TRUE -
chr_1672 fabG VFG038840 ARO: 3004049 - -
chr_1708 phoQ VFG021077 ARO: 3007203 - -
chr_1709 phoP VFG000475 ARO: 3003585 - -
chr_1815 hemR VFG012601 - TRUE -

Note: ORF name, the ORF name of H. chinensis Qf-1; Gene name, the gene name of H. chinensis Qf-1; VF_ID: the
gene ID information in the VF database; CARD: antibiotic resistance mechanism information in CARD data; T3SS,
type III secretion system annotation information; TNSS: annotation information on the NSS secretory system.

5. Conclusions

Mink is an important species in China’s specialized economic animal farming. Like
economically valuable crops, mink is susceptible to disease outbreaks during the farming
process, which can result in significant economic losses and increase the risk of zoonotic
disease transmission. Therefore, the isolation and identification of pathogenic bacteria
remain a bottleneck in the prevention and control of mink-borne infectious diseases.

In this study, we isolated and identified the H. chinensis Qf-1 as an opportunistic
pathogenic bacterium from pneumonia mink feces using culturomics. H. chinensis Qf-1 in-
duced typical pneumonia symptoms in Kunming mice, indicating its potential pathogenic-
ity and suggesting that it could pose a health risk to mink. Genomic sequencing and
analysis further revealed that the pathogenicity of H. chinensis Qf-1 may be associated with
its motility, biofilm formation, colonization ability, and secretion systems. Our findings
expand the known diversity of pathogens responsible for animal-borne infectious diseases
and contribute to a better understanding of their pathogenic mechanisms, thereby laying a
theoretical foundation for further investigation into the complex interactions between gut
microbiota and the host.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390 /microorganisms13071604/s1, Table S1: the analysis of
Average Nucleotide Identity (ANI); Table S2: the summary of TCS of H. chinensis Qf-1; Table S3:
the summary of VFDB of H. chinensis Qf-1; Table S4: the summary of CARD of H. chinensis Qf-1;
Table S5: the summary of T3SS of H. chinensis Qf-1; Figure S1: the COG annotation of H. chinensis
Qf-1.
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