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Abstract

Interest in probiotics has not diminished, and techniques to protect them from the envi-
ronment in which they are found are constantly being innovated. Spray-drying is the
most studied and industrially used technique to encapsulate probiotics. Recently, a new
process has been developed in which particle formation, alginate cross-linking, and dry-
ing are carried out in a single step. In this study, Bifidobacterium infantis, Bifidobacterium
longum, Lactobacillus plantarum, and Lactobacillus rhamnosus were microencapsulated by
spray-drying using a cross-linked alginate matrix supplemented with chia seed mucilage
(CM) or flaxseed mucilage (FM) as the coating material. All formulations evaluated, sup-
plemented with 0.4% (w/v) of CM or FM, including the control formulation showed high
survival rates, varying between 87% and 97%. The viability of microencapsulated probiotics
was affected by storage temperature. At 4 °C, viability decreased slightly, and after 90 days,
the viable probiotic count ranged from 7 to 11 Log CFU/g of dry powder. Meanwhile,
viability did not exceed 4 Log CFU/g of dry powder at 37 °C. Probiotic microencapsulation
in cross-linked alginate matrices and chia or flaxseed mucilage by spray-drying is presented
as a promising alternative for their protection, potentially improving the long-term stability
and efficacy of the probiotic product.

Keywords: probiotics; mucilage; chia seed; flaxseed; cross-linked alginate matrices

1. Introduction

The interest in lactic acid-producing bacteria has not waned since Elie Metchnikoff
(1908 Nobel Prize in Physiology or Medicine) observed that the consumption of these

Microorganisms 2025, 13, 1457

https://doi.org/10.3390 /microorganisms13071457


https://doi.org/10.3390/microorganisms13071457
https://doi.org/10.3390/microorganisms13071457
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-7035-3333
https://orcid.org/0000-0002-5584-8637
https://orcid.org/0009-0009-0654-2322
https://orcid.org/0000-0003-4646-038X
https://doi.org/10.3390/microorganisms13071457
https://www.mdpi.com/article/10.3390/microorganisms13071457?type=check_update&version=1

Microorganisms 2025, 13, 1457

2 of 22

microorganisms beneficially affected host/human health. The probiotics market is expected
to reach USD 84.85 billion in 2025 and USD 121.99 billion by 2030, with a compound annual
growth rate (CAGR) of 7.53% during the forecast period (2025-2030) [1]. Several studies
demonstrate that probiotic consumption has health benefits for the host and that each
probiotic strain has specific properties that can alleviate diabetes mellitus and irritable
bowel syndrome, reducing the risk or duration of upper respiratory tract infections, among
others. Overall, the probiotic market is segmented into probiotic foods, probiotic drinks,
dietary supplements, and animal feeds. Of these, the one with the greatest consumer
acceptance is the dietary supplements, such as capsules, tablets, gummies, chewables, and
powdered supplements [1].

Probiotics have been defined as “Live microorganisms which, when administered
in adequate amounts, confer a health benefit on the host” [2]. Therefore, probiotics are
non-pathogenic microorganisms, where Bifidobacterium and Lactobacillus genera are the
most studied and used in the food, pharmaceutical, and cosmetic areas. The beneficial
effects of bifidobacterial consumption on human health have been mainly associated with
the prevention and treatment of gastrointestinal disorders (intestinal infections and can-
cer) [3]. Furthermore, they have neuroprotective effects that may delay the progression of
Alzheimer’s disease and Parkinson’s disease [4], help in the prevention and treatment of de-
pression [5], and improve motor symptoms and related digestive complications in patients
with Parkinson’s disease [6]. The presence of B. infantis in the gastrointestinal tract of infants
has been linked to accelerated maturation of the immune system, modulation of immune
responses to suppress inflammation, and improved gastrointestinal barrier function [7]. On
the other hand, B. longum 1714 consumption improves sleep quality and social functioning
and increases energy/vitality because this strain modulates neural activity that correlates
with improved vitality /reduced mental fatigue [8]. Lactiplantibacillus plantarum, known
previously as Lactobacillus plantarum [9], promotes balance and improves host intestinal
microbiota [10,11], improving mood, synaptic ability, depression, and cognitive ability.
It has also been used to treat chronic and cardiovascular diseases such as Alzheimer’s,
Parkinson’s, and others [12]. On the other hand, Lacticaseibacillus (synonym: Lactobacil-
lus) rhamnosus exerts beneficial effects on the composition of the human gastrointestinal
microbial community and the immune system [13].

Cell viability of both genera, Bifidobacterium and Lactobacillus, is affected by pH, pro-
cessing and storage temperatures, salt and oxygen concentration. Foods or supplements
should contain at least 67 Log CFU/mL or Log CFU/g at the time of consumption [14],
a concentration that enables probiotics to survive gastrointestinal transit and reach the
small intestine in sufficient quantities to exert the expected effects. In this context, mi-
croencapsulation can protect probiotics from adverse conditions, reducing loss of viability
and maintaining their metabolic activity. Spray-drying and freeze-drying are the most
used drying techniques for microencapsulation. Freeze-drying is a conventional method
characterized by low production yields and long drying times. In contrast, spray-drying is
easily scalable, offers high production rates, and can be up to ten times more cost-effective
than freeze-drying [15]. Although spray-drying has several advantages, high drying tem-
peratures can affect the viability of probiotics due to damage to the cell membrane. One
option to reduce thermal damage is through the choice of an appropriate coating or wall
material. Several coating materials are available for probiotics microencapsulation, such
as inulin, maltodextrin, whey protein, flaxseed mucilage (FM), chia seed mucilage (CM),
chitosan, prebiotics, and others. CM, FM, and inulin were used as a coating material to
evaluate the possibility of increasing Lactobacillus casei var. rhamnosus survival during
spray-drying. The conditions that maximized L. rhamnosus survival (90%) predicted by a
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face-centered central composite design were maltodextrin (14.4%, w/v) supplemented with
CM (0.6%, w/v) and an inlet air temperature of 90 °C [16].

The demand for natural, safe, sustainable, and biodegradable products that not only
provide nutritional value but also offer technological functionalities—such as structuring,
texturizing, and stabilizing—is steadily increasing. In this context, mucilages have emerged
as a promising alternative due to their properties as thickening, emulsifying, and gelling
agents. Additionally, they are associated with various health benefits, including the mod-
ulation of postprandial glycemia and the regulation of the intestinal microbiota, among
others [17-19].

Today, Chia (Salvia hispanica L.) seed is of interest due to its nutritional properties and
beneficial effect on human health. Chia seeds exude a gel or mucilage in the presence of
water, which represents about 6% of chia seeds, composed mainly of monosaccharides
(85%) [20]. It also contains planteose, a galactosyl-sucrose oligosaccharide, a prebiotics
component that stimulates the growth of beneficial bacteria and prevents the growth of
pathogenic bacteria in the gastrointestinal tract [21]. CM can reduce the glycemic index of
foods and regulate satiety [17,22,23]. Furthermore, it exhibits functional characteristics such
as water-absorption capacity, emulsifying and foaming properties [18], and is photostable
after 2 h under UV light [24].

Flaxseed or linseed (Linum usitatissimun L.) is a functional food ingredient due to its
human health benefits. Like chia seed, flaxseed exudes a gel when in contact with water,
which can represent about 6% of the seed [25]. FM is a heterogeneous polysaccharide
containing two types of polysaccharides: an acidic pectic-like material and neutral ara-
binoxylan [26]. Acid polysaccharides present rhamnose, an indigestible oligosaccharide,
considered a prebiotic that can improve probiotic viability [19]. The soluble fiber from
FM delays gastric emptying improves glycemic control, and protects the mucosa of the
gastrointestinal tract. It also lowers fasting blood sugar levels and total cholesterol levels,
especially low-density lipoprotein cholesterol in type 2 diabetics [19]. FM is of interest to
the food, pharmaceutical, and cosmetic industries because it can be used as a thickening,
emulsifying, and mucoadhesive agent and drug release retardant [27].

Traditionally, probiotic microencapsulation with sodium alginate is prepared by ex-
truding or spraying a sodium alginate solution with probiotics into a calcium chloride
solution under constant and homogeneous agitation to finally preserve the capsules in a
moist medium or dry. This method is difficult to scale up, and the particle size (>300 um)
limits its application [28]. In contrast, spray-drying is a continuous, single-step, scalable,
reproducible process that generates a low moisture product and 1-60 pm particle size that
facilitates its incorporation into food, cosmetics, and pharmaceutical products [29,30]. A
new method has been proposed to produce cross-linked alginate microcapsules by spray-
drying. This method involves feeding a sodium alginate solution containing an insoluble
calcium salt, an organic acid, and a volatile base into the spray dryer. After the fluid is
atomized into droplets by the nozzle, the base evaporates because of the hot air stream, re-
sulting in acidification of the droplets, which solubilizes the calcium salt and cross-links the
alginate in one step [31]. Several studies have shown that probiotics microencapsulation by
spray-drying produces powders with high viability after processing. However, no studies
to date have evaluated the probiotic viability after spray-drying microencapsulation in
cross-linked alginate matrices supplemented with CM or FM.

The aim of this study was to determine the effect of a coating material composed of a
cross-linked alginate matrix supplemented with CM or FM on the viability of B. infantis,
B. longum, L. plantarum, and L. rhamnosus after spray-drying and during storage. In addition,
the stability of the powders during storage was evaluated.
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2. Materials and Methods
2.1. Media and Cultivation Conditions

Bifidobacterium infantis ATCC15679, Bifidobacterium longum ATCC15707, Lactobacillus
rhamnosus ATCC53103, and Lactobacillus plantarum ATCC8014 (American Type Culture
Collection, Rockville, MD, USA) were grown on MRS broth (BD, Baltimore, MD, USA) [32].
Each probiotic strain was sub-cultured thrice with 5% (v/v) inoculum in 5 mL of MRS
broth and incubated (37 °C, 12 h). For strains of the Bifidobacterium genus, MRS broth was
combined with L-cysteine-HCl (0.05%, w/v) and incubated under anaerobic conditions with
GasPaK™ EZ (anaerobiosis generator system) (BD, Baltimore, MD, USA).

For the encapsulation assays, MRS (200 mL) was inoculated with 5% (v/v) of the grown
pre-culture and incubated (37 °C, 12 h). Then, the probiotic biomass was recuperated by
centrifugation (6000x g, 4 °C, 15 min); the probiotic biomass was washed twice with
sterile distilled water and centrifuged as described above. Finally, probiotic biomass was
re-suspended in sterile distilled water (2 mL) and added to the encapsulating solution.

2.2. Extraction of the Chia Seed and Flaxseed Mucilage

Chia seed and flaxseed were purchased from the local market. CM was extracted
according to Bustamante et al. [16]. Briefly, seeds were extracted with hot distilled water
(80 °C, pH 5.0, 2 h) at a 1:40 (w/v) ratio. The extraction cycle was repeated twice.

FM was extracted according to Bustamante et al. [33]. Seeds were extracted with hot
distilled water (90-95 °C, pH 5.0, 30 min) at a 1:10 (w/v) ratio. The extraction cycle was
repeated three times.

Both CM and FM extracts were separated from the seeds and spread on trays to
be dried in an air convection oven (60 °C), milled, sieved (0.425 mm mesh), and stored
(=20 °C) until use.

2.3. Control Encapsulating Solution Preparation

The control encapsulation solution was formulated in 120 mL distilled water: 100 mL
were prepared with low viscosity sodium alginate (4.0%, w/v) (Sigma-Aldrich, St. Louis,
MO, USA) and succinic acid (2.0%, w/v) (Merck, Darmstadt, Germany). After sterilization
(121 °C, 15 min), pH was adjusted to 5.6 £ 0.2 with NH4OH (Sigma-Aldrich, St. Luis,
MO, USA). Then, to activate the calcium alginate cross-linking, a sterile and homogeneous
suspension of CaHPOy (20 mL; 0.5%, w/v) (Sigma-Aldrich, St. Luis, MO, USA) was added.
The mixture was kept stirring for 30 min a room temperature. Then, the re-suspended
probiotic biomass was added to form the control encapsulation solution. Finally, the
bacterial suspensions with total viable counts between 10% and 10° CFU/mL were kept
under constant stirring until spray-drying.

Viscosity. The viscosity of control encapsulation solutions was measured by a Digital
Viscometer VISCO™—895 Package B (Atago Co., Ltd., Tokyo, Japan). The sample volume
of 16 mL was kept at 21 °C.

2.4. Effect of CM or EM on Probiotic Survival After Spray-Drying and Viability During Storage

Effects of CM or FM were evaluated on probiotics (B. infantis, B. longum, L. plantarum,
and L. rhamnosus) survival after spray-drying with an air inlet temperature at 130 °C and
their viability during storage at 4, 25, and 37 °C for 90 days. CM or FM (0.4%, w/v) was
mixed with sodium alginate (4.0%, w/v) and succinic acid (2.0%, w/v) in distilled water
(100 mL) and sterilized (121 °C, 15 min). The pH was then adjusted to 5.6 & 0.2 with
NH4OH. A sterile, homogeneous suspension of CaHPO, (20 mL; 0.5% w/v) was then
added. The mixture was stirred for 30 min at room temperature. Then, the re-suspended
probiotic biomass was added to form the encapsulation solution. Finally, the bacterial
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suspensions with total viable counts similar to item 2.3 were kept under constant stirring
until spray-drying. The composition of the encapsulation solution is shown in Table 1.

Table 1. Composition of formulations used for the encapsulation of probiotics by spray-drying
in cross-linked alginate matrices supplemented with chia seed mucilage (CM) and flaxseed
mucilage (FM).

Encapsulation Solution

Composition

Control M FM
Sodium alginate (4% w/v) X X X
Succinic acid (2%, w/v) X X X
NH4OH X X X
CaHPOy (0.5%, w/v) X X X
Chia seed mucilage (0.4%, w/v) X
Flaxseed mucilage (0.4%, w/v) X

Viscosity. The viscosity of encapsulation solutions supplemented with CM or FM was
measured as previously described in item 2.3.

2.5. Spray-Drying

Drying assays were performed in a laboratory spray dryer unit (Btichi B290, Flawil,
Switzerland). The process parameters were set as follows: inlet temperature = 130 °C; feed
flow rate = 6 mL/min; air flow rate = 45 m3 /h; outlet temperature = 72-75 °C. A one-fluid
nozzle was used with a 0.7 mm orifice diameter. The probiotic microcapsules obtained
by spray-drying were stored in hermetically sealed glass and stored at 4 °C until analysis.
Each drying assay was carried out in triplicate. Survival after spray-drying and viability
during storage of encapsulated bacteria was evaluated.

2.6. Analysis
2.6.1. Physicochemical Characteristics of CM and FM

Chemical composition. The chemical composition of CM and FM was determined
by AOAC methods [34]. The composition of monosaccharides and uronic acids was
determined by high-performance liquid chromatography (HPLC), according to Sciarini
et al. [35], with some modifications. Briefly, 100 mg of sample (CM or FM) was dissolved
in 10 mL of sulfuric acid (1 M) and stirred at 95 °C for 24 h in a sealed tube to hydrolyze
polysaccharide. The hydrolyzed suspension was cooled to ambient temperature and
neutralized with NaOH (1 M). The volume of the suspension was adjusted to 50 mL with
mili-Q water, the supernatant was recovered by centrifugation (10,000 x ¢ for 15 min), and
the presence of particles was removed by filtration (0.22 um). Then, samples were analyzed
by HPLC using a Bio-Rad Animex HPX-42A column with an RI detector in an Alliance
Waters €2695 Separation Module (Waters Inc., Milford, MA, USA). The sample (20 L) was
eluted with deionized water at 0.5 mL min 1.

Bulk density. The bulk density was measured according to Joshi et al. [36] with some
modifications. Briefly, 2 g of CM or FM was transferred to a 10 mL graduated measuring
cylinder with a lid. The cylinder was mounted on a shaker and agitated for 10 min.
The weight and volume of the powder were recorded, and bulk density was expressed
as kg/m3.

Color. The color of the CM or FM powder was measured using glass cuvettes and a
spectrophotometer (NS800, 3NH Technology Co., Ltd., Guangzhou, China) set to operate
with D65 lightning and a 10° observation angle. Color values were expressed as L* (black
to white), a* (red to green), and b* (yellow to blue) parameters in the CIE system. The
spectrophotometer was calibrated with black and white tiles before analysis, with the white
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calibration standard (L* = 96.62, a* = —0.09, b* = 1.09) as reference. The total color change
(AE) was calculated from

AE* = [(L*sample 1~ L*sample 2)2 + (a*sample 1= a*sample 2)2 + (b*sample 1= b*sample 2)2] (1/2) 1)

FTIR-ATR spectroscopy. The IR spectra of CM and FM were obtained using Fourier
Transform Infrared (FTIR) spectroscopy using the Jasco FTIR 4600 spectrophotometer (Jasco
Corporation, Tokyo, Japan), equipped with an attenuated total reflection (ATR) accessory
using a ZnSe crystal at a 45° incidence angle in a horizontal orientation. Spectra were
collected in the range of 600 and 4500 cm™1 at a scan rate of 20 scans/s, with 4 cm™!

resolution at 25 °C.

2.6.2. Enumeration of Viable Probiotics

Survival after drying and viability during storage of probiotics were determined by
the standard plate count method. Briefly, 0.1 g of powder was diluted in 4.9 mL of sterile
buffered peptone water (0.1%, w/v); the suspension was kept at 4 °C for 30 min to release
the probiotics. The appropriate dilution of the probiotic suspension was seeded on MRS
agar and incubated at 37 °C for 48 h. MRS agar supplemented with L-cysteine-HCI (0.05%,
w/v) was applied for B. infantis and B. longum and incubated under anaerobic conditions.

Probiotic viability during storage was expressed as colony-forming units per gram
(CFU/g) of dry powder, and the results were expressed as Log CFU/g. The survival
percent after drying was calculated by Simpson et al. [37]:

Survival (%) = < % ) x 100 ()

where N is Log CFU/g of the spray-dried powder immediately after drying, and Ny is
Log CFU/g of dry matter in the suspension fed to the dryer. The assay was carried out
in triplicate.

2.6.3. Storage of Spray-Dried Probiotics Powder

The dry powders were stored in sealed bottles at 4, 25, and 37 °C. Probiotic viability
was determined every 7 days until 28 days were completed, and then every 15 days until

90 days.
The specific degradation rate (k, day—!) of probiotics microcapsules was calculated as
a first-order reaction from
Log Do
k= s (%) 3)

t
where N is the probiotic count in a particular storage period (CFU/g), Ny is the probiotic
count at the beginning of storage (CFU/g), and ¢ is the storage time (days).
The activation energy (Ea) was determined from the Arrhenius equation

Ea 1

2303R T @)

Logk = Logky —

where k specific rate of degradation (day!), Ea (J - mol™!), R is the gas constant
(8.321] - mol~! - K1), and T is the absolute temperature (K) [38].

2.6.4. Physical Properties of Probiotic Microcapsules

Moisture content. The residual moisture content of probiotic microcapsules was
determined by oven drying at 105 °C until a constant weight was achieved and was
repeated in duplicate.
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Morphology. The morphology of probiotic microcapsules was observed by scanning
electron microscope (SEM) SU3500 (JEOL Hitachi, Tokyo, Japan) at 20 KV, 30 Pa vacuum,
and Backscattered Electron signal. The sample was dispersed over the sample holder
equipped with a double-sided carbon type.

Particle size. The particle size of probiotic microcapsules was determined by laser
diffraction (Particle size analyzer Shimadzu model SALAD-3101, Tokyo, Japan) at 25 °C
using isopropyl alcohol as the continuous phase.

2.6.5. Statistical Analysis

Analysis of variance (ANOVA) was applied to determine the significance of effects
(p < 0.05). Differences between means were detected by the general linear model procedure,
using Tukey’s test one-way analysis of variance (SPSS® version 23).

3. Results
3.1. Physicochemical Characteristics of CM and FM

Chemical composition. The mucilage extraction yield was 7.90 & 1.46 and 9.85 & 0.86
for CM and FM, respectively (Table 2). The main component in CM and FM was the non-
nitrogen extract (i.e., sugars, starch, and polymeric substance, excluding fiber), reaching
55.28% and 64.73%, respectively. CM samples have higher protein (13.14%), lipid (3.36%),
and ash (12.82%) contents than FM samples. Monosaccharides of CM consisted mainly
of glucose and rhamnose with ~2:1 glucose-to-rhamnose ratio. Moreover, glucuronic and
galacturonic acids were not detected in CM samples, contrary to previous reports [39].
FM monosaccharides consisted mainly of glucose (37.50 = 1.06%) and glucuronic acid
(13.76 £ 1.08%), and lower concentrations of arabinose, galacturonic acid, mannose, and
rhamnose. In this study, xylose, considered a neutral sugar, was not detected.

Table 2. Chemical composition of chia seed (CM) and flaxseed mucilage (FM).

Constituents Unit CM M
Yield @ % 790 + 1.46 9.85 4+ 0.86
Moisture % 11.29 9.23
Protein % 13.14 12.12
Fat % 3.36 0.62
Crude fiber % 411 n.d.
Ash % 12.82 11.85
Non-nitrogenous extract % 55.28 66.18
Monosaccharides P
Arabinose % n.d. 1.54 £+ 0.08
Fucose % n.d. n.d.
Galacturonic acid % n.d. 2.28 +£0.28
Glucose % 36.80 + 1.83 37.50 + 1.06
Glucuronic acid % n.d. 13.76 +1.08
Mannose % n.d. 2.79 £ 0.15
Rhamnose % 17.94 4+ 0.85 4.62 +0.41
Xylose % n.d. n.d.
Energy Kcal/100 g 303.92 318.78
Bulk density © kg/ m> 429.89 £+ 7.96 686.28 £+ 14.11
Color P
L* 48.15 + 0.53 51.08 + 0.62
A* 448 +0.22 4.65 + 0.33
B* 17.76 4+ 0.57 17.43 4+ 0.50
Viscosity encapsulating
solution added with 0.4% mPa-s 9.91 +0.30 6.09 +0.32
CMorFM €

n.d. = not determined. : Data are average + standard deviation of ten analysis. *: Data are average + standard
deviation of three samples. : Data are average =+ standard deviation of four samples.
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Viscosity. The viscosity of the control encapsulation solution was affected by the
presence of CM or FM (Table 2). The viscosity of the CM-supplemented encapsulation
solution was significantly (p < 0.05) higher (62%) than the control encapsulation solution
(3.75 £ 0.14 mPa - s) and 39% higher than the FM-supplemented solution. Barbary et al. [40]
and Timilsena et al. [39], evaluating aqueous solution (0.5%, w/v) of FM and CM, reported
viscosities of 101.5 mPa - s and 1835.2 mPa - s, respectively. Therefore, the viscosities of the
CM- and FM-supplemented encapsulation solution in this study decreased by 99.5% and
94.0%, respectively, compared to the corresponding 0.5% aqueous solutions of CM or FM.
Bustamante et al. [33] reported that a 0.2% (w/v) FM encapsulation solution with 15% (w/v)
maltodextrin had a viscosity of 7.87 £ 0.03 mPa - s, 22.6% higher than the FM-supplemented
encapsulation solution used in the present study.

Bulk density. The bulk density of FM (686.28 + 14.11 kg m~3) powder was higher
(~37%) than that of CM powder (429.89 £ 7.96 kg m~3) (Table 2); the difference can be
related to the higher CM moisture content.

Color. To the human eye, mucilage produced and released by chia seeds was beige,
while the FM color was light brown. The color measurement (Table 2) showed that CM
and FM are neutral powders with a slight tendency at lightness for FM (L* = 51.08). Both
mucilage powders show a tendency to red and yellow hues for the values obtained from a*
and b*, respectively.

FTIR-ATR spectroscopy. The FTIR-ATR was used to characterize the presence of
specific functional groups in CM and FM—both extracted from seeds purchased in the
local market—and to compare them with the spectral profile of sodium alginate. The
overall FTIR-ATR spectra of CM and FM (Figure 1) show similar characteristics to those
found in polymeric materials such as gums and mucilages, in the range from 3500 cm ™!
t0 900 cm ! [41]. CM exhibits a broad band between 3500 and 3100 cm 1, corresponding
to hydroxyl (-OH) stretching, which is characteristic of carbohydrate structure. This band
is slightly detected in FM samples. Both CM and FM show peaks between 3100 and
2800 cm ™!, attributed to the symmetric and asymmetric stretching and bending vibrations
of methyl -C-H bond [42]. The peak observed between 1800 and 1700 cm ! results from the
stretching vibration of the carbonyl group (C=0), while the peak at 1600 cm~! peak is due
to NH group vibrations from secondary protein structures [43,44]. The peak at 1400 cm ! is
associated with the symmetrical stretching of carboxyl groups (-COO") of uronic acids [39].
The presence of uronic acids is characteristic of seed mucilage and provides an anionic
character to the molecule [45]. The peak between 1100 and 1000 cm ! is associated with
C-O-C stretching of 1, 4 glycosidic bonds and the elongation of C-O groups [41]. Finally,
the peaks between 1400 cm~! and 900 cm~! indicate the presence of uronic acids and
xylan-rich pectin polysaccharides [46].

A Mo
WA Srngeb i, N

A

T (%)

(b)

T f — T T f f T
4500 4000 3500 3000 2500 2000 1500 1000 500

Wavenumber [cm™]

Figure 1. FTIR spectra of (a) commercial sodium alginate, (b) CM, and (c) FM.
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On the other hand, the alginate sample presented a broad band between 3500 and
3100 cm ™! corresponding to hydroxyl (-OH) stretching [42,47], and the peak between 3100
and 2800 cm ! represented CH, stretching [48]. The peaks observed at 1600 and 1400 cm ™!
correspond to asymmetric and symmetric stretching of the carboxyl group (-COO™) of
uronic acid, respectively [49,50]. The peak between 1100 and 1000 cm ™! is attributed to the
~C-O-C glycosidic linkage [49]. The peaks between 900 and 800 cm ! represent stretching
vibrations of C-H bonds [47], with the peak at 820 cm ! being associated with the valence
vibrations related to D-mannuronic acid [50].

3.2. Effect of CM or FM on Probiotic Survival After Spray-Drying and Viability During Storage

Recently, a new process has been developed in which particle formation, alginate
cross-linking, and drying are carried out in a single step. We evaluated this new method
and its effect on the survival of four probiotic strains after spray-drying and viability
during storage. Then, the control encapsulation solution was supplemented with CM
or FM prior to evaluating the probiotics’ survival and viability after spray-drying and
during storage.

Results of probiotics survival (Table 3) showed high survival in the control encap-
sulation solution (>96%) as well as in those supplemented with CM or FM (86.7-98.7%).
Supplementation with CM or FM significantly (p < 0.05) enhanced the survival of L. plan-
tarum, B. infantis, and B. longum compared to the survival of L. rhamnosus (Table 3). In
contrast, the presence of FM significantly (p < 0.05) reduced L. rhamnosus survival. Mean-
while, the control encapsulation solution significantly (p < 0.05) enhanced the survival of
L. plantarum compared to B. longum.

Table 3. Effect of chia seed (CM) or flaxseed (FM) mucilage on probiotic survival after encapsulation
by spray-drying at 130 °C.

Survival ™ (%)

Probiotic Strain

CM M Control
L. plantarum 98.66 £ 0.19a A 95.53 +£0.50b A 98.43 £047a A
L. rhamnosus 92.06 +2.91 ab B 86.65 +3.19b B 97.50 + 0.69 a AB
B. infantis 96.61 £0.53ab A 94.03 £287b A 98.12 £ 0.26 a AB
B. longum 98.45 £ 0.37a A 98.39 £ 0.65a A 96.59 £0.80b B

. Mean values of three replicates. Means in a row followed by different lowercase letters are significantly
different by Tukey’s test at the 5% level. Means in a column followed by different capital letters are significantly
different by Tukey’s test at the 5% level.

Each probiotic presented different survival rates when encapsulated by spray-drying
in three different encapsulation solutions. The results show that L. plantarum had a signifi-
cantly (p < 0.05) higher survival rate in the control and CM-supplemented encapsulation
solutions (98%). Meanwhile, B. longum survival was significantly enhanced (p < 0.05) when
the encapsulation solution was CM or FM-supplemented.

The viability of the four probiotic strains was evaluated during storage at 4 and
25 °C for 90 days after their encapsulation in a cross-linked alginate matrix with CM or
FM. Furthermore, to simulate more demanding temperature conditions, which can occur
in warm regions or during storage or transportation under uncontrolled conditions, the
viability of the four probiotic strains was evaluated during storage at 37 °C for 90 days after
the encapsulation process. At the beginning of storage, the viable probiotic count ranged
between 11.77 £ 0.11 and 9.27 & 0.04 Log CFU /g dry powder (Table 4).
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Table 4. Effect of the composition of encapsulation solution on probiotics viability during storage at
4,25, and 37 °C during 1 and 90 days after spray-drying.

Viability
(Log CFU/g Powder)
Soluble Fiber t Day 1 Day 90
4°C 4°C 25°C 37°C
L. plantarum
M 10.45+£0.08d 0827 £0.10 f 4.87 +0.30 bc 1.69 £0.00 ¢
M 10.24 +0.01d 08.95+0.00e 340+ 0.34e 1.69 £ 0.00 ¢
Control 10.89 £ 0.01 ¢ 10.50 & 0.22 abc 3.45 £0.30 de 1.69 £ 0.00 ¢
L. rhamnosus

CM 10.44 +0.05d 09.02 £ 0.00e 1.69 £ 0.01 f 1.69 £ 0.00 ¢
M 09.27 £0.04 e 06.99 £0.03 g 219 £0.50 f 1.69 £ 0.00 ¢
Control 10.11 £0.07d 09.29 £ 0.27 de 1.69 £ 0.00 f 1.69 £0.00 ¢

B. infantis
CM 1133 +£0.30b 09.64 £041d 4.25 £ 0.21 cde 1.69 £ 0.00 ¢
M 11.19 £ 0.09 bc 10.21 £0.02 ¢ 549+ 0.30b 1.69 £0.00 ¢
Control 1177 £ 0.11a 10.97 £ 0.19 ab 745+0.32a 2.53 £0.56 b

B. longum
M 10.89 £ 0.01 bc 10.32 £0.02 ¢ 491 +0.12bc 400+024a
FM 10.94 £ 0.05 bc 10.47 £+ 0.19 be 6.76 £0.38 a 4.02+013a
Control 11.07 4 0.04 bc 1099 £0.01a 432 £0.27 cd 2.79 £0.09b

* CM: Chia seed mucilage, FM: Flaxseed mucilage. Different letters in the same column indicate significant
differences by Tukey’s one-way analysis of variance (p < 0.05).

L. plantarum viability (Figure 2) decreased linearly during refrigerated storage (4 °C).
The viability reduction rate (based on the linear slope) was highest for L. plantarum encap-
sulated with CM, intermediate for FM, and lowest for the control (without CM or FM),
with slopes of 0.0259, 0.0133, and 0.0036, respectively. L. plantarum encapsulated with CM
also showed a linear decrease in viability during ambient storage (25 °C) but at a lower
rate (0.0631) than control (0.087). L. rhamnosus viability (Figure 3) also decreased linearly
during refrigerated storage (4 °C). The viability reduction rate (based on the linear slope)
was highest for L. rhamnosus encapsulated with FM, intermediate for CM, and lowest for
the control (without CM or FM), with slopes of 0.0271, 0.0141, and 0.0082 slope, respec-
tively. L. rhamnosus encapsulated with CM also showed a linear decrease in viability during
ambient storage (25 °C) but at a higher rate (0.1015; ~7-fold) than during storage at 4 °C.
As shown in Figure 4, B. infantis viability decreased linearly during refrigerated storage
(4 °C). The viability reduction rate (based on the linear slope) was highest for B. infantis
encapsulated with CM, intermediate for FM, and lowest for control (without CM or FM),
with slopes of 0.0166, 0.0093, and 0.0086, respectively. A similar trend was observed during
ambient storage (25 °C), but at a higher rate—4.8-, 7.2- and 6.1-fold increases for CM, FM,
and control, respectively. The corresponding slopes were 0.0801, 0.0669, and 0.0526 for CM,
FM and control, respectively. In Figure 5, B. longum viability also decreased linearly during
refrigerated storage (4 °C). The viability reduction rate (based on the linear slope) was
highest for B. longum encapsulated with FM, intermediate for CM, and lowest for control
(without CM or FM) with slopes of 0.0086, 0.0071, and 0.003 slope, respectively. The rate of
B. longum viability reduction was also linear during ambient storage (25 °C) but followed
a different order, with the highest reduction rate for CM, followed by control and FM,
with slopes of 0.066, 0.655, and 0.0525, respectively. Interestingly, B. longum viability in the
control also decreased linearly during storage at 37 °C, with a slope of 0.0908, a ~30-fold
reduction rate compared to storage at 4 °C.
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Figure 2. Viability during storage of L. plantarum encapsulated by spray-drying in control encapsula-
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(o) 4°C, () 25 °C and () 37 °C.
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Figure 5. Viability during storage of B. longum encapsulated by spray-drying in control encapsulation
solution added with (a) FM (0.4%, w/v), (b) CM (0.4%, w/v), (¢) without CM or FM; for 90 days at
(e)4°C, (¢) 25 °C and () 37 °C.

As shown in Figures 2-5 and Table 4, storage temperature was an important factor
affecting the viability of spray-dried probiotics. During storage at 4 °C, viability decreased
slightly, and after 90 days, the viable probiotic count in the microcapsules ranged between
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6.99 and 10.99 Log CFU/g dry powder. This represented a viability loss of 2.28% and 0.08%
for L. rhamnosus encapsulated with FM and B. longum encapsulated in the control solution,
respectively. In addition, B. longum viability was significantly (p < 0.05) higher when
encapsulated in the control solution. Table 4 also shows that the recorded viability values
were higher than the recommended threshold (6 Log CFU/g of product) for probiotics to
confer health benefits for consumers [51]. The viable probiotic count during storage at 25 °C
showed a greater reduction compared to storage at 4 °C. At 25 °C, L. rhamnosus was the
most affected strain, with viable cell counts below 6 log CFU/g of dry powder after 45 days
of storage and dropping to less than 2.2 log CFU/g after 90 days (Figure 3). The viability of
B. infantis encapsulated in the control solution and B. longum encapsulated in the presence
of FM was significantly (p < 0.05) higher after 90 days of storage at 25 °C, reaching values
greater than 6 Log CFU/g of product. The number of viable bacteria decreased considerably
at the high storage temperature (37 °C), showing a greater reduction than at 25 °C for all
assays (Figures 2-5). After 21 days of storage, L. plantarum, L. rhamnosus, and B. infantis
were the most affected strains, presenting viable counts below 6 Log CFU/g dry powder
(Figures 2—4). In contrast, B. longum counts remained above 6.81 Log CFU /g dry powder
for all encapsulation solutions (Figure 5). After three months of storage, viable cell counts
of B. longum were significantly (p < 0.05) higher, reaching 4.02 and 4.00 Log CFU /g dry
powder when encapsulated in the presence of FM and CM, respectively. However, these
values are still below the recommended levels for providing health benefits to consumers.

3.3. Survival Rates of Probiotic Strains During Storage

The viability of the probiotic microcapsules was monitored during 90 days of storage.
In addition, the dependence of probiotic strain survival rates on storage temperature (4,
25, and 37 °C) was determined (Figure 6). The rate constants for probiotic inactivation
during storage were calculated according to a first-order kinetics model. The first-order
model showed a good fit to the data (R? = 0.807-0.999) to the data, particularly at storage
temperatures of 25 and 37 °C.

The control encapsulation solution increased the storage stability of dehydrated probi-
otic strains (L. plantarum, L. rhamnosus, B. infantis, and B. longum) compared to the encapsu-
lation solution supplemented with CM or FM at 4 °C. The control encapsulation solution
was effective at the lower temperature (4 °C), showing lower k values, between 0.003 day !
for B. longum to 0.010 day~! for B. infantis (Figure 6). Moreover, the FM-supplemented
encapsulation solution also provides stability to B. infantis during storage at 4 °C, with a
k value of 0.01 day~!. B. longum, encapsulated in the control solution as well as in those
supplemented with CM and FM, was the least susceptible to viability loss during storage
at 4°C, with k values ranging from 0.003 day ! to 0.010 day ! (Figure 6). The CM-based
L. plantarum and FM-based L. rhamnosus microcapsules were the most susceptible to storage-
related viability loss, showing 3-fold and 10-fold reductions in survival rates at 25 °C and
37 °C, respectively, compared to 4 °C. At 37 °C, probiotic viability loss was significant,
and the composition of the encapsulation solution had a major effect on viability. The
activation energies (Ea) of the probiotics (Table 5) were calculated by fitting the inactivation
rate constant data to the Arrhenius equation. L. plantarum, L. rhamnosus, and B. longum
powders based on the control encapsulation solution were more susceptible to thermal
damage, with Ea values of 91.80, 92.98, and 80.21 kJ/mol K, respectively. In contrast, the
lower Ea values observed for CM-based L. plantarum and B. infantis (50.00 and 60.00 k] /mol
K) and FM-based L. rhamnosus and B. longum (47.41 and 66.00 k] /mol K), indicate greater
thermal stability, which can result in improved viability under temperature variations.
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Figure 6. Survival rates of microencapsulated probiotic strains as a function of the encapsula-
tion solution and storage temperature. (a—c) L. plantarum, (d—£f) L. rhamnosus, (g—i) B. infantis and
(j-1) B. longum. Encapsulation solution supplemented with (a,d,g,;j) FM, (b,eh k) CM, and
(c,f,1,1) control. Storage temperature: (o) 4 °C, () 25 °C and (e) 37 °C.
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Table 5. Effect of the wall composition on activation energy (Ea) of the probiotic strain.

. . Spray-Drying Ea >
Probiotic Strain Medium t (kJ/mol K) R

L. plantarum C/CM 50.02 0.924
C/FM 69.13 0.991
C 91.80 0.994
L. rhamnosus C/CM 76.31 0.977
C/FM 47.41 0.994
C 92.98 0.997
B. infantis C/CM 60.05 0.977
C/FM 75.60 0.977
C 66.153 0.978
B. longum C/CM 66.19 0.999
C/FM 66.00 0.988
C 80.21 0.993

*: CM = Chia seed mucilage, FM = Flaxseed mucilage, C = Control encapsulation solution. Composition control
encapsulation solution: Sodium alginate, succinic acid, CaHPOy.

3.4. Physical Properties of Dry Probiotic Microcapsules

Moisture content: Spray-dried powders showed high residual moisture contents
(12.7-16.9%) (Table 6), which were higher than those previously reported. Tan et al. [52] re-
ported ~8% moisture content for encapsulation solutions formulated with sodium alginate
only (2%, w/v) and for formulations with CaCl, (10 mM) and sodium alginate (2%, w/v),
both dried at an inlet air temperature of 120 °C. Strobel et al. [31] reported ~7% moisture
content for an encapsulation solution with CaHPO; (0.1 or 0.5%, w/w) and sodium alginate
(2%, w/w), using an inlet air temperature of 130 °C.

Table 6. Residual moisture content and particle size of probiotic microcapsules after encapsulation by
spray-drying at 130 °C.

Moisture t (%) Particle Size 't (um)
Probiotic Strain
CM M Control CM M Control
L. plantarum 16.54 4+ 0.48 16.91 £ 0.67 16.25 4+ 0.27 8.50 = 0.53 b 10.59 £+ 0.66 a 822+ 1.00b
L. rhamnosus 15.03 4+ 0.72 16.70 £ 0.85 15.33 £ 0.71 8.50 = 0.53 b 11.82 +£0.74 a 9.87 4+ 1.08 ab
B. infantis 14.96 + 0.68 14.03 +0.32 13.76 + 0.61 7.07 £ 0.00 b 11.40 £ 0.74 a 953 +1.25a
B. longum 13.25 + 0.35 12.66 £+ 0.31 14.08 £+ 0.51 8.50 = 0.53b 10.21 + 0.66 a 9.49 4+ 0.59 ab

CM = Chia seed mucilage, FM = Flaxseed mucilage, CM: 0.4%, w/v, FM: 0.4%, w/v. . Mean values of four
replicates. ™*: Mean values of three replicates. Means in a row followed by different lowercase letters are
significantly different by Tukey’s test at the 5% level.

Morphology: Figure 7 shows the scanning electron micrographs of microcapsules
containing L. rhamnosus ATCC 53103, encapsulated in the presence of CM (Figure 7a,d), FM
(Figure 7b,e) or in the control encapsulation solution (without CM or FM) (Figure 7c,f), after
1-and 90-days storage at 4 °C. The microcapsules were spherical, with variable diameters,
concavities, and surface deflations without evidence of cracks or fissures.

Particle size: The particle size analysis revealed a monomodal distribution for all as-
says, i.e., for microcapsules containing L. plantarum, L. rhamnosus, B. infantis, and B. longum
encapsulated in the control solution, as well as in the solutions supplemented with CM or
FM, as shown in Figure 7 for L. rhamnosus microcapsules. Furthermore, the microcapsules
were fine powders, with mean particle diameters ranging from 7.1 to 11.8 for the encapsu-
lation solutions supplemented with CM and FM (Table 6), respectively, values within the
typical size range of powders produced from spray-drying (10-50 um) [53]. The presence
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of FM in the encapsulation solution significantly (p < 0.05) affected the particle size by
increasing the diameter compared to CM microcapsules.

-

oum | SU3500 20.0kV.6.8mm x m:a.aouvb 50Pa

@ (@) (6

Figure 7. SEM micrographs of dry microcapsules containing L. rhamnosus ATCC53103 storage at
4 °C after 1 day (a—c), and (d—f) 90 days. Encapsulated cell with sodium alginate, succinic acid, and
CaHPOy (a,d) CM (0.4%, w/v), (b,e) FM (0.4%, w/v), and (c,f) control (0.0% seeds mucilage) dried with
an inlet air temperature of 130 °C.

4. Discussion

In this study, we evaluated the effect of a cross-linked alginate matrix coating material
supplemented with CM or FM on probiotics viability after spray-drying and during storage.
As a first step, the extraction yields of CM and FM were determined, and the results were
consistent with previous reports. However, the extraction yield depended on the seed type
and experimental factors, such as temperature, rotation speed, pH of the extraction liquid,
water-to-seed ratio, ionic strength, extraction method, and time [54,55]. High temperatures
are preferred, since they promote the polysaccharides solubilization in water and therefore
increase the extraction yield [56].

Seed mucilage is a complex polysaccharide containing several sugars in its structure;
the heteropolysaccharide CM consists of D-xylose, D-mannose, L-arabinose, D-glucose,
galacturonic acid, and glucuronic acid [39,57].

FM is a heterogeneous polysaccharide composed of neutral arabinoxylan, consisting
of D-arabinose, D-xylose, and D-galactose, and acidic rhamnogalacturonan, composed of
L-rhamnose, L-fucose, L-galactose, and D-galacturonic acid [26]. Therefore, the differences
detected in other studies in relation to the chemical composition could be due to the variety
and origin of the seed and the variation in the growth conditions [39].

Although viscosity depends on mucilage extraction conditions, seed type, and the
experimental parameters used for its determination, the difference between both encap-
sulation solutions was significant, reaching 94.5%. Timilsena et al. [39] and Kaewmanee
et al. [58] suggest that the viscosity of a mucilage solution depends on the composition
and chemical structure of its polysaccharides. In this study, this difference can also be
attributed to the higher solids content in the encapsulation solution supplemented with
CM, as CM contains higher concentrations of proteins, lipids, crude fiber, and ash than
FM (Table 2). According to Maskan and Gogus [59], this higher viscosity can considerably
restrict the intermolecular motion caused by hydrodynamic forces and interfacial film
formation. Furthermore, the results also show significant differences between the viscosity
of the mucilage solution (0.5%, w/v) and the encapsulation solutions supplemented with FM
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or CM of this study. This difference may be related to the presence of calcium salts, which
promote cross-linking of alginate in the encapsulation solution. The saline solution can lead
to the formation of high molecular weight aggregates, with compact and homogeneous
structures in the mucilage, due to the contraction of the polysaccharide molecules, thereby
lowering viscosity. This effect depends on the type of salt, where viscosity reduction is
more pronounced in the presence of divalent ions (CaCl,) compared to monovalent ions
(NaCl) [60,61].

Color depends on various factors such as the seed color, powder structure, packing
density, severity of the extraction conditions, and the drying process of the mucilage [62].
In our study, the color of the extracted mucilage was influenced by both the seed and
extraction conditions, where the latter required the use of distilled water between 80
and 95 °C. Moreover, extraction processes involving high temperatures and prolonged
exposure times can result in brown mucilage due to enzymatic browning, which affects
polysaccharide properties [63]. According to the color measurements, the total color
difference between the two mucilage (CF and FM) powders was 2.93, indicating noticeable
color differences [64] (AE* values > 2).

Spray-drying is the most studied and widely used industrial technique for encapsulat-
ing probiotics. However, the high processing temperatures and low moisture content of
the final product can cause cell damage and loss of activity, thereby affecting the viability
of these microorganisms. This has led to the study of new processes or modifications of
those currently used to achieve high survival rates and maintain the metabolic activity of
microorganisms. Each encapsulation process must demonstrate microorganisms’ survival
after the process, during storage, and throughout transit in the gastrointestinal tract. In
addition, it must ensure the survival of viable cells (at least 6 Log CFU/g or mL of product)
at the time of consumption so that probiotics can exert their beneficial effects on health.
Our results show high survival values for the four probiotics in the three-encapsulation so-
lutions, suggesting that L. plantarum, L. rhamnosus, B. infantis, and B. longum were thermally
protected from cell inactivation during the spray-drying process. The level of protection
achieved for each probiotic is related to its intrinsic characteristics and to the properties of
the encapsulation solution, such as solids concentration and viscosity, among other factors.
Opverall, probiotics survival was higher when the encapsulation solution was supplemented
with CM, although this difference was not significant in all cases. This condition may be
related to CM’s chemical composition (high concentration of proteins, lipids and crude
fiber) and its high viscosity, providing high cellular protection against thermal damage.

The storage temperature was an important parameter affecting the viability of spray-
dried probiotics. Viable probiotics concentration was maintained under refrigeration
(7-11 Log CFU/g of product) until the end of storage (3 months), demonstrating good
storage stability of the probiotic microcapsules, associated with the greater stability of
the encapsulation solutions at low temperatures. These concentrations correspond with
FAO/WHO [2] recommended levels to achieve a positive effect on consumer health. In
addition, significant (p < 0.05) viability loss occurred at different rates at high temperatures
(25 °Cand 37 °C) for all conditions, except for B. longum microcapsules, which, after 45 days,
presented levels ~6 Log CFU/g of product. Storage temperature can affect probiotics
viability through two mechanisms: increased metabolic activity rate due to increased
temperature and modification of water molecular mobility. It can also be considered that
the greater metabolic activity of the cell involves the production of metabolites, which can
cause cellular inactivation.

L. plantarum and B. infantis encapsulated with FM presented superior stability during
refrigerated storage (4 °C) compared to CM encapsulation. B. longum encapsulated with FM
also showed greater storability than CM encapsulation and control during ambient (25 °C)
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storage based on viability and rate reduction (Figures 2-5). In contrast, CM encapsulation
was more suitable for L. rhamnosus and B. longum during refrigerated storage (4 °C) instead
of FM based on their viability (Figures 2-5).

The protection level of the encapsulation solutions can be expressed in terms of specific
survival rate, where the control encapsulation solution was more effective or stable during
low temperature (4 °C) storage with a lower k value, which is related to higher viable cell
concentration after 90 days (Table 4). Probiotic viability loss was significant at a higher
temperature (37 °C), and a high k value indicates that the encapsulation solutions were less
stable, correlating with low viability after 14 days of storage for L. plantarum, L. rhamnosus,
and B. infantis. L. rhamnosus was most susceptible to high storage temperatures, which
may be related to its intrinsic properties, showing less resistance to high temperatures
and low humidity environments, characteristics that the encapsulation solution could not
supply. The Ea analysis shows that powders based on the control encapsulation solution
were highly susceptible to thermal damage and, therefore, more unstable than powders
supplemented with CM or FM. The stability of mucilage-based powders is due to the
thermal stability of CM and FM, which exhibit thermal degradation between 280 and
360 °C and 200-350 °C, respectively, as determined by Timilsena [39] and Dubois [65].

The differences observed in the moisture content of probiotic microcapsules, compared
to other studies, can be attributed to the methodology used in this study. Tan et al. [52] and
Strobel et al. [31] determined moisture content at 65 °C after 3 days of drying, and such
prolonged drying times can influence the final moisture levels of the sample. In addition,
calcium alginate particles can absorb and retain moisture. Spray-dried powder products
are generally considered to be of good quality when the residual moisture content is less
than 4% [66]. This moisture level helps ensure product stability and longer shelf life during
storage by limiting chemical reactions due to reduced water availability. It also facilitates
proper handling, packaging, and transportation. The probiotic microcapsules in this study
remained viable after 90 days of storage at 4 °C (Figure 7), even with a moisture content
(12.7-16.9%, Table 6) higher than the recommended level. This represents an advantage over
products such as yogurt, which contain high concentrations of non-microencapsulated free
lactic acid bacteria but have a relatively short shelf life of 2 to 4 weeks. Microencapsulation
protects the probiotics during storage, enhances product stability, and extends shelf life.

Overall, probiotic microcapsules showed varying degrees of the “flat ball” effect or
surface cavities as a result of heat penetration [67] and rapid water evaporation [68]. The
larger size of the microcapsules supplemented with FM can be related to their higher
moisture content (Table 6). In addition, agglomeration can be possible due to the presence
of calcium salts, which promote cross-linking of the alginate, as demonstrated by the
shoulders in the particle size distribution curves of the microcapsules supplemented with
FM and CM (~1 um and 50 pm), respectively (Figure 7) [31]. Agglomeration can also result
from small microcapsules being trapped within larger cavities, artificially increasing the
measured particle diameter (Figure 8). The fine powders obtained in this study can help
reduce the impact on sensory texture when incorporated into a model food matrix.

Although no significant differences were observed in the survival and viability of
probiotics encapsulated in a cross-linked alginate matrix supplemented with CM or FM
compared to the control encapsulation solution, the use of these compounds is justified
for several reasons. Both CM and FM are natural, hydrophilic, easily extracted, and
biodegradable polysaccharides. Moreover, they contain components with prebiotic prop-
erties, enabling their metabolism by probiotics and inhibiting the growth of pathogenic
microorganisms, thereby promoting intestinal health. Several studies have demonstrated
that their consumption can have beneficial effects on human health. In the food industry,
these polysaccharides are widely used as functional additives due to their gelling, thicken-
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ing, and emulsifying properties, which help improve the texture, flavor, and shelf life of
products. Furthermore, today’s consumers are increasingly informed and tend to prefer
products that not only provide an adequate nutritional profile but also offer additional
health benefits.
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Figure 8. Particle size distribution of dry microcapsules produced with L. rhamnosus encapsulated in
control solution (—), solution supplemented with CM (—) or FM (- - -).

Finally, the findings of this study raise new research questions. In particular, it is
important to evaluate the effect of supplementing the cross-linked alginate matrix with
higher concentrations of CM or FM on probiotics viability, as well as to evaluate the degree
of protection that this matrix could offer under simulated gastrointestinal conditions.

5. Conclusions

L. plantarum, L. rhamnosus, B. infantis, and B. longum can be microencapsulated by
spray-drying in a cross-linked alginate matrix with or without CM and FM supplemen-
tation. All probiotics showed high survival rates after spray-drying, reaching values >
85% for the control encapsulation and those supplemented with CM or FM. The probiotic
viability was affected by storage temperature and the refrigeration condition, allowing high
levels (>6 Log CFU/g) of viability for over 90 days. In contrast, at 37 °C, the recommended
viability for probiotics to exert health benefits does not exceed 14 days. The addition of CM
and FM enabled higher thermal stability of the control encapsulation solution (composed of
sodium alginate, succinic acid, CaHPOy, and probiotics). Therefore, the microencapsulation
of probiotics in cross-linked alginate matrices supplemented with chia or flaxseed mucilage
via spray-drying emerges as a viable alternative for incorporating polysaccharides with
prebiotic components. These compounds can stimulate not only the growth of benefi-
cial bacteria and the inhibition of pathogenic microorganisms but also exhibit functional
properties that can enhance the stability and efficacy of the probiotic product.
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