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Abstract: The role of Bifidobacterium species and microbial metabolites such as short-chain fatty acids
(SCFAs) and human milk oligosaccharides in controlling intestinal inflammation and the pathogenesis
of obesity and type 1 diabetes (T1D) has been largely studied in recent years. This paper discusses the
discovery of signature biomarkers for obesity and T1D based on data from a novel test for profiling
several Bifidobacterium species, combined with metabolomic analysis. Through the NUTRISHIELD
clinical study, a total of 98 children were recruited: 40 healthy controls, 40 type 1 diabetics, and
18 obese children. Bifidobacterium profiles were assessed in stool samples through an innovative test
allowing high taxonomic resolution and precise quantification, while SCFAs and branched amino
acids were measured in urine samples through gas chromatography–mass spectrometry (GC-MS).
KIDMED questionnaires were used to evaluate the children’s dietary habits and correlate them with
the Bifidobacterium and metabolomic profiles. We found that B. longum subs. infantis and B. breve were
higher in individuals with obesity, while B. bifidum and B. longum subs. longum were lower compared
to healthy individuals. In individuals with T1D, alterations were found at the metabolic level, with
an overall increase in the level of the most measured metabolites. The high taxonomic resolution
of the Bifidobacterium test used meant strong correlations between the concentrations of valine and
isoleucine, and the relative abundance of some Bifidobacterium species such as B. longum subs. infantis,
B. breve, and B. bifidum could be observed.

Keywords: gut microbiome; Bifidobacterium; short-chain fatty acids; branched amino acids; obesity;
type 1 diabetes; children; capillary electrophoresis

1. Introduction

The gut microbiome, particularly human-related species of the Bifidobacterium genus,
is emerging as a significant player in the pathogenesis of obesity and type 1 diabetes (T1D).
T1D affects 0.13% of children in Europe [1], significantly limiting the quality of life of
affected children [2].
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The importance of the commensal gut microbiome composition and its metabolites
in obesity and T1D has been clearly demonstrated. On the other hand, the metabolism
modification associated with those conditions (e.g., high blood glycaemic value) can modify
the microbiome composition and microbiome-derived metabolites [3].

In both obesity and T1D, the Bifidobacterium genus plays a clear role [4,5], with alter-
ations in the relative abundance of different Bifidobacterium species evident in individuals
affected by these conditions. Bifidobacterium is a well-studied genus that is commonly used
as a probiotic [6] due to its clear anti-inflammatory effects and other beneficial properties.

From a human physiological viewpoint, specific Bifidobacterium species, i.e., human-
related bifidobacteria (HRB), have been documented to play major roles in health, well-
being, and metabolism, as they are involved in the production of essential vitamins, SCFAs,
and other immune regulatory factors. The importance of HRB for numerous physiological
conditions has been clearly demonstrated. For example, HRB are able to metabolise human
milk oligosaccharides (HMOs), helping the anatomical, physiological and immunological
development of the infant [7]. An association of HRB with mental disorders has also been
suggested and documented [8].

Advanced Testing for Genetic Composition (ATGC) [9] is a technology platform for
quantitatively profiling mixed genetic populations, even those that are taxonomically
close. This platform was used to develop a new quantitative test for profiling several
HRB. The test was challenged in a proof-of-concept study through the analysis of blind
samples prepared by mixing pure cultures of well-characterised Bifidobacterium species.
We associated this innovative test with metabolic profiling, diet evaluation (KIDMED),
and disease condition (obesity/T1D) to investigate the relationship between the relative
abundance of HRB, the release of different microbial metabolites, diet composition, and
obesity/T1D. The results presented here are part of the NUTRISHIELD project [10] focusing
on personalised nutrition. The long-term objective is to identify specific microbiome
and metabolite profiles in children impacted by obesity and T1D to deliver personalised
nutrition to improve the clinical management of those conditions.

2. Materials and Methods
2.1. Study Design

Male and female children aged 7–17 were recruited at the Paediatric Department
of the San Raffaele Hospital in Milan, Italy. These children formed three groups, those
diagnosed with obesity, defined as a body mass index (BMI) > 30 (n = 18), T1D (n = 40),
and healthy controls (HCs) (n = 40). The diagnosis of T1D was based on the criteria of
the American Diabetes Association (American Diabetes Association Professional Practice,
2022 #1358). Obese and T1D children were recruited at the time of diagnosis (first visit) or
during a periodic visit. HCs were healthy children admitted to the San Raffaele Hospital for
orthopaedic or surgical interventions. At the time of enrolment, the paediatricians informed
the parents of the recruited children about the rationale and purpose of this study, the lack
of reported risks related to the collection of stool and urine samples, the effort required to
take part in this study, and their right to withdraw their consent at any time. Parents of the
recruited children gave written informed consent, complying with the study procedure,
and were aware that they donated stool and urine samples for research purposes. Stool and
urine (10 mL) samples were collected by the participants at home, no more than 24 h prior
to delivery to the hospital, and stored at 4 ◦C until being processed in our laboratory. Stool
samples were placed in a fixative solution (95% ethanol, with 1 mM EDTA and 0.5% SDS),
aliquoted in 2 mL vials, labelled, and stored at −20 ◦C. Urine samples were aliquoted in
1 mL vials, labelled, and stored at −80 ◦C until shipment. Sociodemographic information,
psychological factors, lifestyle factors, and dietary assessments (FFQ) were also collected
at the time of enrolment and dietary indices such as the Health Eating Index (HEI) and
the KIDMED score (adherence to the Mediterranean diet) were extrapolated. This study
was approved by the Institutional Ethical Committee of the IRCCS San Raffaele Scientific
Institute (Protocol: NUTRI-T1D-2019). Individuals’ identifiable private information was



Microorganisms 2024, 12, 931 3 of 16

protected according to the EU General Data Protection Regulation (EU-GDPR) with the
help of the Institutional Data Protection Officer. The Clinical Research Investigator assigned
a code to each patient and identifiers that link to protected health information.

The fixative solution was previously validated for its ability to (1) inactivate Bifidobac-
terium and prevent its growth (i.e., change in relative abundance), (2) maintain the DNA
and keep it extractable, and (3) inactivate other microorganisms present in stool that could
compromise the results. Validation was performed as follows:

1. Pure Bifidobacterium cultures of all targeted species and subspecies were suspended
in the fixative solution and kept at RT for 24 h. The solution was then centrifuged,
the fixative solution was discarded, and the cells were placed back in the cultures.
No growth was observed.

2. DNA extracted from both pure cultures in fixative solution, as well as actual samples
and spiked samples (i.e., stool samples spiked with a mix of Bifidobacterium), was
prepared and analysed.

3. A significant number of stool samples collected in the fixative solution were re-cultured
to check for growth. No growth was detected.

These validation experiments were carried out in collaboration with IHMA Europe
(Monthey, Switzerland), a CAP-accredited laboratory for microbiology.

2.2. Bifidobacterium Profiling in Stool Samples

The BifidoZoom service (REM Analytics, Monthey, Switzerland) was used to profile
the Bifidobacterium species in stool samples. The test is based on ATGC [9], which relies
on a workflow of Polymerase Chain Reaction (PCR) associated with cycling temperature
capillary electrophoresis (CTCE) [11].

CTCE enables the identification and precise quantification of single nucleotide poly-
morphisms (SNPs) occurring in the fragments amplified by PCR. The assay was designed
using REM’s bioinformatic primer platform [9]. In brief, it is possible to identify DNA frag-
ment sets containing relevant SNPs, and thus quickly design complex assays. For example,
to measure the relative abundance of B. breve and B. longum, fragment sets whose SNP dif-
ferentiates between these species are required. Each primer is then optimised and validated
using existing reference material (pure bacterial cultures) for sensitivity, specificity, and
potential biases. The Bifidobacterium (sub)species that were measured are Bifidobacterium
longum (subs. longum and subs. infantis), B. animalis (subs. animalis and subs. lactis), B. bifidum,
B. breve, B. adolescentis, and B. pseudocatenulatum.

The specificity of the BifidoZoom assay components was tested using pure Bifi-
dobacterium cultures (IHMA Europe, Monthey, Switzerland) fixed in ethanol. Individ-
ual fixed cultures were mixed in a combinatorial fashion to create all possible “pairs”
(e.g., B. bifidum + B. breve, B. bifidum, and B. longum). The resulting mixes (and individual
cultures) were tested with all primer pairs of the assay to check for specificity.

During the analysis of samples from the study, all samples were processed in batches
of 20 samples. With each batch of samples, a negative control (i.e., a pure fixative without
a stool sample), as well as a positive control, were used. The positive control was a stool
sample that was spiked with a known mixture of all target organisms.

DNA extraction followed the BifidoZoom DNA extraction protocol (REM Analytics,
Monthey, Switzerland). It includes sample homogenisation through bead beating, followed
by the removal of humic acids using calcium chloride, and then DNA extraction based on
precipitation with isopropanol.

2.3. Profiling Test of Mock-Up Mixed Bifidobacterium spp.

To demonstrate the precision and quantitative accuracy of the method, seven blind
mixes, in which the relative abundance of each (sub)species was different, were anal-
ysed. Six pure cultures of freeze-dried strains, see Table 1, were prepared at Probiotical
S.p.A (Novara, Italy). For each culture, the potency was determined using a fluorescence
flow cytometry (FFC)-based method with the FACSCalibur instrument (Becton Dickinson,
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Franklin Lakes, NJ, USA) and the results were expressed as Total Fluorescent Units (TFUs).
All lyophilised samples were preserved at −20 ◦C within airtight aluminium sachets until
analysis. For reconstitution, a 1:10 (g/g) ratio was adopted, employing PBS. Samples
underwent homogenisation using a stomacher (Seward stomacher model 400, 260 RPM,
4 min). Cell viability analysis utilised the BD Cell Viability Kit with liquid counting beads
(BD Biosciences, Cat. no. 349483), with staining procedures adhering to the standards set
forth in ISO 19344: IDF 232 (2015) [12] Starter Cultures, probiotics and fermented products.
Quantification of lactic acid bacteria by flow cytometry.

Table 1. Species of Bifidobacterium to which each of the strains used for the validation experiment
belonged. All strains were manufactured by Probiotical S.p.A (Novara, Italy).

Species Adolescentis Animalis
Subs. Lactis Bifidum Breve Longum subs.

Infantis
Longum

Subs. Longum

Strain BA02 BS01 BB10 BR03 BI02 BL03

In the staining process, 100 µL of the diluted microbial suspension, containing an
estimated 105–106 cells/mL in buffered peptone water, was combined with 835 µL of PBS.
Subsequently, 10 µL of propidium iodide (PI) at a prediluted concentration of 0.2 mmol/L
and 5 µL of thiazole orange (TO) at 42 µmol/L were introduced. Following a brief vortex,
the mixture was incubated at 37 ◦C for 15 min in a dark environment. Counting beads were
vortexed for 30 s before adding 50 µL to the cell suspension to achieve a final volume of
1 mL. Microbial cells were identified using an SSC-H (Side Scatter) threshold, and a cell
gate was established using forward versus side scatter (FSC-H vs. SSC-H) parameters.
TO fluorescence was primarily detected in the FL1 channel, while PI fluorescence was
predominantly observed in the FL3 channel. The optimal segregation of live and dead cell
populations was achieved through an FL1 versus FL3 plot. To mitigate false positives and
negatives, reference control gating was established using a fresh culture of L. rhamnosus GG
to represent the live population, while a sample of the same culture treated with isopropanol
served as a reference for the dead cell population. The live sample was singularly stained
with TO, whereas the dead sample was stained with PI, ensuring accurate discrimination
between viable and non-viable cells. The analysis was conducted by Biolab Research SRL
(Novara, Italy) [13]. Seven mixes were then prepared, where the weight of each component
was accurately measured. The first mock-up mix had an equivalent ratio in weight between
all of the seven (sub)species, with a total weight of 120 g. Each of the subsequent six
mock-up mixes had one single Bifidobacterium (sub)species increased by a factor of 5 (100 g)
and all of the other (sub)species were reduced by a factor of 5 (4 g each) for a total weight
of 120 g. Using TFU readings for each of the single inputs, the relative abundance of each
strain was predicted and kept blind. The mixes were numbered and sent to REM Analytics
(Monthey, Switzerland), who carried out the profiling using the BifidoZoom test. Measured
relative abundances were reported before the composition was revealed to the analyst.

2.4. KIDMED Questionnaire

The KIDMED score was originally developed to combine Mediterranean diet char-
acteristics as well as general dietary guidelines for children in a single index [14]. It was
based on principles sustaining healthy, Mediterranean dietary patterns (e.g., daily fruit
and vegetable consumption, and weekly intake of fish and legumes), as well as on those
that undermine it (e.g., frequent fast-food intake, and an increased consumption of sweets).
The index comprises 16 “yes or no” questions. Those denoting a negative connotation are
assigned a value of −1 and those with a positive aspect +1. Total scores range from −4 to 12
and are divided into three levels: (1) ≥8, optimal Mediterranean diet; (2) 4–7, improvement
needed to adjust intake to Mediterranean diet; (3) ≤3, very low diet quality. The index has
been used in a variety of settings and countries [15].
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2.5. Metabolomic Analysis in Urine

SCFAs (i.e., acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, hep-
tanoic acid, isobutyric acid, 2-methylbutyric acid, and isovaleric acid) and branched-chain
amino acids (BCAAs) (i.e., valine, leucine, and isoleucine) have been measured in urine
samples using GC-MS [16]. The results were normalised using creatinine concentrations
and expressed as mmol/g creatinine. Creatinine was quantified following the manufac-
turer’s instructions of the DetectX® urinary creatinine detection kit from Arbor Assays
(Ann Arbor, MI, USA) based on the Jaffe’s method.

2.6. Statistical Analysis

Statistical analysis was performed using R (version 4.3.2). Unidimensional analysis
and significance tests were performed using a bilateral Wilcoxon test, without correction
for multiplicity testing. Multidimensional analysis was performed using the MixOmics
R package (version 6.24.0) [17]. To perform partial least square discriminant analysis
(PLS-DA), the standard PLS-DA function of MixOmics was used.

3. Results
3.1. Bifidobacterium Mock-Up Mix Profiling

In Figure 1, we observe a close alignment between the predicted values and the actual
measurements, with an average discrepancy of approximately 6%. The average discrepancy
was calculated as the average absolute difference between all predicted and observed values
(the mean absolute error).
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Figure 1. The results from the validation experiment for BifidoZoom. For each of the seven mixes,
there is an observed value (BifidoZoom) and a predicted value (i.e., the result from calculating the
relative abundance using weight and CFU/g as measured with flow cytometry).

Biolab Research FFC analysis yielded a Reproducibility Standard Deviation (SR) for
Total Fluorescent Units (TFUs) of 0.10 [log10 equivalent] complying with the ISO 19344
benchmark of an SR of 0.134 [log10 equivalent] [13]. Given that TFU values were employed
to calculate the predicted relative abundances, we can factor in a potential measurement
uncertainty of ±0.10 in the log(TFU). Under this assumption, the standard range of variation
for any measure is ~26% relative to the following:

Relative Error = 1 − 100.1 = 1 − 1.2589 ∼ 26%
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Consequently, the absolute % error of the predicted values in a mix can be estimated
as follows:

Absolute % Error =
Relative Error

N − 1
=

26
5

∼ 5.2%

Therefore, the observed average discrepancy of 6% between the predicted and actual
observed values falls within a comparable error margin as expected by the FCC alone.
This result means that the BifidoZoom test, when applied to a mixed sample, falls within
the required measurement precision set forth in ISO 19344 and is therefore suitable for
the quantification of Bifidobacterium in mixed starter cultures, probiotics, or fermentation.
The calculated absolute error with an SR of 0.134 and six elements in the mix would
be ~7.2%.

3.2. Overview of Participants

For each of the 98 participants, stool samples, urine samples, and the answers to the
KIDMED questionnaire were collected. The general characteristics of each of the groups
can be seen in Table 2.

Table 2. The general characteristics of the three groups. Age and BMI are shown with ±standard
deviation. As can be seen, the ages are not significantly different. The BMI distribution is also similar
between the controls and the T1D group. The ratio of males to females is also well conserved across
all groups.

Group Male Female M/F % Age BMI HbA1C (%)

Controls 22 17 56.4% 12.67 ± 2.34 20.51 ± 3.59
Type 1 Diabetes 25 15 62.5% 12.65 ± 2.59 22.15 ± 5.23 7.09 ± 2.01
Obese 8 10 44.4% 13.33 ± 2.4 32.46 ± 4.77

As can be seen from Table 2, there is no significant difference in average age between
the three groups since they all fall within one standard deviation of one another. The ratio
between males and females was found to be independent of the group by a χ2 test. The BMI
is not significantly different between the T1D and control groups since they fall within one
standard deviation of one another. As expected, the obese cohort has significantly larger
BMI values.

3.3. Univariate Analysis

From a univariate analysis perspective, the relative abundance of different Bifidobac-
terium species was assessed in relation to obesity and T1D. It was noted that B. bifidum
appeared less frequently in obese individuals, whereas B. longum subspecies infantis was
significantly more prevalent. The fact that these significant differences are consistent when
comparing obese individuals to both HCs and those with T1D adds weight to the findings
(see Figure 2).

Furthermore, B. pseudocatenulatum shows a higher relative abundance in T1D partic-
ipants in comparison to HCs. In terms of metabolites, distinct and significant variations
were observed among the groups for several SCFAs and BCAAs. The most pronounced
differences were between the obese and T1D subjects, underscoring the potential metabolic
distinctions linked with these conditions.

Figure 3 shows the association between the KIDMED score and the different study
groups. Surprisingly, the KIDMED score in obese children is higher than in the HCs,
indicating that obese children had a healthier diet than the HCs. This may be because these
children were already receiving dietary advice, or because of a reporting bias. No differ-
ences were observed between the HCs and the T1D group.

As can be seen in Figure 4 and in agreement with observations from the profiling of the
gut microbiome, the analysis of SCFAs and BCAAs showed a significant shift in both study
groups. For example, valeric acid is significantly higher in obese individuals compared to
HCs, and again higher in the type 1 diabetes group compared to both other groups. Leucine
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and valine (BCAAs) are found to be significantly lower in the obese group than in both
other groups (which are not significantly different), while leucine (the third BCAA) seems
to be lower in obese individuals, but the significant decrease is only measured between the
T1D and obese groups. In general, higher levels of most SCFAs were found in the urine of
type 1 diabetics. These intergroup alterations in the levels of substrates (e.g., BCAAs) or
metabolic products of the gut microbiome (e.g., SCFAs) indicate a potential change in the
activity of the gut microbiome in obese and T1D children.
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Figure 4. Normalised urinary concentrations of (a) 2-methylbutyric acid, (b) acetic acid, (c) butyric
acid, (d) caproic acid, (e) heptanoic acid, (f) isobutyric acid, (g) isoleucine, (h) isovaleric acid,
(i) leucine, (j) propionic acid, (k) valeric acid, and (l) valine, determined in the study cohort. Note:
Significant p-values are indicated. p-values were computed using the Wilcoxon test.

3.4. Multivariate Analysis

Figure 5 depicts the outcome of the PLS-DA applied to the microbiome data. It illus-
trates distinct clustering among the study groups, with notable demarcation between obese
and control participants. The primary driver of this differentiation appears to be latent
variable 1 (LV1), which shows a positive correlation of B. breve and B. longum subspecies
infantis with obesity. In contrast, B. longum subspecies longum and B. bifidum are negatively
correlated, suggesting an inverse relationship with obesity.



Microorganisms 2024, 12, 931 9 of 16

Microorganisms 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

obese and control participants. The primary driver of this differentiation appears to be 
latent variable 1 (LV1), which shows a positive correlation of B. breve and B. longum 
subspecies infantis with obesity. In contrast, B. longum subspecies longum and B. bifidum 
are negatively correlated, suggesting an inverse relationship with obesity. 

These PLS-DA results are in harmony with the univariate analysis findings, 
reinforcing the significance of B. bifidum and B. infantis in distinguishing obese individuals 
from HCs. An unexpected observation from the PLS-DA is the association of B. breve with 
obesity, a link that was not apparent in the univariate analysis. Additionally, the PLS-DA 
confirms the univariate analysis’s identification of B. adolescentis and its association with 
T1D, as well as a notable association with B. pseudocatenulatum, particularly evident in 
LV2. 

Microorganisms 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

Figure 5. Score (top) and loading (bo om 2) plots from the PLS-DA based on gut microbiome 
profiles. The models used two latent variables (LVs) and all variables have been scaled to zero mean 
and unit variance. 

To validate the PLS-DA model, one could investigate the correlation between LV1, as 
visualised in Figure 5, and the BMI of the participants. Such an analysis would help 
confirm whether the variations captured by LV1 accurately reflect the differences in BMI, 
thereby providing a robust methodological link between microbiome composition and 
obesity phenotypes. 

Figure 6 shows a significant correlation between the BMI of participants and the LV 
that was detected using the PLS-DA. This shows that the LV computed based on the 
microbiome variables is a potential predictor of BMI. 

 
Figure 6. Sca erplot and correlation between BMI and the first latent variable (LV1) of the PLS 
calculation. The correlation is Spearman’s , and the p-value is calculated using Spearman’s method.  

Figure 7 illustrates the scores and loadings from the PLS-DA based on the metabolite 
concentrations found in urine samples from the HCs, obese subjects, and individuals with 

Figure 5. Score (top) and loading (bottom 2) plots from the PLS-DA based on gut microbiome profiles.
The models used two latent variables (LVs) and all variables have been scaled to zero mean and
unit variance.



Microorganisms 2024, 12, 931 10 of 16

Figure 6 shows a significant correlation between the BMI of participants and the
LV that was detected using the PLS-DA. This shows that the LV computed based on the
microbiome variables is a potential predictor of BMI.
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These PLS-DA results are in harmony with the univariate analysis findings, reinforcing
the significance of B. bifidum and B. infantis in distinguishing obese individuals from HCs.
An unexpected observation from the PLS-DA is the association of B. breve with obesity,
a link that was not apparent in the univariate analysis. Additionally, the PLS-DA confirms
the univariate analysis’s identification of B. adolescentis and its association with T1D, as
well as a notable association with B. pseudocatenulatum, particularly evident in LV2.

To validate the PLS-DA model, one could investigate the correlation between LV1,
as visualised in Figure 5, and the BMI of the participants. Such an analysis would help
confirm whether the variations captured by LV1 accurately reflect the differences in BMI,
thereby providing a robust methodological link between microbiome composition and
obesity phenotypes.

Figure 7 illustrates the scores and loadings from the PLS-DA based on the metabolite
concentrations found in urine samples from the HCs, obese subjects, and individuals with
T1D. The PLS-DA model effectively distinguishes T1D subjects from HCs, as evidenced by
the clear separation in the score plot.

The loadings for both LVs suggest that most of the variance in metabolites contributing
to this separation pertains to differences between HCs and T1D subjects. This variance is
particularly noticeable with changes in SCFA and BCAA levels between these two groups.

When we compare the findings of Figure 5, which reflects microbiome data, with those
of Figure 7, there is a discernible pattern. The microbiome variables captured in Figure 5
predominantly account for the differentiation between obese individuals and controls.
Conversely, the urine metabolites featured in Figure 7 provide a clearer understanding of
the distinctions between HCs and T1D subjects. This complementary analysis from both
figures highlights that while the microbiome variables are indicative of obesity, the urine
metabolites are more reflective of the metabolic alterations associated with type 1 diabetes.

Figure 8 presents a correlation matrix for the measured variables, illustrating that
the majority of metabolite concentrations are positively correlated with one another. The
correlation shows in fact Spearman’s ρ, which is non-parametric. This finding aligns with
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the observations from Figure 7, where most metabolites showed positive loadings on LV1,
indicating an association with T1D.
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In the correlation matrix, significant associations emerge between certain microbiome
constituents and metabolite concentrations. Notably, the levels of the amino acids valine
and isoleucine, as well as the short-chain fatty acids valeric acid and isovaleric acid, exhibit
the most robust correlations with the abundance of Bifidobacterium species. These strong
associations suggest that the metabolic profiles, particularly the levels of these specific
metabolites, are reflective of the microbial composition, further emphasising the intercon-
nectedness of the microbiome and the host metabolism in the context of T1D.

4. Discussion

Our data show that individuals with obesity have a decrease in the relative abundance
of Bifidobacterium longum subsp. longum and Bifidobacterium bifidum compared to healthy
controls. These Bifidobacterium (sub)species have been previously associated with beneficial
effects on gut health, metabolic processes, and weight management [18,19]. B. longum
subs. longum has been shown to positively influence glucose and lipid metabolism, while
B. bifidum has demonstrated potential in reducing body weight and improving insulin
resistance. Our findings align with existing research and further emphasise the importance
of these bacteria in maintaining a healthy weight.

Additionally, we observed reduced levels of isoleucine and valine in obese children
in comparison to HCs. Isoleucine and valine are essential BCAAs that play crucial roles
in energy metabolism and muscle protein synthesis [20]. Recent studies have highlighted
the interplay between these BCAAs and the gut microbiome, particularly Bifidobacterium
species. Isoleucine and valine have been found to promote the growth of bifidobacteria
in the gut, creating a symbiotic relationship that supports metabolic health [21,22]. Con-
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versely, a deficiency in these amino acids may lead to an imbalance in the gut microbiome,
contributing to obesity and related metabolic disorders [23].

The metabolism of isoleucine and valine by Bifidobacterium species is a complex process
that involves the breakdown of these amino acids into metabolites that can modulate
gut health and systemic metabolism [24]. These species’ ability to utilise isoleucine and
valine may enhance their colonisation in the gut, further supporting the host’s metabolic
functions [25].

In type 1 diabetic children, the only significant difference in their Bifidobacterium profile
compared to healthy controls is an increase in B. adolescentis. At the metabolic level, we
observed some alterations in urine metabolites and, specifically, an increase in two SCFAs
(propionic acid and butyric acid) as well as valeric and heptanoic acid.

It is interesting that the relative abundance of B. longum subs. infantis is increased in in
the obese group. One could also interpret the results from Figures 2 and 5 as meaning that
B. breve is also increased in the obese group compared to the healthy controls. B. infantis
is often cited as promoting weight gain early in life, a desirable effect [26]. It is however
difficult to relate the impact of B. infantis in newborns to its possible role in obesity in
teenagers, who rely on different metabolic pathways.

The partial least squares discriminant analysis visualised in Figures 5 and 7 suggests
that both metabolites and microbiome profiles are effective in differentiating between the
three study groups. The delineation between obese subjects and HCs is more pronounced
in Figure 5, which could be indicative of a stronger metabolic distinction. This highlights
the potential of using Bifidobacterium as a biomarker for obesity and a target for dietary
modification strategies.

Bifidobacteria composition reported by BifidoZoom in diabetic and obese children
could be potentially exploited to elaborate personalised nutritional advice for those children.
For example, in a nutritional intervention trial in T1D and obese children, a microbiome-
targeted personalised diet was designed, with the aim of restoring Bifidobacterium species
when they were selectively reduced in diabetic or obese children. These results are currently
being analysed for further publication.

Sequencing-based microbiome assessments offer a broad overview of microbial pop-
ulations within a sample, but they lack the specificity and quantification accuracy that
targeted approaches provide. The BifidoZoom test, utilising a targeted analysis frame-
work, is engineered to detect predetermined microbial species with high precision. This
targeted detection is particularly advantageous in clinical contexts where the presence and
abundance of specific microbial species could be used as a biomarker of specific health
conditions. Our experiment, unlike classic metagenomic analyses, which catalogue the
entire spectrum of microbiota present, focuses on the specific HRB for which it is designed.
The validation studies corroborate that BifidoZoom’s precision in mixed samples is on par
with the accuracy that flow cytometry achieves in pure samples, making it a formidable
tool for clinicians and researchers seeking targeted microbiome insights.

The ATGC workflow, with PCR and capillary electrophoresis (CE), allows for sig-
nificantly more control over the analytical process, such as internal standards in the CE.
The validation data and the observations made show that ATGC is a valuable tool for
routine clinical analysis of microbiome profiles for a well-defined taxonomic group. These
well-defined taxonomic groups exist in specific microbiome niches, for example, the Lac-
tobacillus genus in the vaginal microbiome [27], or the Bifidobacterium genus in the gut
microbiome of newborns [27,28]. The observed link between bifidobacteria and obesity
suggests that although there are several other genera present in the gut microbiome, the
Bifidobacterium genus plays a key role. Routine clinical tests for precision supplementation
could be based on specific microbial targets, rather than generic sequencing approaches.
This conclusion is further supported by the results from other studies that found that
Bifidobacterium is the genus that seems to play the most relevant role in obesity [29,30], with
B. longum and B. bifidum being associated with protection from obesity [31].
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Supplementation with Bifidobacterium longum subs. longum and bifidum, coupled
with isoleucine and valine, could provide a targeted approach to mitigate the onset of
obesity. Such interventions could harness the synergistic effects of these components
to restore gut microbiome balance, enhance metabolic functions, and promote healthy
weight management [32]. Furthermore, bifidobacteria’s ability to ferment dietary fibres
into SCFAs contributes to a lower intestinal pH, fostering an environment conducive to
beneficial bacteria [33,34]. This pH modulation may be particularly relevant in the context
of obesity, where alterations in the gut microbiome and pH levels have been observed [35].
This hypothesis could be the foundation of further study.

The major limitation of our study is the limited number of cases; therefore, the results
need further validation in a new study with a significantly higher number of recruited sub-
jects. Furthermore, the number of participants in the obese group were smaller compared to
the other groups due to difficulties in recruiting participants during the COVID-19 period.

In addition, although nutritional data were collected through KIDMED questionnaires,
the results from their analysis were inconsistent and have therefore not been reported.
The KIDMED scores were positively associated with obesity, meaning that according to
its results, obese children had a healthier diet than HCs or those with T1D. This result
could itself be significant, or the result of a reporting bias, and further investigation must
be conducted to draw significant conclusions.

All results in this study are based on a young population. However, the same method-
ology could be expanded to adults. Studies suggest that the gut microbiome can be sig-
nificantly different between children and adults [36,37]. Therefore, further studies would
need to be carried out to understand if the same markers can be observed in adults as in
children, or to identify the ones more relevant to specific age groups.

5. Conclusions

Microcapillary electrophoresis was used for the detailed profiling of Bifidobacterium
species and subspecies focusing on cohorts with obesity and type 1 diabetes. When paired
with targeted metabolomics, this approach has revealed associations between the abun-
dance of B. longum subsp. longum and B. bifidum and the concentrations of isoleucine
and valine in both healthy controls and children affected by obesity or T1D. Our study
contributes to a nuanced understanding of the dynamic relationship between the gut
microbiome and metabolic health. These results provide insights for the development
of personalised nutrition strategies that utilise specific bacterial strains and amino acids
to address childhood obesity. The potential of such a strategy to improve obesity pre-
vention and management is substantial, offering a refined and evidence-based method
to confront a global health issue. Future nutritional guidance is likely to be enhanced by
advanced diagnostics that offer comprehensive, rapid, and accurate analysis of the gut
microbiome, tailored to individual needs. Such tools will be crucial in translating our
expanding knowledge of the gut microbiota and its metabolic interactions into practical
clinical applications, thereby revolutionising the approach to maintaining metabolic health
and preventing obesity.
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