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Abstract: A cross-sectional study was conducted to assess the prevalence, molecular detection, and
antimicrobial resistance of Salmonella isolates within 162 poultry farms in selected urban and peri-
urban areas of central Ethiopia. A total of 1515 samples, including cloacal swabs (n = 763), fresh
fecal droppings (n = 188), litter (n = 188), feed (n = 188), and water (n = 188), were bacteriologically
tested. The molecular detection of some culture-positive isolates was performed via polymerase chain
reaction (PCR) by targeting spy and sdfl genes for Salmonella Typhimurium and Salmonella Enteritidis,
respectively. Risk factors for the occurrence of the bacterial isolates were assessed. Antimicrobial
susceptibility testing of PCR-confirmed Salmonella isolates was conducted using 12 antibiotics. In this
study, it was observed that 50.6% of the farms were positive for Salmonella. The overall sample-level
prevalence of Salmonella was 14.4%. Among the analyzed risk factors, the type of production, breed,
and sample type demonstrated a statistically significant association (p < 0.05) with the bacteriological
prevalence of Salmonella. The PCR test disclosed that 45.5% (15/33) and 23.3% (10/43) of the isolates
were positive for genes of Salmonella Typhimurium and Salmonella Enteritidis, respectively. The
antimicrobial susceptibility test disclosed multi-drug resistance to ten of the tested antibiotics that
belong to different classes. Substantial isolation of Salmonella Typhimurium and Salmonella Enteritidis
in poultry and on poultry farms, along with the existence of multi-drug resistant isolates, poses an
alarming risk of zoonotic and food safety issues. Hence, routine flock testing, farm surveillance,
biosecurity intervention, stringent antimicrobial use regulations, and policy support for the sector are
highly needed.

Keywords: antimicrobials; central Ethiopia; poultry; isolation; multi-drug resistance; PCR; Salmonella
Enteritidis; Salmonella Typhimurium
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1. Introduction

The poultry sector in Ethiopia is undergoing significant changes due to the grow-
ing human population, particularly in and around major cities and towns [1]. Poultry
production plays a crucial role as a livelihood source, ensuring food security, promoting
nutrition, and contributing to the economic development of the country. The sector is
deeply integrated in Ethiopian society, with poultry farming being practiced by nearly
every household in both rural and urban areas [2–4].

The considerable productivity potential of the poultry sector in Ethiopia faces several
constraints, including reliance on traditional technologies, a high prevalence of diseases,
insufficient availability of inputs (such as good quality feed and veterinary drugs), the
limited genetic potential of breeds, and suboptimal management practices [5,6]. In Ethiopia,
infectious diseases such as Newcastle disease, Salmonellosis, fowl cholera, coccidiosis, and
fowl pox were identified as predominant contributors to high morbidity and mortality
across various scales of poultry production [7–10].

Salmonellosis is one of the most important bacterial diseases in the poultry industry
and other avian species, causing heavy economic loss due to lowered productivity and also
causing a public health hazard by virtue of zoonoses, which is associated with high medi-
cation costs [9,11,12]. Avian Salmonellosis occurs in chickens by host-specific Salmonella
serovars, such as Salmonella Pullorum and Salmonella Gallinarum, which cause a typhoid-
like systemic disease, or a wide range of non-typhoidal Salmonella, mainly Salmonella
Enteritidis and Salmonella Typhimurium, together with serovars such as S. Newport, S.
Heidelberg, S. Kentucky, S. Infantis, S. Concord, S. Javiana, etc. [13–16]. Non-typhoidal
Salmonellosis is responsible for undetected illness at the farm level, and following the con-
sumption of poultry meat and eggs, humans acquire infection at the plate end. In particular,
the non-typhoidal species Salmonella Typhimurium and Salmonella Enteritidis are respon-
sible for subclinical Salmonellosis in chickens that can induce human infections [17–20].
Accordingly, it was estimated that non-typhoidal Salmonellosis causes about 93 million
enteric infections and 155,000 fatalities worldwide on an annual basis [21,22]. The non-
host specificity of the pathogen, its route of transmission, and the existence of multiple
antimicrobial resistances are the main reasons contributing to the majority of non-typhoidal
Salmonellosis infections [23]. In developing countries of Africa with poor hygiene, weak
biosecurity measures, and no or few food safety regulations, prevailing non-typhoidal
Salmonellosis remains a serious public health problem [24–26], with an occurrence of
10–100/100,000 new cases per year [27]. In Ethiopia, human Salmonellosis is one of the
major diseases. For instance, a pooled prevalence of 57.9% was recorded for non-typhoidal
Salmonella [25]. Previous studies in Ethiopia also indicated that different Salmonella serovars
have been detected in various regions of the country and have been isolated from humans,
animals, food of animal origin, and their environment [10,28–30]. In Ethiopia, as well as
Sub-Saharan African countries, the problem of Salmonellosis in poultry, as well as humans,
is exacerbated by little or no national epidemiological surveillance, a lack of legislation,
and an absence of strict enforcement of regulations and intervention measures to address
farm biosecurity practices, public hygiene, and regular screening of individuals handling
foodstuffs for public consumption [25,31].

In the past, as well as in the present, poultry Salmonellosis has been prevented
and controlled by the use of various types of antimicrobials. Unfortunately, there is
an increasing trend in the utilization of antimicrobial drugs for animal production to
meet the rising demands for animal-derived products by the human population. For
instance, the quantity of antimicrobials utilized is anticipated to double in the BRICS
countries, encompassing Brazil, Russia, India, China, and South Africa [32]. Quantitatively,
the number of antimicrobials used in the livestock sector worldwide was predicted to
be 63,151 tons in 2010, and it is estimated to increase by 67% by 2030, attaining nearly
105,500 tons [33].

The emergence of antimicrobial resistance (AMR) can be attributed to an irrational
use of first-line drugs and extensive use of antimicrobial drugs coupled with increased
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consumption of animal products. Previous studies have underlined the potential hori-
zontal dissemination of AMR bacteria and genes between poultry flocks and farms, as
well as the extent of zoonotic transmission through the food value chain [34–37]. Conse-
quently, in the developed world, such as America and Europe, the majority of Salmonella
isolates from poultry farms and poultry products were found to be resistant to several
antimicrobials [38–41]. However, in Ethiopia, such consolidated findings are lacking, and
thus, further studies are needed.

Despite the contribution of the poultry sector to the national economy of Ethiopia,
inadequate and fragmented information is available about the true prevalence, distribution,
economics, public health significance, and antimicrobial resistance profiles of the zoonotic
Salmonella serovars Salmonella Enteritidis and Salmonella Typhimurium in the poultry sector.
Having adequate data will contribute to instituting Salmonella control programs that ensure
poultry health, combatting the risk of foodborne zoonotic infections, and minimizing the
escalating risk of antimicrobial-resistant Salmonella in poultry farming. Therefore, the
present study aimed at monitoring the Salmonella Enteritidis and Salmonella Typhimurium
status in poultry in central Ethiopia, a poultry-dense region characterized by a high variety
of production systems. More specifically, the aim of this research was to evaluate the
prevalence and AMR profiles of Salmonella Enteritidis and Salmonella Typhimurium in
chickens and environmental samples collected at poultry farms in four selected areas of
central Ethiopia.

2. Materials and Methods
2.1. Study Area

The present study was conducted in four selected areas of central Ethiopia, namely
Adama, Addis Ababa, Debre Birhan, and West of Shaggar City, located within a 130 km of
the capital city, Addis Ababa (Figure 1). In all the study areas, climate conditions have a
bimodal rainfall trend comprising a long rainy season (June to September), a short rainy
season (February to May), and a prolonged dry season from late November to February [42].
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Livestock production in the study areas was characterized by mixed farming systems,
with poultry, dairy, and small ruminant farming being integrated with certain industrial
manufacturing activities as the main source of income. These selected areas were repre-
sentative of commercial poultry production practices in typical highly populated urban
areas and surrounding peri-urban communities. The present study areas were considered
purposively due to the availability of a high number of commercial poultry farms as well
as high demand for poultry and poultry products.

2.2. Study Design

A cross-sectional study was conducted from January 2021 to June 2022 in four selected
areas of central Ethiopia. Exotic breed chickens reared for the purpose of egg production
(Bovans Brown) and meat production (Cobb-500) and, to some extent, mixed types (Saso)
maintained under an intensive management system with a deep litter housing system
were considered as the study population. With regard to the Saso breed, in some study
areas, they are kept as layers while in others as broilers. About ten percent of the poultry
farms had a history of Salmonella vaccination and were thus purposively excluded from this
study. The study targeted only medium-sized farms, with between 1000 and 5000 chickens
per farm.

2.3. Sample Size Determination and Sampling Strategies

A total of 1515 samples were collected, including cloacal swabs, fresh fecal droppings,
litter samples, and feed and drinking water. The repartition of the different samples
collected in the respective study areas is illustrated in Table 1.

Table 1. Distribution of sample types and number.

Study Areas
Sample Type and Number * p (Expected

Prevalence)Cloacal Swabs Fresh Fecal Droppings Litter Feed Water Total

Adama 260 30 30 30 30 380 28.8% [30]
Addis Ababa 167 56 56 56 56 391 16.5% [28]
Debre Birhan 176 52 52 52 52 384 50% (No previous work)

West of Shaggar City 160 50 50 50 50 360 19% [43]
Total 763 188 188 188 188 1515

* For all the study areas, the sample size was calculated taking into account expected prevalence (as shown in
Table 1), 95% confidence interval, and 5% absolute precision as per the formula given by Thrusfield [44]. However,
in order to increase precision, additional samples were added.

N = (Zα/2)2 × P(1 − P)
d2

where
N = sample size required;
d = absolute precision (0.05);
P = expected prevalence.

2.4. Sampling

Samples were collected according to the recommendations of OIE [45]. A total of
162 poultry farms from the four selected study sites were considered. More specifically,
per poultry house, one sample of 25 g pooled fresh fecal droppings (at least from three
droppings taken randomly in different locations in the house) was collected with a sterile
spatula into the sterile polypropylene tube. Pooled cloacal swabs (of at least three chickens
per house) were collected from randomly selected birds using sterile cotton-tipped swabs.
Cotton swabs were moistened in buffered peptone water solution before being inserted in
the cloaca by gentle rotation in the cloaca of the birds. Immediately following collection,
the cloacal swabs were pooled in 10 mL of sterile buffered peptone water, properly plugged
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and shaken within test tubes. About 25 g of pooled feed and 100 mL of pooled drinking
water samples were collected, respectively, from randomly selected chicken feeders and
drinkers throughout the poultry house. Furthermore, pooled five-litter samples weighing
5 g each from different sides on the floor of a poultry house were collected using sterile
gloves. Collected samples were transported and stored at 4 ◦C and were either immediately
processed upon arrival at the laboratory or the day after.

2.5. Isolation and Identification of Salmonella

Salmonella was isolated and identified according to standardized protocols described
by the International Organization for Standardization for Salmonella detection in food and
animal feedstuffs ISO 6579 and OIE [45,46]. All sample types were pre-enriched in 225 mL
of Buffered Peptone Water (BPW) (1:9) and homogenized by vortexing for two minutes.
Then, all pre-enriched samples were incubated at 37 ◦C for 18–24 h [47,48]. Subsequently,
for selective enrichment, 0.1 mL of well-vortexed pre-enrichment sample was inoculated
in 10 mL of Rappaport Vassiliadis Soya Peptone (RVS) broth and incubated at 37 ◦C for
18–24 h [45].

Afterward, incubation of selective/differential culture was performed by streaking a
loopful of suspension from the edge of the turbid growth zone onto Xylose Lysine Deoxy-
cholate (XLD) agar and incubating at 37 ◦C for 24 to 48 h. After incubation, presumptive
Salmonella colonies were purified on XLD agar. However, agar plates were incubated for
a further 24 h and reexamined if typical Salmonella colonies were not present. Salmonella
colonies on XLD were morphologically identified as red colonies with black centers. Typ-
ical Salmonella colonies were confirmed through six biochemical tests, more specifically
Triple Sugar Iron Agar (TSI), Citrate Utilization, Indole, Methyl-Red and Voges–Proskauer
(MR-VP) and Lysine Decarboxylation tests [49–53]. These Salmonella broth cultures were
sub-cultured at two-week intervals adhering to similar procedures until molecular analysis
was performed [53].

2.6. Molecular Detection of Salmonella Enteritidis and Typhimurium

The biochemically confirmed Salmonella isolates were further characterized as Salmonella
Enteritidis or Salmonella Typhimurium by molecular detection of the sdf I gene [54] or spy
gene [55], respectively. Nearly 50% of randomly selected biochemically positive samples
from Adama and Debre Birhan areas were subjected to molecular tests. However, molecular
confirmation was only performed on Salmonella isolates of Adama and Debre Birhan regions.

2.6.1. DNA Extraction

Extraction of DNA was carried out from Tryptic Soy Broth (Becton Dickinson GmbH,
Heidelberg, Germany) and TSB sub-cultured Salmonella using a DNeasy Blood and Tis-
sue extraction kit (Qiagen, Dusseldorf, Germany) as per the instructions provided by
the manufacturer.

2.6.2. Polymerase Chain Reaction (PCR)

The Polymerase Chain Reaction (PCR) was conducted using a thermal cycler (Applied
Bio-systems; Genetic Systems Company, Watsonville, CA, USA) for amplification of the
Salmonella Typhimurium specific gene (spy) with an amplicon size of 401 bp and the
Salmonella Enteritidis specific gene (sdf l) with an amplicon size of 304 bp. The forward
and reverse primers set for the spy gene were 3′- TTA TTC ACT TTT TAC CCC TGA
A- 5′ and 5′- CCC TGA CAG CCG TTA GAT ATT- 3′, respectively. Similarly, for the
sdf l gene, the primer sets were 3′- TGTGTTTTATCTGATGCAAGAGG- 5′forward and 5′-
TGAACTACGTTCGTTCTTCTGG- 3′ reverse. The PCR reaction was standardized in a
final volume of 20 µL containing nuclease-free water (3 µL), 5 pmol/µL each forward and
reverse primers (2 µL for each), I Q TM supper mix (10 µL) (Bio-Rad Laboratories, Marnes-
la-Coquette, France) containing (Taq DNA polymerase, dNTPs, MgCl2 and PCR buffer) and
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DNA template (3 µL). Likewise, positive control (Salmonella positive), extraction control
(devoid of template DNA), and negative control (nuclease-free water) were also prepared.

DNA amplification was conducted according to the following reaction conditions:
an initial denaturation step at 95 ◦C for 5 min, followed by 35 cycles of denaturation at
95 ◦C for 30 s, annealing at 52 ◦C for 40 s, and extension at 72 ◦C for 30 s with 7 min final
extension at 72 ◦C and holding temperature at 4 ◦C until gel electrophoresis is performed.

2.6.3. Gel Electrophoresis DNA Band Visualization

After amplification, the PCR fragments were checked using agarose gel electrophoresis
and visualized using UV light. Before gel electrophoresis, agarose gel (1.5%), loading dyes,
and molecular markers (100-bp) were prepared based on the manufacturer’s recommen-
dation. The total volume of 10 µL mixture of PCR products and loading dye was loaded
on 1.5% agarose gel wells, which were prepared from 1% TAE Buffer (Tris-acetate-EDTA)
and agarose powder. Similarly, samples, positive and negative control (10 µL each), and
molecular ladders (10 µL, 100 bp) were gently loaded on the separate agarose gel wells
(lane). Consequently, the amplified DNA product was electrophoresed at 120 volts for
one hour. The migration of DNA bands from the agarose gel was visualized using a UV
gel documentation apparatus. The amplicons (bands) size of around 401 bp of the target
gene (spy) for Salmonella Typhimurium and 304 bp of the target gene (sdfI) for Salmonella
Enteritidis were visualized and captured on a UV transluminator. The presence of visible
bands at or around the expected size was considered positive, whereas the absence of
bands at the expected size was considered negative.

2.7. Antimicrobial Susceptibility Test

The disc-diffusion method was employed for antimicrobial susceptibility testing
of 10 and 15 PCR-confirmed Salmonella Typhimurium and Salmonella Enteritidis isolates
obtained from Adama and Debre Birhan areas, respectively. Based on the recommendations
of the International Committee for Clinical Laboratory Standards [56]. This test was
performed on Muller Hinton agar medium. Antimicrobial susceptibility was tested for
twelve different antimicrobials, namely ampicillin (AMP: 10 µg), azithromycin (AZM:
15 µg), ceftazidime (CAZ: 30 µg), ciprofloxacin (CIP: 5 µg), chloramphenicol (CHL: 30 µg),
erythromycin (ERT), gentamycin (GET: 10 µg), kanamycin (KAN: 30 µg), nalidixic acid
(NAL), oxytetracycline (OXT: 30 µg), sulfamethoxazole/trimethoprim (SXT: 25 µg) and
tetracycline (TET: 30 µg). Antimicrobials were chosen based on their widespread use for
the treatment and/or prevention of Salmonella infection in livestock production and human
health, as well as their accessibility in local markets [28,57,58]. Of each isolate, four to
five well-isolated colonies were transferred with the sterile loop into tubes containing
5 mL of Tryptone soya broth (OXOID, CM129, Oxoid Limited, Hampshire, UK). Then,
the broth culture was incubated at 37 ◦C for 6 h and adjusted to attain a turbidity of
0.5 McFarland standards.

Subsequently, a sterile cotton swab was immersed into the suspension, and the bacteria
were swabbed evenly over the surface of the Muller Hinton agar plate. Antibiotic disks
from each selected antibiotic were placed on the Muller Hinton Agar plate at least 15 mm
apart using sterile forceps to avoid overlapping of the inhibition zone. The plates were
incubated at 37 ◦C for 24 h. The diameter of the clear zone of inhibition was measured
using a caliper. The results of the antimicrobial sensitivity test were interpreted as sensitive,
intermediate, or resistant, according to the interpretation cut-off points for the susceptibility
status of bacterial isolates [56].

2.8. Data Management and Analysis

All data collected were entered and saved into a Microsoft Excel spreadsheet and then
transferred to STATA Version 12 (Stata Corp., College Station, TX, USA) [59] for statistical
analysis. The prevalence of Salmonella isolates was calculated using descriptive statistics, in
which the number of positives was divided by the total number of samples and multiplied
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by 100. Pearson’s Chi-square was utilized to assess the statistical significance of various
risk factors with the result of the bacteriological and PCR tests. Fisher’s exact test was used
for risk factors with few observations. With the ultimate aim of quantifying the crude and
adjusted odds ratio (OR), univariate and multivariable logistic regression analyses were
conducted, respectively. Statistical significance was declared whenever a p-value of less
than 5% (p < 0.05) was attained. With regard to determining the effect of various risk factors
on the basis of an OR 95% confidence interval, the significance of the statistical test was
assumed whenever the confidence interval excluded one of its values.

3. Results
3.1. Isolation and Identification of Salmonella Species

A cross-sectional study carried out in poultry farms in urban and peri-urban areas
of central Ethiopia disclosed an overall farm-level Salmonella species prevalence of 50.6%
(82/162). However, Adama (70%) and Debre Birhan (73.1%) scored higher prevalences,
and there was no statistically significant difference (χ2 6.3 and p > 0.05) between the farm
level prevalence and studied areas (Table 2).

Table 2. The isolation of Salmonella species on the basis of poultry farms examined in selected areas
of central Ethiopia.

Risk Factors Number Farms
Tested Number of Positives Prevalence (%) Chi-Square Value

(p-Value)

Study site

6.3
(0.098)

Adama 30 21 70.0%
Addis Ababa 56 17 30.4%
Debre Birhan 26 19 73.1%

West of Shaggar City 50 25 50.0%
Overall 162 82 50.6%

Type of production
0.3

(0.592)
Broiler 46 26 56.5%
Layer 116 56 48.3%

Overall 162 82 50.6%

Breed

1.1
(0.570)

Bovans brown 90 41 45.6%
Cobb 500 34 22 64.7%

Saso 38 19 50.0%
Overall 162 82 50.6%

Age animals

0.1
(0.950)

<2 months 50 25 50.0%
2–5 months 27 15 55.6%
>6 months 85 42 49.4%

Overall 162 82 50.6%

The present study revealed the farm-level prevalence of Salmonella species on the
basis of types of production, breed, and age of animals. Accordingly, broiler farms scored
56.5% (26/46)—a relatively higher prevalence as compared to layers, which was 48.3%
(56/116). In terms of breed, the higher prevalence was documented in Cobb at 64.7%
(22/34) followed by Saso at 50.0% (19/38) and Bovans Brown at 45.6% (41/90). The farm-
level Salmonella species prevalence indicated that chickens aged 2–5 months had 55.6%
(15/27). However, there were no statistically significant differences (p > 0.05) between the
farm-level prevalence and purpose of production, breed, and age (Table 2).

Among the types of samples examined, the highest prevalence was recorded from
fresh fecal droppings (20.2%), followed by litter (19.7%), cloacal swabs (14.5%), and 8.5%
for both feed and water. The difference in the overall sample level prevalence across the
different samples examined was statistically significant (p < 0.05) (Table 3).
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Table 3. Association of different sample types with Salmonella prevalence in different regions in
central Ethiopia based on routine bacteriological tests.

Study Areas Cloacal
Swab

Fresh Fecal
Droppings Litter Feed Water χ2Test p Value

Adama 18.5%
(48/260)

50%
(15/30)

43%
(13/30)

16.7%
(5/30)

23.3%
(7/30) 12.5 0.014

Addis Ababa 7.7%
(14/167)

7.1%
(4/56)

5.4%
(3/56)

1.8%
(1/56)

1.8%
(1/56) 4.9 0.334

Debre Birhan 13.6%
(24/176)

25%
(13/52)

23.1%
(12/52)

5.8%
(3/52)

5.8%
(3/52) 10.6 0.030

West of
Shaggar City

15.6%
(25/160)

12%
(6/50)

18%
(9/50)

14%
(7/50)

10%
(5/50) 1.3 0.859

Overall 14.5%
(111/763)

20.2%
(38/188)

19.7%
(37/188)

8.5%
(16/188)

8.5%
(16/188) 15.1 0.005

Parentheses indicate the number of positives out of the total examined.

In general, the prevalence was higher in fresh fecal droppings and litter samples of
Adama accounting for 50% (15/30) and 43% (13/30), respectively. Relatively, the prevalence
was lower in water samples examined from Addis Ababa (1.8%), Debre Birhan (5.8%) and
West of Shaggar City (10%). There was a statistically significant difference in the prevalence
of Salmonella species on the basis of type of sample in both Adama (χ2 test 12.5 and
p < 0.05) and Debre Birhan areas (χ2 test 10.6 and p < 0.05). However, considering the
overall prevalence with respect to the type of sample in central Ethiopia, the difference was
statistically significant (χ2 test 15.1 and p < 0.05) (Table 3).

A total of 1515 samples were obtained from cloacal swabs, fresh fecal droppings, litter,
feed, and water samples from 162 poultry farms in four selected areas of central Ethiopia.
Accordingly, the overall sample level prevalence of Salmonella species was 14.4% (218/1515).
The sample level bacteriological prevalence in the specific study areas including Adama,
Addis Ababa, Debre Birhan, and West of Shaggar City were 88 (23.2%), 23 (5.9%), 55 (14.3%),
and 52 (14.4%), respectively. There was a statistically significant difference in the sample
level prevalence of Salmonella species and study areas (χ2 test 46.7 and p < 0.001). Types
of production and breed were risk factors with a statistically significant difference in the
bacteriological prevalence of Salmonella species (Table 4).

Table 4. Association of different factors with Salmonella prevalence in different regions in central
Ethiopia based on routine bacteriological tests.

Risk Factors Number Samples
Tested

Number of
Positives Prevalence (%) Chi-Square Value

(p-Value)

Study site

46.7
(p < 0.001)

Adama 380 88 23.2
Addis Ababa 391 23 5.9
Debre Birhan 384 55 14.3

West of Shaggar City 360 52 14.4
Overall 1515 218 14.4

Type of production
13.2

(p < 0.001)
Broiler 492 94 19.1
Layer 1023 124 12.1

Overall 1515 218 14.4

Breed

18.2
(p < 0.001)

Bovans brown 793 95 12
Cobb 500 369 78 21.1

Saso 353 45 12.7
Overall 1515 218 14.4

Age animals

3.5
(p = 0.175)

<2 months 296 34 11.5
2–5 months 517 84 16.2
>6 months 702 100 14.2

Overall 1515 218 14.4
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3.2. Molecular Detection of Salmonella Typhimurium and Salmonella Enteritidis

Molecular detection of Salmonella Typhimurium and Salmonella Enteritidis was con-
ducted on a total of 76 randomly selected cultures, after biochemical confirmation (43 from
Adama and 33 from Debre Birhan), which represents a selection of nearly 50% of the bac-
teriologically confirmed isolates from both study areas. The findings showed the highest
molecular detection of Salmonella Typhimurium among isolates originated from fresh fecal
droppings at 58.3% (7 out of 12), followed by litter at 50% (3 out of 6), and none for water
samples. Similarly, the PCR test disclosed that 23.3% (10/43) of the isolates were positive for
the Salmonella Enteritidis specific gene (SdfI gene) (Figures S1 and S2 in the Supplementary
File) and Table 5). The findings indicated that the highest molecular detection of Salmonella
Enteritidis was among isolates that originated from fresh fecal droppings at 37.5% (3/8),
followed by cloacal swabs at 24% (6/25) and litter at 25% (1/4). However, both water and
feed samples were negative for Salmonella Enteritidis (Table 5).

Table 5. Molecular detection of Salmonella Typhimurium and Salmonella Enteritidis on the basis of the
type of samples examined from Debre Birhan and Adama, central Ethiopia.

Sample Type

No. Samples Tested for PCR Positive

Salmonella
Typhimurium
(Debre Birhan)

Salmonella
Enteritidis
(Adama)

Salmonella
Typhimurium
(Debre Birhan)

Salmonella
Enteritidis
(Adama)

Cloacal swab 9 25 4 (44.5%) 6 (24%)
Fresh fecal droppings 12 8 7 (58.3%) 3 (37.5%)

Litter 6 4 3 (50%) 1 (25%)
Feed 3 3 1 (33.3%) 0 (0%)
Water 3 3 0 (0%) 0 (0%)

Total 33 43 15 (45.5%) 10 (23.3%)

Chi-square value (p-value) 4.2 (p = 0.041)

In the multivariable logistic regression analysis, age of chickens (2–5 and >6 months)
and sample type (fresh fecal droppings and litter) were statistically significantly associated
with the bacteriological isolation and molecular detection of Salmonella at a p-value of <0.05.
Accordingly, multivariable logistic regression analysis revealed 4.8 times higher likelihood
of bacteriologically isolating Salmonella species in chickens with an age of >6 months
(p < 0.05). Similarly, the odds of isolating Salmonella species was 2.3 times (p < 0.05) among
chickens with ages of 2–5 months (Table 6). Moreover, fresh fecal droppings had higher
bacteriological isolation of Salmonella species than cloacal swab samples [OR for fresh fecal
droppings vs. cloacal swab = 1.87; 95% CI for OR = 1.22–2.88; p < 0.05]. Similarly, litter
had higher bacteriological isolation of Salmonella species than cloacal swab samples [OR
for litter vs. cloacal swab = 1.81; 95% CI for OR = 1.17–2.79; p < 0.05]. Likewise, molecular
detection of Salmonella Typhimurium and Salmonella Enteritidis was 1.51 and 1.27 times
higher (p < 0.05) in fresh fecal droppings and litter sample types, respectively (Table 6).

Table 6. Multivariable logistic regression analysis of Salmonella with various risk factors in central
Ethiopia.

Risk Factors
Bacteriological Test PCR Test

Number of
Positive

Crude Odds
Ratio (95% CI)

Adjusted Odd
Ratio (95% CI)

Number of
Positive

Crude Odds
Ratio (95% CI)

Adjusted Odd
Ratio (95% CI)

Study site
Adama 88 Ref Ref 10 Ref -

Addis Ababa 23 0.21 (0.13–0.34) 0.18 (0.08–0.43) - - -
Debre Birhan 55 0.55 (0.38–0.80) 0.65 (0.23–1.86) 15 2.75 (1.03–7.36) -

West of Shaggar City 52 0.56 (0.38–0.82) 0.55 (0.19–1.58) - - -
Type of production
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Table 6. Cont.

Risk Factors
Bacteriological Test PCR Test

Number of
Positive

Crude Odds
Ratio (95% CI)

Adjusted Odd
Ratio (95% CI)

Number of
Positive

Crude Odds
Ratio (95% CI)

Adjusted Odd
Ratio (95% CI)

Broiler 94 Ref Ref 10 Ref -
Layer 124 0.58 (0.44–0.78) 0.74 (0.21–2.53) 15 2.75 (1.03–7.36) -
Breed

Bovans brown 95 Ref Ref 15 Ref Ref
Cobb 500 78 1.97 (1.42–2.74) 3.32 (1.11–9.96) 7 0.24 (0.08–0.72) 0.23 (0.07–0.75)

Saso 45 1.07 (0.73–1.57) 0.91 (0.54–1.52) 3 0.43 (0.09–1.98) 0.33 (0.07–1.64)
Age group
<2 months 34 Ref Ref 3 Ref -
2–5 months 84 0.67 (0.44–1.03) 2.39 (0.94–6.05) 7 1.55 (0.33–7.41) -

>6 months 100 0.86 (0.62–1.17) 4.98
(2.09–11.87) 15 4.44

(1.48–13.35) -

Sample type
Cloacal Swab 111 Ref Ref 10 Ref Ref

Fresh fecal droppings 38 1.49 (0.99–2.24) 1.87 (1.22–2.88) 10 2.40 (0.76–7.55) 1.51 (0.43–5.31)
Litter 37 1.44 (0.95–2.17) 1.81 (1.17–2.79) 4 1.60 (0.37–6.92) 1.27 (0.27–6.02)
Feed 16 0.55 (0.32–0.95) 0.65 (0.37–1.15) 1 0.48 (0.05–4.65) 0.31 (0.03–3.39)
Water 16 0.55 (0.32–0.95) 0.65 (0.37–1.15) 0 - -

Key: ‘Ref’ is the reference category used (odds ratio = 1); ‘-’ analysis not computed.

3.3. Antimicrobial Susceptibility Profile of Salmonella Typhimurium and Salmonella Enteritidis

Antimicrobial susceptibility testing performed on a total of 15 PCR-positive Salmonella
Typhimurium isolates obtained from Debre Birhan, and 10 PCR-positive Salmonella En-
teritidis isolates obtained from Adama, central Ethiopia, indicated that all were resistant
or intermediately resistant to two or more of the antimicrobials. The level and extent
of resistance of Salmonella Typhimurium isolates were the highest for ampicillin (93.3%),
followed by oxytetracycline (86.7%) and sulfamethoxazole/trimethoprim (46.7%). Sim-
ilarly, the Salmonella Typhimurium isolates showed 40% resistance each for tetracycline,
kanamycin, and erythromycin. On the other hand, Salmonella Typhimurium isolates exhib-
ited 100% susceptibility to only two of the twelve antibiotics tested, namely ceftazidime
and ciprofloxacin. The majority of Salmonella Typhimurium isolates were relatively suscep-
tible to azithromycin (86.7%) and gentamycin (73.3%). The Salmonella Enteritidis isolates
revealed the highest resistance for ampicillin (90%), followed by 80% resistance against
oxytetracycline and tetracycline and nalidixic acid (70%). On the contrary, Salmonella Enter-
itidis isolates showed 100% susceptibility to ceftazidime and ciprofloxacin. The majority
of Salmonella Enteritidis isolates were relatively susceptible to azithromycin (90%) and
chloramphenicol and gentamycin (80%) (Table 7).

Table 7. Antimicrobial susceptibility profile of Salmonella Typhimurium and Salmonella Enteritidis,
central Ethiopia.

Antimicrobial Used
Disc

Concentration
(µg)

Salmonella Typhimurium
(15 Selected Samples)

Salmonella Enteritidis
(10 Selected Samples)

No. and %
Susceptible

No. and %
Intermediate

No. and %
Resistant

No. and %
Susceptible

No. and %
Intermediate

No. and %
Resistant

Ampicillin (AMP) 10 0 (0%) 1 (6.7%) 14 (93.3%) 1 (10%) 0 (0.0%) 9 (90%)
Azithromycin (AZM) 15 13 (86.7%) 0 (0.0%) 2 (13.3%) 9 (90%) 0 (0.0%) 1 (10%)
Ceftazidime (CAZ) 30 15 (100%) 0 (0.0%) 0 (0.0%) 10 (100%) 0 (0.0%) 0 (0%)
Ciprofloxacin (CIP) 5 15 (100%) 0 (0%) 0 (0%) 10 (100%) 0 (0%) 0 (0%)

Chloramphenicol (CHL) 30 10 (66.7%) 2 (13.3%) 3 (20%) 8 (80%) 0 (0.0%) 2 (20%)
Erythromycin (ERT) 15 9 (60%) 0 (0%) 6 (40%) 7 (70%) 0 (0%) 3 (30%)
Gentamycin (GNT) 10 11 (73.3%) 4 (20%) 0 (0%) 8 (80%) 2 (20%) 0 (0%)
Kanamycin (KAN) 30 7 (46.7%) 2 (13.3%) 6 (40%) 5 (50%) 2 (20%) 3 (30%)

Nalidixic acid (NAL) 30 8 (53.3%) 4 (26.7%) 3 (20%) 2 (20%) 1 (10%) 7 (70%)
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Table 7. Cont.

Antimicrobial Used
Disc

Concentration
(µg)

Salmonella Typhimurium
(15 Selected Samples)

Salmonella Enteritidis
(10 Selected Samples)

No. and %
Susceptible

No. and %
Intermediate

No. and %
Resistant

No. and %
Susceptible

No. and %
Intermediate

No. and %
Resistant

Oxytetracycline (OXT) 30 0 (0%) 2 (13.3%) 13 (86.7%) 0 (0%) 2 (20%) 8 (80%)
Sulfamethoxazole/

Trimethoprim (SXT) 25 5 (33.3%) 3 (20%) 7 (46.7%) 6 (60%) 0 (0.0%) 4 (40%)

Tetracycline (TET) 30 6 (40%) 3 (20%) 6 (40%) 2 (20%) 0 (0.0%) 8 (80%)

In this study, multi-drug resistance patterns were clearly demonstrated in the different
Salmonella Typhimurium and Salmonella Enteritidis isolates. Out of 15 tested Salmonella
Typhimurium isolates, 26.7%, 20%, and 20.0% exhibited resistance to two, three, and four
antibiotics, respectively. However, even two isolates show resistance against eight different
antimicrobials (Table 8).

Table 8. Multiple antimicrobial resistance patterns of Salmonella Typhimurium isolates (n = 15).

Number of
Antimicrobials Resistant Pattern (Number of Isolates)

Proportion of
Resistant
Isolates

Two AMP-OXT (3); AMP-KAN (1) 4 (26.7%)
Three AMP-OXT-SXT (1); AMP-ERT-GNT (1); AMP-OXT-TET (1) 3 (20%)
Four AMP-OXT-CHL-SXT (1); AMP-CHL-ERT-SXT (1); AMP-OXT-TET-SXT (1) 3 (20%)
Five AMP-OXT-ERT-TET-SXT (1) 1 (6.7%)
Six AMP-AZM-TET-KAN-ERT-NA (1); AMP-KAN-GNT-OXT-SXT-NAL (1) 2 (13.3%)

Eight AMP-AZM-CHL-ERT-KAN-TET-SXT-NAL (2) 2 (13.3%)

AMP = Ampicillin; AZM = Azithromycin; CHL = Chloramphenicol; ERT = Erythromycin; GNT = Gentamycin;
KAN = Kanamycin; NAL = Nalidixic Acid; OXT = Oxytetracycline; SXT = Sulfamethoxazole; TET = Tetracycline.

Similarly, the current study showed a multi-drug resistant profile of PCR positive
Salmonella Enteritidis isolates, exhibiting nine different resistant patterns. Accordingly,
out of nine multi-drug resistant isolates, 11.1%, 33.3%, 33.3%, 11.1%, and 11.1% revealed
resistance to three, four, five, six and nine antibiotics, respectively (Table 9).

Table 9. Multiple antimicrobial resistance patterns of Salmonella Enteritidis isolates (n = 9).

Number of
Antimicrobials Antimicrobial Resistance Pattern (No.) Proportion of

Resistance Isolates

Three AMP-NAL-TET (1) 1 (11.1%)

Four
AMP-ERT-SXT-TET (1)

AMP-ERT-NAL-TET (1)
AZM-ERT-NA-TET (1)

3 (33.3%)

Five
AMP-ERT-NAL-SXT-TET (1)

AMP-CHL-AZM-SXT-TET (1)
AMP-CHL-KAN-TET-SXT (1)

3 (33.3%)

Six AMP-CHL-KAN-NAL-SXT-TET (1) 1 (11.1%)
Nine AMP-AZM-CHL-ERT-KAN-NAL-OXT-SXT-TET (1) 1 (11.11%)

4. Discussion

The findings of the present cross-sectional study, for the first time, indicated a higher
overall farm-level prevalence of Salmonella species, accounting for 50.6% (82/162) in poultry
farms situated in urban and peri-urban areas of central Ethiopia. The present finding of
50.6% of farm-level Salmonella prevalence was higher than a report from Iran at 36.4% [60],
Algeria at 34.37% [48] and Uganda at 20.7% [61]. Low levels of farm prevalence of Salmonella
were recorded from developed parts of the world, e.g., Denmark at 1.8% [62], Poland at
1.57% [63], and France at 8.6% [64]. On the other hand, the current farm-level prevalence
of Salmonella was in agreement with Nigeria at 47.9% [65] and Vietnam at 46.3% [66]. The
occurrence of low levels of Salmonella from European and developed countries can be
linked to the application of specific control programs [67], which are deficient and irregular
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in developing countries like Ethiopia. The high Salmonella prevalence in the present
research was attributed to the most likely contributing factor that all the poultry farms
were medium-scale carrying thousands of chickens and the husbandry practices associated
with intensification permit easy propagation of the bacteria within the farm. In addition,
the level of biosecurity implementation in poultry farms in urban and peri-urban parts
of central Ethiopia was highly compromised, favoring the occurrence of various diseases,
including Salmonella [26,68].

The findings of the current study showed no statistically significant differences be-
tween the farm-level prevalence of Salmonella and the examined risk factors (study area,
purpose of production, breed, and age). The widespread occurrence of the bacteria, as well
as the relaxation of biosecurity practices in central Ethiopia, contributes to almost equal
exposure to the pathogen [26,69,70]. In addition, all the studied farms had uniformity in
terms of farm size being medium scale and the production system involving intensive man-
agement with a deep litter housing system. This might have resulted in narrow differences
in the prevalence of Salmonella in the above-mentioned risk factors.

Based on the traditional culture method, Salmonella species was identified in 14.4% of
the 1515 samples collected from the different selected areas of central Ethiopia. This finding
was relatively consistent with earlier reports from Ethiopia at around 15% [68,71,72]. On
the contrary, our findings were lower than previous studies carried out in the USA at
38.8% [73], in India at 55% [74], Bangladesh at 31.25% [75], and Uganda at 20.7% [61]. This
finding is greater than previous studies [76,77], reporting 2.98% and 9.27% in Jimma and
Kefa of southwestern Ethiopia, respectively, and 9.84% in Morocco [78]. However, the
lowest level of occurrence of Salmonella was observed in European countries, accounting
for 2.34% [79,80]. The observed variations in the sample and farm level prevalence of
Salmonella species could be attributed to factors such as poultry management practices, the
housing system of chicken, discrepancies in the biosecurity status, absence of strict disease
control programs, scale of farms and hygienic conditions, and intermittent shedding of
Salmonellosis [81]. In connection to this, all farms investigated in the present study had
deep litter housing systems, and the disregard for sanitary settings might favor widespread
Salmonella infection [82,83].

The findings of the present study disclosed three risk factors (namely age, breed, and
sample type) having a statistically significant association with bacteriological isolation of
Salmonella species. Consequently, the odds of isolation of Salmonella species were 4.98 times
and 2.39 times (p < 0.05) among chickens with ages of >6 and 2–5 months, respectively. This
implies that the chance of acquiring Salmonella from the environment increases with age.
This is in agreement with earlier studies from Bangladesh [84]. On the contrary, a higher
prevalence of Salmonella in young chicks was reported from Iran [60]. The observed dis-
crepancies might be attributed to disparities in the production process, isolation technique,
and variation in the level of biosecurity practices.

Although differences in the sample prevalence of Salmonella species were observed
in the different breeds (21.1% for Cobb 500; 12.7% for Saso and 12% for Bovans Brown), it
is difficult to establish if susceptibility is linked to genetic variations. More importantly,
the farm management system, production types, and level of biosecurity practices could
potentially contribute to the differences.

Regarding the isolation and identification of Salmonella species on the basis of sample
type, the prevalence showed variability being higher in fresh fecal droppings (20.2%)
followed by litter (19.7%) and cloacal swabs (14.5%). However, consistent findings were
noted in the case of feed (8.5%) and water (8.5%) samples. The results of the present study
were higher than earlier reports from Modjo, central Ethiopia, where the isolation from
cloacal swabs, feces, litter, and feed accounted for 0.3%, 5.5%, 3.4%, and 0% [30] and 15.2%
from feces from six countries of Latin America [85]. On the other hand, this finding is in
line with previous studies conducted in southern Ethiopia, which revealed 14.8% in cloacal
swabs [71], and Nigeria, which revealed 23% in feces and 20.3% in litter [86]. Isolation of
Salmonella isolates from fresh fecal droppings (20.2%) and litter (19.7%) in the present study
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is much lower than the 59.1% reported from poultry litter samples in Nigeria [87] and
fresh fecal droppings (92%) from Spain (46.09%) [88]. Similarly, reports from Bangladesh
showed higher findings with respect to cloacal swabs (46.09%), feed (18.75%) and water
(17.19%) [75]. Likewise, a previous report from Egypt disclosed that 55% of cloacal swabs
were positive for Salmonella species [89]. The higher isolation of Salmonella species in fecal
droppings might be due to the fact that the gastrointestinal system is thought to be a
potential source of contamination during the intermittent shedding of the pathogen with
feces from carrier chickens [90,91]. The detection of Salmonella in water and feed, despite
lower concentrations, signals a risk of bacterial contamination due to inadequate hygiene
management at the farm level, as well as within the feed supply chain. This underscores
the importance of implementing robust hygiene practices in poultry operations. Water
sources, particularly well water or surface water, can become contaminated right from the
supply or through bacterial transmission from the chickens themselves [92].

In alignment with the findings of the current study, globally, Salmonella Typhimurium
and Salmonella Enteritidis are the most predominant isolates responsible for foodborne infec-
tions resulting from the consumption of contaminated poultry products in the past couple
of decades [17,55,93,94]. Salmonella Typhimurium is one of the most threatening serotypes
of public health importance and is commonly associated with antibiotic resistance [95]. The
50% detection of Salmonella Typhimurium by PCR test in the present study was found to
be slightly comparable to 48.9% from Vietnam [96], 46.4% from South Africa [95], 43.35%
from Morocco [97], and 40% from Greece [98]. On the contrary, this finding is a lot higher
than that of Iran [99], Turkey [100], Singapore [101] and Egypt [102], who reported 1.6%,
9.4%, 18.1%, and 33%, respectively. The results from this study revealed that the existence
of Salmonella in poultry farms was affected by numerous risk factors and that deep litter
systems favor the persistence of Salmonella and higher chances of infection [65,103]. The
level of application of biosecurity practices could also significantly contribute to the ob-
served variation in different countries [26,104]. Salmonella Typhimurium, being the most
prevalent isolate in poultry, is well known for its capacity to infect a wide range of animals
and for its ability to survive in the environment for long periods, making it one of the most
common causes of Salmonellosis [105,106].

The gene sdf I was reported to be found only in Salmonella Enteritidis and designed
as a strong marker for these Salmonella serovars [107]. The level of molecular detection of
Salmonella Enteritidis from the present study was 23.8%. This finding is consistent with
the previous reports from Pakistan at 23.3% [10] and Turkey at 21.9% [100], whereas the
current finding is much greater than the earlier reports of 7.1% from Ethiopia [108] and
13% from South Africa [109]. The high isolation of Salmonella Enteritidis may be because
it is more invasive than other serotypes. However, no statistically significant association
was observed between the level of molecular detection of Salmonella Typhimurium and
Salmonella Enteritidis and all the risk factors considered in the current study. This might be
due to the small number of samples subjected to PCR tests.

The findings of the antimicrobial susceptibility test disclosed that all PCR-confirmed
Salmonella Typhimurium and Salmonella Enteritidis isolates were 100% susceptible to Cef-
tazidime and Ciprofloxacin. On the contrary, all Salmonella Typhimurium and Salmonella
Enteritidis were noted to express over 80% resistance to ampicillin, oxytetracycline, and
tetracycline among the tested antimicrobials. This finding coincides with previous studies
carried out in Ethiopia, which reported resistance of Salmonella isolates to ampicillin of
97.8% [71] and 100% [110,111]. Interestingly, there has been a practice of extensive an-
timicrobial usage in poultry farms in central Ethiopia [58]. A recent study carried out in
Ethiopia revealed tetracyclines, aminoglycosides, and trimethoprim-sulfonamides were
frequently used classes of antibiotics [112].

In contrast to the present study, previous reports from Uganda [61] and Bangladesh [113]
revealed that 50.0% and 100% of the Salmonella isolates were resistant to ciprofloxacin, re-
spectively. The high level of resistance observed to nine tested antimicrobials is alarming,
suggesting that critical antibiotic classes are becoming less effective. This poses challenges in
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selecting suitable drugs for treating bacterial diseases in poultry. This finding sheds light on
the potential consequences of indiscriminate antimicrobial use in poultry farming. The current
scenario of antimicrobial resistance is increasingly recognized as a global issue affecting both
human and animal health. A key contributing factor to bacterial resistance is the extensive
use of antimicrobials in both animal farming and human medicine, coupled with insufficient
advocacy and monitoring of antimicrobial utilization [58,112–116]. The use of antimicrobials
without prescription and improper dispensing might favor selection pressure that increases
the maintenance of resistance genes in bacteria [117]. The present study revealed a multi-drug
resistant profile of PCR-confirmed Salmonella Typhimurium and Salmonella Enteritidis isolates.
Accordingly, nine of the eleven tested antimicrobials demonstrated 12 different resistance pat-
terns. These isolates exhibited resistance to two to nine different antibiotics. Such widespread
and high degrees of multi-drug resistance have also been demonstrated in other developing
countries, such as Egypt [118], Ghana [119], Nigeria [120], Uganda [61], and Senegal [121].

Among other factors, the unregulated access to antimicrobials and the prophylactic
use of these drugs starting from day-old chicks can contribute to the selection pressure
for resistant isolates. In most instances, broad-spectrum antibiotics are widely used for
the treatment of infectious diseases, including Salmonellosis. Such frequent and long-
term use of broad-spectrum antibiotics is noted to favor the development of antimicrobial
resistance in Ethiopia [30,71], Nigeria [122], and China [123]. In most parts of Africa,
including Ethiopia, farmers are absolutely free to use antimicrobials for treatment as
well as prophylactic purposes to their perceived benefit [124–126]. The development of
antimicrobial resistance in Ethiopia is further exacerbated by the practices of accessibility
of antibiotics without a valid prescription and without performing the required diagnostic
tests. Such indiscriminate use of antimicrobials along with the absence of rational drug use
policy and strict regulations greatly contribute to the emergence of resistance [112,127].

5. Conclusions

The significant isolation and identification of Salmonella Typhimurium and Salmonella
Enteritidis in poultry and on poultry farms in selected areas of central Ethiopia, coupled
with the emergence of multi-drug-resistant profiles as revealed by our study, underscore
the urgent need for interventions and public engagement initiatives within the sector. This
is particularly critical given the zoonotic potential of these Salmonella species. To effectively
manage poultry Salmonellosis, it is imperative to implement practical control strategies that
enhance biosecurity measures at various production stages. Additionally, ongoing efforts to
raise awareness and provide training for farmers and farm workers on the risks of zoonotic
diseases and the transmission of antimicrobial-resistant isolates are highly recommended.
Establishing stringent and judicious drug use policies, along with interventions to curb the
indiscriminate use of antimicrobials, is essential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12040767/s1, Figure S1: Electrophoresis of Spy
gene for Salmonella Typhimurium isolates in 1.5 % agarose gel; Figure S2: Conventional PCR for
Salmonella Enteritidis.
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