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Abstract: Combination antiretroviral therapy (ART) suppresses viral replication to undetectable
levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV
(PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected
cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks
to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and
-promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV
reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we
review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological
targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt
HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences
between the mechanisms regulating HIV-1 and HIV-2 expression.

Keywords: viral persistence; HIV; HIV transcription; HIV nuclear export; HIV latency; latency-reversing
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1. Introduction

An estimated 39 million people worldwide are living with HIV, 1.7 million of them
being children from 0 to 14 years old and 2 million of them living with HIV-2. With an inci-
dence of 1.3 million new infections in 2022, the HIV pandemic remains an important global
health problem [1]. Since the introduction of antiretroviral therapy (ART), the infection
has transitioned from a lethal to a chronic disease, and the incidence has been gradually
decreasing [2]. Although ART controls HIV replication and dramatically reduces the chance
of developing AIDS, the availability of a universal cure for HIV seems a little bit far. This is
mainly due to the rapid establishment of viral reservoirs that escape the immune response
and, therefore, remain latent. Due to these viral reservoirs, most ART-suppressed people
living with HIV (PWH) after ART discontinuation would experience viral rebound, forcing
them to be on ART indefinitely.

Understanding the mechanisms that control HIV expression will provide insights
into how HIV latency, pathogenesis, and persistence are regulated. In particular, HIV
latency, which is a major barrier to a cure, is maintained by combinatorial mechanisms at
transcriptional and post-transcriptional levels.

The disruption of viral transcription is postulated as a potential target for therapeutic
intervention, among the different strategies aimed at curing HIV [3]. Specifically, by acti-
vating the expression of latent proviruses, known as “shock and kill”, or by promoting the
silencing of HIV transcription, known as “block and lock”. On the one hand, pharmaco-
logical induction of latent HIV transcription began with the use of epigenetic modulators,
with the hope of generating viral proteins that could activate specific cytotoxic responses
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to reduce the viral reservoir [4,5]. Subsequently, many other pharmacological compounds
with different mechanisms of action have been proposed using the same strategy as phar-
macological latency-reversing agents (LRAs) [6]. However, they mainly differ in the stage
of HIV transcription that they target to reactivate the latently infected cell. On the other
hand, the mechanistically opposite strategy, which pursues the definitive silencing of HIV
transcription, includes a more limited number of latency-promoting agents (LPAs) with a
lower diversity in their mechanisms of action [7–15].

In conclusion, HIV cure strategies based on the disruption of viral transcription are in
constant evolution and represent the scientific focus of multiple experimental interventions
addressed to impact HIV latency. Here, we review the cellular and viral factors that regulate
HIV transcription and post-transcription mechanisms, their pharmacological interference
using novel approaches to tackle viral latency, and their parallels with HIV-2.

2. Cellular and Viral Factors Regulating HIV Transcription and Nuclear Export

A summary of the cellular and viral factors regulating HIV transcription stages (initia-
tion, elongation, polyadenylation, and multiple splicing) and nuclear export are described
in the following sections and represented in Figure 1.

2.1. Initiation

HIV-1 transcription initiation starts in the trans-activator response element (TAR)
of the 5′ long terminal repeat region (LTR) and is dependent on different cellular host
factors. Transcription initiation is mainly controlled by cis-regulatory elements along 5′LTR.
These cis-regulatory elements are recognized by either constitutively expressed transcrip-
tion factors such as specificity protein 1 (Sp1) [16,17] and o-binding protein 1 (Oct1) [18],
and inducible transcription factors such as nuclear factor-kappa B (NF-κB) [19,20], activator
protein 1 (AP-1) [16,17], and the nuclear factor of activated T cells (NFAT) [16,17]. Therefore,
the initiation of viral transcription depends on the balance between transcription factors
that are activators or repressors and their binding to the 5′LTR loop. This way, only when
activator transcription factors are bound to the viral cis-regulatory elements will the cellular
RNA polymerase II (RNAPII) machinery be recruited and halted until the elongation step
begins [21].

2.2. Elongation

The elongation process is mainly driven by human positive transcriptional elongation
factor b (P-TEFb) and the viral transactivator Tat. Tat and P-TEFb, through many different
steps (reviewed in [21]), are responsible for the phosphorylation of the carboxy terminal
domain (CTD) of RNAPII, thereby switching the pausing state of RNAPII to an active elon-
gation [22]. Moreover, P-TEFb and Tat undergo multiple cycles of association/dissociation,
allowing potent expression of the HIV-1 genome by repeating their function in a loop [23].

2.3. Polyadenylation

HIV mRNA follows the same polyadenylation process as other cellular mRNAs.
The polyadenylation process starts with an endonucleolytic cleavage by CPSF3. Then,
the poly(A) polymerase (PAP) finishes the process by adding 100 to 250 adenylate residues
(reviewed in [24]). In order for this process to start, CPSF3 needs to recognize the cleavage
site of the mRNA. This cleavage site consists of an AAUAAA or similar hexanucleotide
and a 25–30 base short U- or GU-rich zone that can be located either downstream or
upstream of the hexanucleotide. Among the elements that participate in this process,
there are 13 core elements and almost 80 auxiliary elements that, together with the core
elements, are responsible for the polyadenylation of mRNAs [25]. Moreover, HIV has two
polyadenylation sites, one at each LTR region, either 5′ or 3′ [26]. It is essential that the
virus suppresses the upstream 5′ polyadenylation signal, or there will be no open reading
frame for some mRNAs, constituting one of the mechanisms promoting HIV latency [27]
and, therefore, an interesting therapeutic target (reviewed in [24]).
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2.4. Multiple Splicing

Splicing in HIV is fundamental in order to produce competent viral particles. HIV-1
first needs to generate a 9 kb unspliced vRNA (HIV-1 US vRNA) encoding the full viral
genome, which will serve as the genomic RNA that will be packaged in new virions.
But still, splicing in HIV-1 is essential in order to produce both structural components of
the viral particles and accessory proteins. Thus, this 9 kb long transcript is processed by
the spliceosome cellular machinery and subjected to alternative splicing that will produce
either the 4 kb single spliced vRNA (HIV-1 SS vRNA) or the 2 kb multiply spliced vRNA
(HIV-1 MS vRNA) (reviewed in [28]). HIV-1 MS vRNAs are basically produced in the early
stages of HIV transcription since they encode for Tat, which enhances HIV transcription
initiation, and Rev, which will be responsible in part for the translocation of HIV-1 US vRNA
from the nucleus to the cytoplasm [28]. It has been recently reported that PCID2 establishes
blocks to alternative splicing during HIV-1 latency and misregulates alternative splicing in
cells obtained from PWH [29]. However, there is limited knowledge of the specific cellular
molecules and proteins involved in HIV splicing. In trying to better understand the host
factors involved in HIV-1-splicing, a recent study showed several genes upregulated and
downregulated in association with HIV splicing [30]. Among them, four were involved
specifically in the minor mRNA splicing pathway [31–33], of which three were upregulated
(RNAU4ATAC, SNRNP25, SNRPD2) and one was downregulated (RNAU4ATAC11P).
These results suggested that the minor mRNA splicing pathway might be involved in
HIV splicing. Therefore, disruption of the HIV-1 splicing process is also an interesting
therapeutic approach for both LRAs and LPAs.

2.5. Nuclear Export

Each of the three types of vRNA resulting from splicing (HIV-1 US, SS, or MS vRNA)
uses a specific mechanism for its translocation from the nucleus to the cytoplasm. During
the early phases of HIV transcription, the shortest HIV-1 MS vRNA transcripts are is
exported through the nuclear pores via the canonical NXF1/NXT1-mediated export [34,35].
This MS vRNA will produce Rev, a protein that will be key for the export of both SS
and US HIV-1 vRNA. Rev contains a nuclear localization signal (NLS) that allows it to
return to the nucleus by interacting with Importin B [36]. It will then be bound to the
Rev response element (RRE) and mediate the long vRNA export via a CRM-1-dependent
mechanism [37,38]. Therefore, halting the export of MS vRNA in order to abrogate Rev
function or directly block the export of SS and US vRNA from the nucleus to the cytoplasm
are potential therapeutic approaches.

2.6. Repressive Transcriptional Factors

There are multiple host transcriptional repressor factors known to be involved in
the negative regulation of HIV transcription [21,39]. In this context, several studies have
demonstrated that the restriction factor TRIM22 impairs HIV-1 transcription [40–44]. Specif-
ically, it inhibits the binding of Sp1 to the HIV-1 promoter by forming protein complexes
with other cellular proteins that bind and sequester Sp1 [45]. Another example is the
COUP-TF interacting protein 2 (CTIP2), also known as BCL11B, which represses HIV-1
transcription initiation by establishing a repressive epigenetic environment in the LTR [46]
and by repressing TAT-mediated transactivation in a complex with NuRD [47]. Another
study showed that KLF2 and KLF3 repressed HIV-1 and HIV-2 transcription by direct
binding to the LTR [48]. Moreover, the negative elongation factor (NELF) induces RNAP
II promoter-proximal pausing, limiting HIV expression [49]. It has also been shown that
ZBTB2 binds the HIV-1 promoter, recruiting histone deacetylases (HDACs) and repressing
HIV-1 transcription [50]. Furthermore, it has been recently reported that PCI domain-
containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2)
complex, binds to the latent HIV-1 LTR as a transcriptional repressor [29]. Moreover, PCF11,
a protein involved in 3′ end processing of mRNA and transcription termination of protein-
encoding genes [51,52], causes premature termination of HIV-1 transcription [53]. Also,
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a study recently showed that WDR82 associates with PCF11 at a proximal RNAPII elonga-
tion checkpoint on the HIV-1 promoter, enforcing premature transcription termination [54].
Furthermore, another recent study observed that the epigenetic repressor TASOR, a protein
of the Human Silencing Hub (HUSH) complex, cooperates with the RNA deadenylase
CCR4–NOT complex scaffold CNOT1 and synergistically represses HIV-1 expression [55].
Therefore, increasing the expression of these transcriptional repressor factors may also
promote HIV-1 latency.
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Figure 1. HIV post-transcriptional steps. HIV transcription initiation depends on the balance of certain
host transcription factors (activators or repressors). Once initiated, Tat and P-TEFb are responsible
for recruiting and activating RNA polymerase II (RNAPII), which will start HIV elongation. During
HIV elongation, the spliceosome will be recruited around the RNA generated and start the splicing
process, generating three major products: unspliced HIV vRNA (US vRNA) that serves as new HIV
virion genome; singly spliced HIV vRNA (SS vRNA), used to produce structural and accessory viral
proteins and multiply spliced HIV vRNA (MS vRNA), essential to produce Tat and Rev proteins.
Then, the two vRNA will be capped and polyadenylated by the cell machinery. The last step is
the HIV vRNA nuclear export; on the one hand, MS vRNA will be exported via the NFX1/NXT1
pathway through the nuclear pores (NPC). As MS vRNA is transported to the cytoplasm it will start
the translation step in order to produce Rev and Tat. Lastly, Tat can return to the nucleus to enhance
viral transcription, while Rev will also return to the nucleus via Importin B and bind to the RRE to
export US vRNA to the cytoplasm via the canonical CRM1-mediated pathway.

3. Pharmacological Disruption of HIV Transcription and Nuclear Export

On the one hand, many latency-reversing agents (LRAs) have been investigated for
their efficacy in inducing virus production from latently infected CD4+ T cells in vitro and
in vivo [56–60]. Among the LRAs tested, histone deacetylase inhibitors (HDACi) induce
chromatin decondensation, BET bromodomain inhibitors (BETi) release of the positive tran-
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scription elongation factor b (P-TEFb), and small-molecule antagonists of cIAP1 (SMAC
mimetics) activate the non-canonical NF-κB signaling pathway, which leads in all three
cases to subsequent relief of transcriptional repression in the 5′LTR and activation of HIV
expression [61–67]. However, while LRAs such as HDACi have been shown to cause
modest in vivo increases in cell-associated HIV transcripts (including initiated, 5′elongated,
unspliced, and/or polyadenylated HIV transcripts) and transient increases in plasma
viremia [60], they failed to increase multiply spliced HIV RNA (msRNA) in vitro or in vivo,
which is a marker of productive infection [68–70]. Importantly, these LRAs also failed
to induce a sustained reduction in the frequency of latently infected cells in vivo. These
results may be explained because HIV expression is also further restricted by inefficient
splicing [71] and possibly defects in the nuclear export of HIV RNA [72]. One interesting
target for LRAs is Tat, essential for HIV vRNA elongation. Recent work showed a potent
viral reactivation with the use of nanoparticles containing a truncated variant of the Tat
protein, known as T66 [73,74]. Nanoparticles containing Tat RNA used in previous works
showed that using Tat protein was not that effective, as Tat is known to become trapped
in endosomes [75]. Another potential family of compounds that may act as LRAs are
small molecule mimetics of the ubiquitin ligase BIRC2 (cIAP1) [76], a repressor of the non-
canonical NF-kB pathway, which increased HIV-1 expression without mediating systemic
T cell activation. For example, ciapavir induced activation of HIV-1 reservoirs in vivo in a
humanized mouse model [67], and AZD5582 increased HIV- and SIV-RNA expression in
the blood and tissues of ART-suppressed humanized mice and rhesus macaques [66].

On the other hand, novel compounds, known as latency-promoting agents (LPAs),
have recently been developed to permanently shut off the transcription of HIV [7,77,78].
LPAs include different compounds that, by targeting different viral or cellular proteins, im-
pair HIV-1 reactivation. Didehydro-Cortistatin A (dCA) [8,11,79], a Tat inhibitor, suppresses
SIV replication and reactivation [80] and prevents HIV-1 reactivation from latency [81].
Unfortunately, Tat inhibitors are not clinically available, and a new generation of chemical
derivatives, which bind and inhibit an active and specific Tat conformer, is needed [11].
Tyrosine kinase inhibitors [82], such as dasatinib, which, by preserving SAMHD1 activ-
ity, protected humanized mice from acute HIV-1 infection [83] and disturbed the HIV-1
reservoir reactivation and reseeding in ART-suppressed individuals [82]. Manidipine hy-
drochloride, a suppressor of gene expression noise, substantially reduced latent HIV-1
reactivation in vitro [12]; therefore, modulators of gene expression noise could be used
in strategies to limit spontaneous reactivation of latent HIV-1. This is also the case of
inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host
cells, which were discovered by screening for gene expression noise, and they promote
HIV-1 latency in vitro [7]. Senexin A is an inhibitor of the cyclin-dependent protein ki-
nases CDK8/CDK19, which are required for expression from 5′HIV-1 LTR, and suppresses
proviral reactivation in vitro [84].

An interesting HIV transcription stage to be tackled by LPAs could be the polyadeny-
lation step, although its principal regulation by the cellular machinery suggests that its
approach could be cytotoxic. Nonetheless, a few studies have proposed interventions
to disrupt vRNA polyadenylation. Particularly, a study showed that a mutation in the
splice donor site promoted the activation of a cryptic polyadenylation site (CpA), causing
decreased HIV transcriptional activity [85].

Additional targeting processes for both HIV latency reactivation and silencing is the
splicing step. In this regard, few compounds have been investigated as potential LRAs
or LPAs. A study showed that digoxin, a drug widely used in congestive heart failure
treatment [86], suppresses HIV-1 replication by altering viral RNA processing [87], while
another study suggested that Filgotinib, a Janus kinase (JAK) inhibitor, suppresses HIV-1
transcription by inhibiting T cell activation and by modulating RNA splicing [88]. In-depth
investigation and high-throughput screening of potential compounds impacting RNA
splicing should be performed to find novel efficient LRAs or LPAs that may modulate this
HIV transcription stage.
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The nuclear export step constitutes the last step of the transcription that can be per-
turbed. Because the adequate balance between US and SS vRNA depends on the Rev–RRE
interaction, many LPAs tackle this specific step through mechanisms that involve inhibiting
Rev from returning to the nucleus [89,90] or disrupting the Rev–RRE interaction [91–94].
The advantage of intervening in the Rev–RRE interaction is its viral specificity, which,
in principle, would limit toxicity. Therefore, the Rev–RRE interaction or the Rev–CRM1
interaction has been widely studied, and several LPAs have been described, such as Lepto-
mycin B [91], which targets the Rev–CRM1-mediated export, or Benfluoron and its analogs,
which target the Rev–RRE interaction through binding to RRE [92,95]. Furthermore, it has
been shown that Ivermectin can disrupt the nuclear import of Rev by inhibiting Importin-
mediated nuclear import and thereby preventing the export of SS and US vRNA by Rev [89].
Despite the fact that the above-mentioned compounds have demonstrated effective an-
tiviral effects in vitro, their intrinsic toxicity has hindered their use in clinical trials [92,95].
Finally, obefazimod (formerly context, the small molecule ABX464) showed important
inhibition of HIV replication by binding to the Cap binding complex (CBC) and preventing
Rev–RRE mediated transport of US vRNA to the cytoplasm, also altering its splicing and
reducing HIV initiation and elongation [96–98]. Still, looking for novel compounds target-
ing the Rev-mediated nuclear transport is an active area of research. A summary of the
LRAs and LPAs evaluated in vitro, in vivo, and in clinical trials is shown in Tables 1 and 2,
and in Figure 2.

Table 1. List of LRAs evaluated in pre-clinical or approved status.

Compound Family of Compounds Type Target Clinical Status References

Vorinostat Histone deacetylase
inhibitors (HDACi) LRA Histone

deacetylase FDA approved [56,57,63,69,99]

Romidepsin Histone deacetylase
inhibitors (HDACi) LRA Histone

deacetylase FDA approved [58,60,65,70,99]

Panobinostat Histone deacetylase
inhibitors (HDACi) LRA Histone

deacetylase FDA approved [10,59,65,69,99]

Belinostat Histone deacetylase
inhibitors (HDACi) LRA Histone

deacetylase FDA approved [99]

Apabetalone
(RVX-208)

Bromodomain
inhibitors (BETi) LRA BD2/BRD4 Pre-clinical [100–102]

CPI-203 Bromodomain
inhibitors (BETi) LRA BRD4 Pre-clinical [103]

I-BET-151 Bromodomain
inhibitors (BETi) LRA BD1, BD2/BRD4 Pre-clinical [62,104]

MMQO Bromodomain
inhibitors (BETi) LRA BRD2-4/BRDT Pre-clinical [105]

OTX-015 Bromodomain
inhibitors (BETi) LRA BRD2-4/BRDT Pre-clinical [106,107]

PFI-1 Bromodomain
inhibitors (BETi) LRA BRD2/BRD4 Pre-clinical [100]

UMB-136 Bromodomain
inhibitors (BETi) LRA BD1/BRD4 Pre-clinical [108]

Ciapavir Small molecules mimetic
of cIAP1 LRA cIAP1 Pre-clinical [67]

SBI-0637142;
Debio-1143,
AZD5582

Small molecules mimetic
of cIAP1 LRA cIAP1 Pre-clinical [76]

Nanoparticles
containing

Tat mRNA (T66)
Tat agonists LRA Tat Pre-clinical [73,74]
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Table 2. List of LPAs evaluated in pre-clinical or approved status.

Compound Family of Compounds Type Target Clinical Status References

didehydro-Cortistatin A
(dCA) Tat inhibitors LPA Tat Pre-clinical [11]

Dasatinib Tyrosine kinase inhibitors (TKIs) LPA SAMHD1 Pre-clinical [109]

Manidipine hydrochloride Noise suppressor of gene expression LPA Calcium channel
blocker Pre-clinical [12]

TE-2, TE-10, TE-14, TE-20 Thioredoxin reductase inhibitors LPA
Thioredoxin

reductase redox
pathway

Pre-clinical [110]

Senexin A Cyclin-dependent protein kinases
inhibitors (CDKi) LPA CDK8/CDK19 Pre-clinical [84]

Filgotinib Janus kinase (JAK) inhibitor
splicing modulator LPA JAK

HIV mRNA FDA-approved [88]

Digoxin Splicing modulator LPA HIV mRNA FDA-approved [87]
Leptomycin B Nuclear export inhibitor LPA CRM1 Pre-clinical [91,93]

Benfluoron Nuclear export inhibitor LPA Rev-RRE Pre-clinical [92]
Ivermectin Nuclear export inhibitor LPA Importin B Pre-clinical [89]

4. Genetic and Epigenetic Modulation to Impact HIV Transcription

On the one hand, the development of gene editing tools, including zinc finger nucle-
ases (ZFNs) [111], transcription activator-like effector nucleases (TALENs) [112], and the
CRIPSR-Cas9 system [113], has created novel strategies to tackle viral latency in the field
of HIV persistence. These advancements may include (a) directly targeting the virus in
its integrated or non-integrated forms, (b) modulating its transcription as a “block and
lock” [114] or “shock and kill” [115] strategies by using catalytically inactive Cas9 [116,117],
(c) targeting host genes involved in the viral replication cycle (such CCR5) [118], and
(d) discovering novel host molecular genes involved in the viral replication cycle using
CRISPR as a screening tool [119].One of the novelties brought by the CRISPR-Cas9 system
is the simpleness of the model, as CRISPR-Cas9 technology uses RNA as a guide to target
directly objective genes, making it easier to design than ZFNs and TALENs. CRISPR-Cas9
is being widely used in the HIV field in applications ranging from the modulation of HIV
transcription [114] to the discovery of host genes involved in the viral replication cycle [119].
Currently, there are two ongoing clinical trials using CRIPSR-Cas9 in HIV. However, only
one (NCT05144386) has a recorded status. In this trial, the aim is to evaluate EBT-101, which
is designed to excise HIV proviral DNA using CRISPR-Cas9 and two guide RNAs (gRNAs)
targeting LTRs and Gag regions and is delivered to cells as a one-time treatment via an
adeno-associated virus (AAV), administrated intravenously to aviremic adults on stable
antiretroviral treatment. EBT-001 (a homolog of EBT-101 to target SIV) has already been
successfully used to eliminate integrated SIV DNA in non-human primates [120]. EBT-001,
similar to EBT-101, consists of an adeno-associated virus serotype 9 (AAV9) encapsulated
in an all-in-one CRISPR construct that simultaneously expresses the SaCa9 endonuclease
and dual gRNAs that targets LTRs and the Gag regions. Therefore, both EBT-101/001 can
generate three different deletions in the HIV/SIV integrated genome: 5′LTR to Gag, Gag to
3′LTR, and 5′LTR to 3′LTR. Furthermore, in a recent study, EBT-001 showed no off-target
effects or abnormal pathology in non-human primates (macaques) [120]. These positive
results prompted a clinical trial, which is currently ongoing (NCT05144386). Several studies
have evaluated the applicability of catalytically inactive Cas9 to reactivate or silence HIV
and SIV transcription [114,121–128], but all these studies are still in the pre-clinical stage.

On the other hand, the discovery of new compounds that are integrase inhibitors
and contribute to HIV integration site selection has opened novel potential mechanisms
to regulate HIV transcription. In this regard, LEDGINs are small-molecule integrase
inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially
contributes to HIV integration site selection. These compounds are potent antivirals
that inhibit HIV integration and maturation, but, in addition, they lead pre-integrated
HIV DNA away from transcriptionally active regions and towards a more repressive
chromatin environment of the cellular genome. This modulation of the HIV integration site
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demonstrated the establishment of more latent and more refractory reactivation proviruses
in vitro [129], supporting the use of these compounds as potential indirect LPAs.

Furthermore, microRNAs (miRNAs) are small non-coding RNAs that bind mRNAs
based on sequence complementarity to regulate protein expression as a mechanism of
post-transcriptional epigenetic regulation [130–132]. It has been extensively demonstrated
that cellular RNA interference machinery, such as miRNAs, play key roles in controlling
viral infections [133,134]. Several cellular miRNAs have been shown to play a direct or
indirect role in modulating HIV-1 replication (reviewed in [135,136]). Specifically, focusing
on HIV transcriptional and post-transcriptional regulation, there is not much research
published yet. A study showed that miR-29, which directly targets the 3′UTR of viral
mRNAs, can bind HIV-1 mRNA and increase its interaction with proteins involved in
post-transcriptional processes, such as mRNA degradation, inhibiting translation of viral
proteins and viral replication [137]. Other studies found that miR-27b, miR-29b, miR-150,
miR-198, and miR-223 inhibit the expression of Cyclin T1, an important component of
the eukaryotic RNA polymerase II elongation complex, and reduce its protein levels in
different cell types, which decreases HIV-1 transcription [138,139]. Another study observed
that the miRNA cluster miR-17/92 targets p300-CREB binding protein associated factor
(PCAF), which is important for Tat acetylation and HIV-1 LTR-driven transcriptional up-
regulation, thus decreasing the efficiency of HIV-1 transcription [140]. Hence, the use of
specific miRNA mimics or inhibitors might be an attractive novel strategy to impact HIV-1
transcriptional and post-transcriptional regulation and impact latency.

A schematic representation of pharmacological, genetic, and epigenetic modulation of
HIV transcription is shown in Figure 2.
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5. What Can We Learn from HIV-2?

The two main subtypes of HIV, HIV-1 and HIV-2, are differentiated by their replica-
tive and pathogenic capacity, virus evolution, and target of infection. HIV-1 is the most
prevalent type of HIV spread worldwide, whereas HIV-2 is mostly found in West Africa.
This different distribution might be explained by a lower capacity for transmission [141].
Furthermore, although both variants share similarities in transmission routes and can cause
acquired immunodeficiency syndrome with comparable clinical manifestations, HIV-2
infection is generally milder and less likely to progress to AIDS. Thus, as HIV-2 is natu-
rally less pathogenic, it might be used as a model to provide insight into alternative HIV
cure strategies.

Most HIV studies are focused on the HIV-1 variant; however, HIV-2 should not be
neglected as an estimated 2 million people worldwide are living with this infection, and
there might be differences in the mechanisms that regulate HIV-2 persistence and latency.
Recently, Koofhethile et al. observed that the HIV-2 proviral landscape is dominated by de-
fective proviruses, similar to what happens in HIV-1 infection [142]. Nonetheless, although
HIV-2 LTR is similar to HIV-1 LTR, it contains a duplicated TAR RNA stem-loop struc-
ture [143] and is less responsive to CD4+ T cell activation signals [144]. These differences
in transcriptional control of HIV-2 might be due to differential regulation affecting basal
transcription levels and the response to environmental transcription regulators. In that
context, as previously mentioned in Section 2, TASOR is a repressive transcriptional factor
of HIV-1, but interestingly, Vpx from HIV-2 induces its degradation [55], suggesting that
this might be a differential mechanism of HIV-1 and HIV-2 transcription regulation. Fur-
thermore, Pedro et al. [48] identified several transcription factors that preferentially bound
HIV-2 LTRs. Interestingly, they identified PLAGL1, which was not previously described as
a regulator of HIV transcription, as an HIV-2-specific transcriptional activator [48]. This
transcription factor is widely expressed in immune cells, recognizes GC-rich DNA regions,
has both transactivating and repressing activities [145–147], is involved in cell cycle reg-
ulation and oncogenesis [147,148], and interacts with other transcriptional activators of
HIV, such as SP1, AP-1, and PCAF/CBP/P300 [148]. This study suggested that HIV-2 LTR
is differentially regulated compared to HIV-1 and that there is a need for a more detailed
transcriptional analysis of the mechanisms that control HIV-2 proviral expression [48].
In this regard, Lu et al. [149] developed a panel of novel PCR assays to investigate the
mechanisms of latent infection with HIV-2, showing that HIV-2 transcription is regulated
by blocks to elongation and completion in peripheral CD4+ T cells [150]. Hence, further
characterization of the mechanisms regulating HIV-2 transcription in vivo is essential to
find a worldwide applicable HIV cure strategy.

6. Conclusions

There is a lack of knowledge on how RNA metabolism can be used as a strategy to
cure HIV. In this review, we summarize the cellular and viral factors that regulate HIV-1
transcription, the potential pharmacological targets and genetic and epigenetic editing
techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA
in post-transcriptional regulation of HIV-1, and the differences between the mechanisms
regulating HIV-1 and HIV-2 expression. The in-depth investigation of these pathways,
drugs, and techniques is essential to increase our current knowledge of HIV latency and
persistence and will potentially lead to novel therapeutic targets advancing to a global HIV
cure strategy.
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