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Abstract: Unicellular eukaryotes that are capable of phago-mixotrophy in the ocean compete for
inorganic nutrients and light with autotrophs, and for bacterial prey with heterotrophs. In this
study, we ask what the overall prevalence of eukaryotic mixotrophs in the vast open ocean is,
and how the availability of inorganic nutrients, light, and prey affects their relative success. We
utilized the Tara Oceans eukaryotic 18S rRNA gene and environmental context variables dataset
to conduct a large-scale field analysis. We also performed isolate-based culture experiments to
verify growth and nutritional resource relationships for representative mixotrophic taxa. The field
analysis suggested that the overall prevalence of mixotrophs were negatively correlated with nutrient
concentrations and positively associated with light availability. Concentrations of heterotrophic
bacteria as a single variable also presented a positive correlation with mixotrophic prevalence, but to
a lesser extent. On the other hand, the culture experiments demonstrated a taxa-specific relationship
between mixotrophic growth and nutrition resources, i.e., the growth of one group was significantly
dependent on light availability, while the other group was less affected by light when they received
sufficient prey. Both groups were capable of growing efficiently with low inorganic nutrients when
receiving sufficient prey and light. Therefore, our field analysis and culture experiments both suggest
that phago-mixotrophy for ocean eukaryotes is seemingly an efficient strategy to compensate for
nutrient deficiency but unnecessary to compensate for light scarcity. This study collectively revealed
a close relationship between abiotic and biotic nutritional resources and the prevalence of trophic
strategies, shedding light on the importance of light and nutrients for determining the competitive
success of mixotrophs versus autotrophic and heterotrophic eukaryotes in the ocean.

Keywords: mixotroph; heterotroph; autotroph; eukaryotes; niche; competition; Tara Oceans; 18S
rRNA gene

1. Introduction

Pico- and nano-sized small eukaryotes (<3–20 µm) represent the dominant microbial
communities in ocean food webs. Through metabolic activities such as photosynthesis and
phagocytosis, they regulate the flux of elements and energy between primary producers
and consumers. Traditionally, all protists with inherent chloroplasts were considered strict
autotrophs (which only photosynthesize), while those without inherited chloroplasts were
regarded as strict heterotrophs (which only phagocytose). It has become increasingly ev-
ident that many of those autotrophs/heterotrophs are in fact mixotrophs, phagotrophic
mixotrophs particularly, as they are capable of both photosynthesis and phagocytosis [1–3].
Depending on whether the organism possesses its own chloroplasts, mixotrophs can be
further categorized into constitutive mixotrophs and non-constitutive mixotrophs. Con-
stitutive mixotrophs, the focus of the current study, are normally small-sized flagellated
eukaryotes that primarily feed on bacterial prey [4,5], whereas non-constitutive mixotrophs
are larger-sized microplankton (20–200 µm), which graze on both eukaryotic and bacterial
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prey [6,7]. Due to their distinct metabolic preferences and trophic activities, those two
mixotrophic groups should be studied separately.

The relative abundance and prevalence of mixotrophs (compared to other eukary-
otes) in a given system can be partially interpreted as the competition results among
mixotrophs, autotrophs, and heterotrophs. Specifically, mixotrophs and autotrophs com-
pete for inorganic nutrients (hereinafter referred to as nutrients) and light for autotrophic
growth, and for bacterial prey (including heterotrophic and autotrophic bacteria) with
bacterivorous heterotrophs for heterotrophic growth. Although results may vary, previous
studies have suggested that the physiological performance and competitive advantage
of mixotrophs can be related to these three nutritional resources of nutrients, light, and
prey [8–11]. Mixotrophs are most likely to benefit from scenarios where nutrition is not
sufficient to support a single trophic strategy, i.e., strict autotrophy or heterotrophy. For
example, Ward (2019) proposed a conceptual model arguing that mixotrophy can effectively
alleviate dissolved inorganic nitrogen deficiency in oligotrophic environments via phago-
cytosis of high-nitrogen bacterial prey [12]. Meanwhile, it is necessary to acknowledge that
the photosynthesis and/or phagocytosis performance alone is very likely penalized for
mixotrophs [13], and these tradeoffs can differentiate significantly among different species.
Li et al. (2022) demonstrated distinct grazing rates and biovolume conversion rates among
different mixotrophic strains [5], suggesting varying capabilities of phagotrophy and gross
growth efficiencies.

In regional areas of temperate sea [14–16] and oligotrophic ocean [11,17,18] or
lakes [19–21], field observations have also shown that mixotrophy can be advantageous
for phytoplankton community growth, when nutrition is not ideal for autotrophy, which
is mostly due to limited nutrients and/or irradiance. In other words, conditions that are
unfavorable for strict autotrophy or heterotrophy could possibly select for mixotrophy
on an entire community level. However, for larger spatial scales that encompass multi-
ple ocean regions, there have been few studies looking into the broad-scale relationship
between mixotrophic prevalence and environmental conditions related to nutrition avail-
ability. While acknowledging these relationships can be complex due to multi-factorial
interactions among biotic and abiotic components in the food web, it is reasonable to
speculate nutrients, light, and prey can play an important role determining the relative
success of mixotrophy. With climate change, evidence has shown that mixotrophs may play
a more important role due to their metabolic plasticity, i.e., they find it easier to adapt to
changing environments [22–25]. Motivated by these findings, we are particularly interested
in delineating the overall prevalence and realized niche favoring mixotrophs in comparison
to strict autotrophs and heterotrophs in vast open oceans across the globe.

The broad goal of this study was to gain insights into the interrelationship between
environmental conditions and trophic strategies on both a community and a species level,
as well as the underlying mechanism behind it. We aimed to answer the following scientific
questions: (1) What is the overall prevalence of mixotrophic eukaryotes in open oceans?
(2) Are there specific environments under which mixotrophs are favored over autotrophs
and heterotrophs? (3) If so, what roles do nutrients, light, and bacterial prey play in
determining the relative success and fitness of mixotrophy? We used the eukaryotic 18S
rRNA gene dataset from the Tara Oceans Expedition to assign trophic modes to each
lineage/species and to assess the relationship between trophic mode composition and
contextual variables. Subsequently, we ran culture experiments to confirm relationships
between representative mixotrophic isolates and key nutritional resource variables. The
Tara Oceans analysis revealed statistically important variables that are affiliated with the
trophic mode prevalence, and the experimental results provided detailed and physiological
evidence for it.
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2. Materials and Methods
2.1. Study Regions

The data generated by the Tara Oceans expedition between 2009 and 2013 are partic-
ularly suited to studying the genetic and functional diversity of plankton. In this study,
a total of 104 stations and 165 samples were investigated, among which all 104 sites had
surface samples and 61 sites had both surface and chlorophyll maximum layer (CML)
samples. A surface dataset (SUR) consisting of 104 samples was used, while the surface
and chlorophyll maximum depth dataset (SUR&CML), comprising 122 (the 61 stations had
both SUR and CML samples) and 165 samples (all 104 SUR samples and 61 CML samples),
was generated for a different statistical analysis. These samples were collected during
four different seasons (spring, summer, autumn, and winter) between 2009 and 2013 from
eight oceanic regions (Northern Atlantic Ocean, Mediterranean Sea, Red Sea, Indian Ocean,
Southern Atlantic Ocean, Southern Ocean, Southern Pacific Ocean, and Northern Pacific
Ocean) with broad latitudinal (64.4◦ S–43.7◦ N) and longitudinal ranges (159.0◦ W–73.9◦ E).
Bathymetry depths varied from 13 to 5964 km and distance to coast was between 0.9 and
1404 km.

2.2. Contextual Environmental Variables

We built an environmental context dataset for further statistical analysis, following
these three steps. First, representative environmental variables were obtained from both
the Tara Oceans PANGAEA data repository (http://www.pangaea.de) and a variety of
publications, including Pesant et al. (2015), Picheral et al. (2017), Ardyna et al. (2017),
Ibarbalz et al. (2019), Faure et al. (2019), Karlusich et al. (2022), etc. (Supplementary
dataset S1) [26–31]. The major approaches for retrieving these variables included in situ
sensors, laboratory analysis of water samples, climatological instruments, and model
simulations, following standard protocols and analytical methods (details are described
in the aforementioned literature). Second, these 100 variables were manually filtered
down to 77 by eliminating similar variables and less relevant ones, to reduce collinearity
and the inflation of dimensionality. Examples include the fact that salinity was chosen
over conductivity, and factors such as moon phase durations and current residual time,
etc., were excluded. Lastly, when variables had values from multiple measurements
and/or calibration/calculation methods, only the most accurate one or suitable one (for
the purpose of this study) was selected. For example, median values for photosynthetically
available radiation (PAR), averaged on an 8-day interval and calculated based on the
attenuation coefficient and surface irradiance observed by Moderate Resolution Imaging
Spectroradiometer (MODIS), were selected over a 1-day interval to avoid fluctuations
caused by short-term weather conditions. Total chlorophyll a concentrations, derived
from sensor measurements and calibrated with non-photosynthetic quenching and discrete
water sample measurements, were used, among other available measurements. Additional
comparisons were also conducted to confirm there were no overall significant differences
between the selected measurements and other measurements for the same variable, such as
8-day averaged PAR vs. 30-day averaged PAR, total Chl a derived from sensor vs. water
samples vs. MODIS, and nutrient concentrations derived from water samples and model
simulation, etc.

The final contextual environmental dataset comprised 29 variables (Supplementary
dataset S2), representing physical conditions such as temperature, salinity, density, at-
tenuation coefficient of PAR (Kd PAR), chlorophyll maximum layer (CML), mixed layer
depth (MLD), nitracline depth and euphotic depth; climatology, such as PAR and sunshine
duration; biochemical conditions, such as total Chl a, oxygen, nutrients (NO3

−&NO2
−,

NO2
−, PO4

3−, SiO4
−), pH, total alkalinity, total carbon, fluorescence, particulate organic

carbon (POC), particulate inorganic carbon (PIC), and bacterial abundances, including
autotrophic (Prochlorococcus and Synechococcus) and heterotrophic bacteria. Note that lon-
gitudes, latitudes, distance to coasts, sampling depths, and bathymetry depths were not

http://www.pangaea.de


Microorganisms 2024, 12, 750 4 of 19

included in the analysis, in order to better focus on the aforementioned climatological,
biochemical, and physical variables.

2.3. 18S rRNA Gene Abundances and Corrected Cell Abundances

Detailed genomic sample processing methods were described in de Vargas et al.
(2015) [32]. Briefly, community genomic DNA was extracted from cells filtered through
membrane filters with different pore sizes (0.8 µm, 5 µm, and 20 µm) after pre-filtration
with nylon sieves (to retrieve different plankton communities). In this study, we focused on
the 0.8–5 µm size range, which constituted the majority of eukaryotic communities in the
sampled regions [32]. The eukaryotic V9-18S rRNA gene region was sequenced through
Illumina HiSeq, assembled, filtered, and classified with SWARM for operational taxonomic
units (OTUs). The sequence files were downloaded from the European Nucleotide Archive
under project number PRJEB6610. Subsequently, we re-assigned OTUs to the lowest
taxonomic rank possible, referring to the Protist Ribosomal Reference (PR2) database [33].
Ciliophora, Radiolaria, and Foraminifera, which were likely derived from large-sized
populations (contributing a small portion of the total species), were excluded from further
analysis to focus on small-sized constitutive mixotrophs. Unknown Eukaryota and a
small portion of parasites (e.g., Fungi, Amoebozoa, Syndiniales, and Dinoflagellata) were
excluded from further trophic annotation, and, thus, further analysis. This final gene
dataset generated 37,181,755 sequences (gene abundances) and 725 lineages/species for
surface samples, and 17,874,753 sequences (gene abundances) and 802 lineages/species for
the CML samples, respectively (Supplementary dataset S3).

Eukaryotic communities are known to exhibit substantially different 18S rRNA gene
copy numbers, varying from as low as one copy, in species belonging to Ochrophyta, to
thousands of copies per cell in dinoflagellates [5,34]. Overall, cellular biovolumes have
been shown to be positively correlated with 18S rRNA gene copy numbers, but certain
taxa, such as dinoflagellates, tended to have particularly high copy numbers [35,36]. To
correct for this bias and obtain gene-converted cell abundances, we first collected empirical
data from plankton, focusing on small cells with equivalent diameters of 5–10 µm and
biovolumes of 65–523 µm3 (Supplementary Table S1). Then, we fit a linear correlation
equation between empirical 18S rRNA gene copy numbers and cellular biovolume for
individual group of dinoflagellates, diatoms, and other eukaryotes (including chlorophytes,
haptophytes, dictyochophytes, etc.), respectively. Finally, a correction factor (C.F.) for each
group was calculated using upper limit biovolume of 65 µm3; that gave 59.3, 10.5, and 4.7 for
dinoflagellates, diatoms, and other eukaryotes, respectively. For comparison, Martin et al.
(2022) used 27.1, 4.4, and 0.9 C.F. for dinoflagellates, diatoms, and all other eukaryotes [36].
Gene abundances were converted into cell abundances by dividing gene numbers with the
C.F. for each group. The corrected cell abundance was the focus for further analysis, but
18S rRNA gene abundances were also assessed occasionally for comparison purposes.

2.4. Assignment of Trophic Modes

In this study, we focused on the trophic strategy potentials among different eukaryotic
lineages, rather than the in situ active trophic activities (which are partially associated
with instantaneous conditions). Therefore, we assigned each lineage/species (when pos-
sible) into three trophic groups by searching published database and references [5,37,38],
including (potential) mixotrophs (pigmented eukaryotes with phagocytosis capability), het-
erotrophs (eukaryotes with no inherent chloroplasts), and autotrophs (pigmented eukary-
otes with no available evidence for phagocytosis). When trophic annotation was impossible
at lineage or species level, their affiliated genus or family was referred to for annotation. The
filtration generated a final composition of 184–186 mixotrophic, 283–313 heterotrophic, and
303–377 autotrophic lineages/species for the SUR and SUR&CML samples, respectively
(Supplementary dataset S3). We acknowledge the limitation of this trophic annotation
methodology and address it further in the Discussion section.
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2.5. Trophic Index and Trophic Composition

The relative prevalence or success of each trophic group at a given site was expressed as
the trophic index of each group (TIg), where g represents three trophic groups of mixotroph
(M), autotroph (A), and heterotroph (H). Therefore, TIg of TIM, TIA, and TIH can be quan-
tified as their relative abundance against total eukaryotic community (T), either in cell
or gene abundances (expressed as M/T, A/T, and H/T). The three combined indices of
TIM, TIA, and TIH represented the complete results for trophic mode compositions at a
given site.

2.6. Statistical Analysis

The surface dataset was used for redundancy analysis (RDA) to elucidate the overall
distribution pattern of trophic groups among 104 stations, and potential relationships
with environmental variables. All 29 filtered contextual variables were considered for
the analysis, with missing values for each variable replaced with means and then log-
transformed for standardization prior to analysis. Hellinger transformation was applied
to species abundances and an Escoufier selection with a threshold of 0.9 was applied to
the trophic species. Environmental variables that passed both a significance test and a
collinearity test were presented on the RDA plot. The RDA was carried out in R using the
vegan package, following the script outlined by Faure et al. (2019) [30]. Principal component
analysis (PCA) was applied to extract the principal components (PC) that explained the
environmental gradients from both surface (SUR) and SUR&CML datasets, using R package
pcaMethods [39]. After extracting the main variable components, TIg indices were plotted
over two axes of PC1 and PC2 with a generalized additive model. Stepwise regressions
between all filtered variables and TIM were conducted to retrieve important variables
explaining mixotrophic prevalence, and linear regressions between single variables and TIg
were carried out to provide additional correlation results. Analysis of variance (ANOVA)
was conducted for the culture experiments to reveal factorial/treatment impacts on growth
rates and grazing rates among various mixotrophic isolates.

2.7. Culture Experiments

Methods for isolating and cultivating mixotrophs from the North Pacific Subtropical
Gyre were described in Li et al. (2021; 2022) [5,40]. Briefly, mixotrophic eukaryotes were
isolated from the euphotic zone at Station ALOHA (22◦45 ’N, 158◦00 ’W), by enriching sea-
water samples in nitrogen-depleted Keller medium (K-N medium) that was supplemented
with bacterial prey. Six identified isolates belonging to Dictyochophyceae, Prymnesio-
phyceae, and Chrysophyceae were selected for conducting growth experiments. These
strains were phylogenetically close to the Tara Oceans lineages that were among the top
15 abundant lineages. Prior to experiments, all isolates were acclimated for 1–2 months
(duplicated over 10 generations) under corresponding treatment conditions, i.e., low nutri-
ents (K-N medium) and high light, low nutrients and low light, high nutrients (K medium)
and high light, and high nutrients and low light. The high and low light treatments were
receiving ~100 and ~10 µM photons m−2 s−1 irradiance on a light/dark cycle (12/12 h).
All treatments were supplemented with autotrophic bacterial prey of Prochlorococcus (strain
MIT9301) at final concentrations of ~2 × 106 cells mL−1, which represents the second most
abundant prokaryotic population at station ALOHA. Prey cells were centrifuged with a ro-
tation speed of 2000–3000× g for 3–5 min and gently resuspended for enrichment. Controls
without added prey or grazers were also set up at each condition for comparison purposes.
Cell concentrations of prey and grazers were measured every 12–24 h by flow cytometry,
and ingestion evidences were occasionally obtained via microscopic observation.

Based on our previous study on grazing functional responses, most isolates have
saturated ingestion rates when the prey concentration is higher than 106 cells mL−1. Mean-
while, clearance rates (ingestion rates divided by prey concentration) can roughly present
the maximal clearance rates with the final prey concentration used in these experiments.
Therefore, we used clearance rates instead of ingestion rates [1,41] to represent grazing
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performance. Ingestion rates (prey grazer−1 h−1) for each grazer were calculated as the
amount of prey removed between sampling time t + 1 and t, divided by averaged grazer
concentrations over the same time period. Clearance rates were calculated by dividing the
ingestion rate by averaged prey concentration over the same interval. Body volume-specific
clearance rates (body volume grazer−1 h−1) were calculated by dividing the clearance
rate by the cellular biovolume (µm3) of each grazer (measured under microscopy) [42].
Clearance rates reported in the results were averaged over all sampling intervals, prior
to grazers reaching the stationary phase. The growth rates presented in the results were
maximal values during exponential growth phase (slope of Ln transformed cell abundance
versus time).

3. Results
3.1. Oceanographic Characteristics across the Tara Oceans Sampling Regions

The 104 surface samples encompassed eight ocean habitats on a large spatial scale
(Figure 1a). Geographically, they spanned roughly four latitudinal regions, from low (0–20◦)
to low–medium (20–30◦), to medium (30–40◦), and medium–high latitudes (40–60◦). Moving from
low to high latitudinal regions, overall PAR decreased from 25.4 to 14.7 mol photons m−2 d−1,
nutrients, e.g., NO3

−&NO2
−, increased from 0.03 to 17.3 µmol L−1, and heterotrophic

bacterial abundances were relatively stable, ranging between 3.9 and 5.3 × 105 cells mL−1

(Table 1; Figure 1b). The globally averaged means were 21.3 mol photons m−2 d−1 of
PAR, 0.14 µmol L−1 of NO3

−&NO2
−, and 4.5 × 105 cells mL−1 of heterotrophic bacteria,

demonstrating most sampling sites were oligotrophic environments. Smaller regional
variations were also observed. The higher nutrient concentrations in low-latitude regions
were possibly due to the Peruvian coastal and eastern equatorial upwelling, while lower
PAR values in medium-latitude areas were because the Mediterranean Sea was sampled
during winter.

Table 1. Oceanographic characters and trophic index of surface water samples. The abbreviations
PAR, NO3

−&NO2
−, and Hbac stand for photosynthetically available radiation, dissolved nitrate and

nitrite (NO3
−&NO2

−), and heterotrophic bacteria, respectively. M/T, M/A, and M/H denote rations
of either corrected cell abundance (Cell) or 18S rRNA gene abundance (Gene) among mixotrophs (M),
autotrophs (A), heterotrophs (H), and total eukaryotes (T).

Latitude Oceanic
Region † Station Temp

(◦C) Salinity PAR (mol
m−2 d−1)

NO3−&NO2−
(µmol L−1)

Hbac (Cells
mL−1)

M/T
(Cell/Gene)

A/T
(Cell/Gene)

H/T
(Cell/Gene)

0–20◦
SPO, IO,

NPO, SAO,
NAO

36 26.6 35.1 25.4 0.89 4.9 × 105 0.23/
0.38

0.32/
0.24

0.43/
0.38

20–30◦
IO, NPO,

SPO, SAO,
RS

17 24.7 36.2 24.3 0.03 3.9 × 105 0.34/
0.45

0.10/
0.08

0.51/
0.44

30–40◦ MS, SAO,
NAO, SO 37 19.5 36.4 14.7 0.13 5.3 × 105 0.32/

0.38
0.19/
0.16

0.48/
0.43

40–60◦ SO, SAO,
MS 14 7.1 34.3 18.8 17.3 4.5 × 105 0.30/

0.29
0.18/
0.22

0.47/
0.46

Global
SPO, IO,

NPO, SAO,
NAO, SO,

RS, MS
104 23.8 35.4 21.3 0.14 4.5 × 105 0.29/

0.38
0.21/
0.19

0.47/
0.42

† Oceanic regions follow the Tara Oceans standards. NAO: North Atlantic Ocean; MS: Mediterranean Sea; RS: Red
Sea; IO: Indian Ocean; SAO: South Atlantic Ocean; SO: Southern Ocean; SPO: South Pacific Ocean; NPO: North
Pacific Ocean.
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Figure 1. Map of study sites (a), averaged median values of inorganic nutrients (NO3
−&NO2

−; N
for abbreviation), light (PAR) and heterotrophic bacteria (Hbac) (b), and mixotrophic prevalence
index TIM (Mixo/Total) derived from 18S rRNA gene (MT_gene) and corrected cell abundances
(MT_cell) (c) at different latitudinal regions. (d) presents the composition of autotrophic (Auto),
mixotrophic (Mixo), and heterotrophic (Hetero) eukaryotes on a phyla level, derived from 18S rRNA
gene and corrected cell abundances. (e) is a redundancy analysis plot showing the distribution of
trophic groups on a species level. Oceanic region abbreviations in panel (a) are, NAO: North Atlantic
Ocean; MS: Mediterranean Sea; RS: Red Sea; IO: Indian Ocean; SAO: South Atlantic Ocean; SO:
Southern Ocean; SPO: South Pacific Ocean; NPO: North Pacific Ocean. Latitudinal region names
and definitions in (b,c) are shown in the legend of (e), and black dots were potential outliers from
individual samples. Tara Oceans lineages in (e) were shown with genera name, and full names of
species can be found in Supplementary Figure S1 and Supplementary dataset S3.

3.2. Relative Abundances and Taxonomic Compositions of Three Trophic Modes

The trophic index of TIM, TIA, and TIH varied from 0.23 to 0.34, from 0.10 to 0.32, and
from 0.43 to 0.51 in cell abundance, and from 0.29 to 0.45, from 0.08 to 0.24, and from 0.38
to 0.46 in gene abundance, respectively (Table 1; Figure 1c). TIM values in cell abundance
were overall somewhat lower than for gene abundance. Nevertheless, the highest TIM
median values were both retrieved from low–medium latitudes, and the lowest values
were from low latitudes (cell abundances) and medium–high latitudes (gene abundances),
respectively. In comparison, high and low TIA median values were from low and medium–



Microorganisms 2024, 12, 750 8 of 19

high latitudes and low–medium latitudes (both cell and gene abundances). TIH did not
change as much across latitudinal gradients, but the highest median values in cell and gene
abundances were shown in low–medium and medium–high latitudes, respectively.

Before the gene and cell abundances correction, mixotrophs were mostly composed of
lineages from Dinoflagellata, Haptophyta, and Ochrophyta. After the correction for cell
abundances, the dominant mixotrophs were retrieved from Haptophyta and Ochrophyta
(Figure 1d). Proportions of dinoflagellates decreased in heterotrophic communities after
gene–cell conversion, and the other three most abundant heterotrophs belonged to the
phyla Opalozoa, Discoba, and Sagenista, both in cell and gene abundances. Differences in
autotrophic compositions on the phyla level in cell and gene abundances were insignifi-
cant, which were both dominated by Chlorophyta and Ochrophyta. Redundancy analysis
suggested that stations from the same ocean or latitudinal regions tended to cluster to-
gether (Figure 1e; Supplementary Figure S1). Certain species were more abundant in lower
latitudes, such as Chrysophyceae_Clade G_sp. of Ochrophyta, Chrysochromulina sp. and
Haptophyta_HAP2_XXX_sp. of Haptophyta, and Karlodinium veneficum of Dinoflagellata
for mixotrophs, MOCH.2_XXX sp. and Chlorophyta_XXXX_sp. of Chlorophyta for au-
totrophs, and MAST.4C_XX sp. and Telonemia Goup2_X sp. for heterotrophs. Those taxa
were positively affiliated with PAR and CML, and negatively correlated with nutrients
(NO3

−&NO2
− and NO2

−) and other variables located on the right side of the RDA plot.
Other species, including Geminigera cryophila of Cryptophyta and Triparma mediterranean
of Ochrophyta for mixotrophs and Telonemia Group1 for heterotrophs, were abundant
at higher latitudes and positively correlated with oxygen and sunshine duration. Addi-
tionally, Micromonas A2 and Bacillariophyta_XXX sp. for autotrophs were associated with
high MLD, POC, and NO2

−, while Cryptomonadales_XX_sp. for mixotrophs and NPK2
lineage_X_sp. for heterotrophs were affiliated with high abundances of Prochlorococcus.

3.3. Nutritional Variables and the Prevalence of Three Trophic Modes

Among the 29 selected predictors, the availability of nutrients (including NO3
−&NO2

−

and silicate), PAR, and temperature were the top variables revealed by principal component
analysis for explaining the environmental conditions of surface (SUR) and surface and
chlorophyll maxima layer (SUR&CML) samples (Table 2; Figures 2 and 3). Specifically, both
principal component axes (PC1 and PC2) for the SUR&CML samples were mostly explained
by PAR and nutrients (loading coefficients varied from −0.42 to 0.17; R2 of 0.30). When
only considering SUR samples, PC1 axis mostly consisted of nutrients and temperature (R2

of 0.35), while the PC2 axis (R2 of 0.24) was mostly explained by MLD, CML, and PAR.

Table 2. Major environmental variables retrieved by principal component analysis for surface (SUR)
and surface and chlorophyll maximal layer (SUR&CML) datasets. Top variables from each principal
component axis (PC1 and PC2) for both datasets were shown with their loading coefficients (marked
in bold). Symbols of ‘−’ explain the changing variable values decrease from left to right on the axes.

SUR SUR&CML
PC1 PC2 PC1 PC2 Sum †

PAR −0.08 −0.14 −0.42 −0.35 0.99
NO3

−&NO2
− 0.31 −0.14 0.23 −0.25 0.93

Silicate 0.23 −0.10 0.17 −0.17 0.67
Temperature −0.24 0.08 −0.14 0.13 0.59

Nitracline depth −0.20 −0.11 −0.15 0.12 0.58
CML 0.06 −0.17 −0.10 0.07 0.40

Mixed layer depth 0.06 −0.22 −0.04 −0.06 0.38
R2 0.35 0.24 0.30 0.25

† summed absolute values from PC1 and PC2 for both datasets.

The fitted smoothers of TIg demonstrating the most substantial responses were from
mixotrophs to changing principal components. Specifically, there was a decreasing trend of
TIM along PC1 for both datasets, indicating the decreasing prevalence of mixotrophs with
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increasing nutrients for SUR (Figure 2a), as well as decreasing PAR and increasing nutrients
for SUR&CML (Figure 2d). TIM did not demonstrate clear changes with the PC2 axis from
SUR samples, so results were not shown. It is noteworthy that the slope for decreasing TIM,
when nutrients were increasing and PAR was decreasing, was the steepest among all plots
(Figure 2d). For the PC2 axis of the SUR&CML dataset, TIM presented a unimodal shape
with changing nutrients and PAR conditions, with maximal values obtained around zero
PC2 scores (Figure 2g). These results may suggest a more complex non-linear relationship
between TIM and co-varying nutrients and light conditions. TIA overall increased with
increasing nutrients for the SUR dataset (Figure 2b) and with increasing nutrients and
decreasing PAR for the SUR&CML dataset (Figure 2e). When nutrients and PAR changed
in the same direction (PC2 for the SUR&CML dataset), TIA did not show clear variations
(Figure 2h). TIH, overall, varied much less with changing conditions compared to TIM and
TIA (Figure 2c,f,i), among which a weak unimodal shape was observed with PC1 from
the SUR dataset (Figure 2c). For the gene abundance-denoted results, similar trends were
found for TIg variations over the principal components but with different slope shapes
(Figure 3). Particularly, a steeper decreasing slope was presented for TIM on the PC1 axis
of the SUR samples and a steeper increasing slope (before the peak) was seen on PC2 for
the SUR&CML samples (Figure 3a,g). The weak increasing trend of TIH over PC1 axis
of SUR samples disappeared (Figure 3c), and a somewhat stronger increase in TIH was
demonstrated along both axes of PC1 and PC2 for the SUR&CML dataset (Figure 3f,i).
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Figure 2. Variation patterns of TIA/M/H in corrected cell abundances along PC1 axis for surface (SUR)
dataset (a–c) and PC1 and PC2 axes for surface and chlorophyll maximal layer (SUR&CML) dataset
(d–i). Cartoon symbols of nutrients (NO3

−&NO2
−) (letter N with a red circle), PAR (the sun), and

temperature (a thermometer) were marked on each panel, and the location of them indicates higher
values ends. Each black dot represents observed value from two datasets. Blue lines and shaded
bands were fitted to a generalized additive model smoother and with 95% confidence intervals.
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surface (SUR) dataset (a–c) and PC1 and PC2 axes for the surface and chlorophyll maximal layer
(SUR&CML) dataset (d–i). Cartoon symbols of nutrients (NO3
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PAR (the sun), and temperature (a thermometer) were marked on each panel, and the location of
them indicates higher values ends. Each black dot represents observed value from two datasets. Blue
lines and shaded bands were fitted to the generalized additive model smoother with 95% confidence
intervals.

Consistent with the PCA results, clear differences were observed for TIg between SUR
and CML samples (from 61 stations, we have both SUR and CML samples), accompanied
with distinct resource availability of nutrients, light, and bacterial prey (Figure 4). Signifi-
cantly higher TIM values were seen in surface samples where PAR and bacteria were higher
and N (NO3

−&NO2
−) was lower (median 0.29 vs. 0.18, p < 0.001, df = 60). In comparison,

TIA was slightly higher in CML compared to surface samples, but this was not statistically
significant (median 0.30 vs. 0.29, p > 0.05, df = 60), and TIH values were significantly
higher in CML than surface samples (median 0.52 vs. 0.47, p < 0.05, df = 60) (Figure 4a,b).
Linear regressions derived from all samples suggested a consistently positive relationship
for TIM with PAR and negative correlations with nutrients (NO3

−&NO2
−), from both

the SUR (122 samples; Figure 4c) and the SUR&CML datasets (165 samples; Figure 4d).
TIA demonstrated a significantly positive and negative correlation with nutrients and
PAR, respectively, whereas neither was significantly associated with TIH (Supplementary
Figure S2a–h). For heterotrophic bacteria, a positive but weaker relationship (p = 0.02) was
found between TIM and the SUR&CML dataset, but not with the SUR dataset (Figure 4c,d).
In contrast, both datasets demonstrated strong negative associations between heterotrophic
bacteria and TIH values, and a weaker but positive correlation between heterotrophic bac-
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teria and TIA in the surface (p < 0.05) (Supplementary Figure S2i–l). Other single variables
showing significant regressions with TIM were all shown in Supplementary Figure S3.

Microorganisms 2024, 12, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 4. Comparison of TIg (a) and nutritional resource availability (b) between surface (SUR) and 
chlorophyll maximum layer (CML). (c,d) demonstrate linear regressions between TIM and three re-
source variables of PAR, NO3−&NO2− (N), and heterotrophic bacteria (Hbac) with the SUR dataset 
(c) and the SUR&CML dataset (d), respectively. Variables in (c,d) were sometimes Log-transformed 
for the best representation purpose, and each black dot represents observed value from two datasets. 
Significance codes were shown using red stars (one star if 0.001 < p < 0.05 and two stars if p < 0.001), 
and shaded bands are pointwise 95% confidence intervals on the fitted linear regression (blue lines). 
The cartoon symbols of the sun, letter N with red circles, and bacterial cell shape represents PAR, 
NO3−&NO2−, and Hbac concentrations, respectively. 

3.4. Mixotrophic Growth with Varying Nutritional Resource 
The most abundant mixotrophs identified from the Tara Oceans dataset belonged to 

the classes of Prymnesiophyceae, Dictyochophyceae, Chrysophyceae, Dinophyceae, and 
Cryptophyceae (Figure 5a). Mixotrophic strains that we isolated from the North Pacific 
had been previously shown to be efficient grazers of heterotrophic bacteria and cyanobac-
teria (including Prochlorococcus and Synechococcus), and they were closely affiliated to 
those abundant Tara Oceans lineages [5,40]. Six strains selected for the experimental study 
belonged to Chrysochromulina, Prymnesiophyceae_XXX of Prymnesiophyceae, Clade-H_X 
of Chrysophyceae, as well as Florenciella, Dictyochales_X, and Florenciellales_X of Dicty-
ochophyceae. Although the lineage from Florenciellales_X was not shown in Figure 5a, it 
ranked as the 26th most abundant lineage across all stations. The relative abundances of 
those isolates retrieved from surface samples were all higher than from CML, except for 
Dictyochales_X (Figure 5b), presenting similar patterns as the entire mixotrophic commu-
nity (TIM results in Figure 4a). Given the consistent and substantial responses of TIM to 
nutrients and PAR derived from field observations, we designed multifactorial bioassay 
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chlorophyll maximum layer (CML). (c,d) demonstrate linear regressions between TIM and three
resource variables of PAR, NO3

−&NO2
− (N), and heterotrophic bacteria (Hbac) with the SUR dataset

(c) and the SUR&CML dataset (d), respectively. Variables in (c,d) were sometimes Log-transformed
for the best representation purpose, and each black dot represents observed value from two datasets.
Significance codes were shown using red stars (one star if 0.001 < p < 0.05 and two stars if p < 0.001),
and shaded bands are pointwise 95% confidence intervals on the fitted linear regression (blue lines).
The cartoon symbols of the sun, letter N with red circles, and bacterial cell shape represents PAR,
NO3

−&NO2
−, and Hbac concentrations, respectively.

3.4. Mixotrophic Growth with Varying Nutritional Resource

The most abundant mixotrophs identified from the Tara Oceans dataset belonged to
the classes of Prymnesiophyceae, Dictyochophyceae, Chrysophyceae, Dinophyceae, and
Cryptophyceae (Figure 5a). Mixotrophic strains that we isolated from the North Pacific had
been previously shown to be efficient grazers of heterotrophic bacteria and cyanobacteria
(including Prochlorococcus and Synechococcus), and they were closely affiliated to those abun-
dant Tara Oceans lineages [5,40]. Six strains selected for the experimental study belonged
to Chrysochromulina, Prymnesiophyceae_XXX of Prymnesiophyceae, Clade-H_X of Chryso-
phyceae, as well as Florenciella, Dictyochales_X, and Florenciellales_X of Dictyochophyceae.
Although the lineage from Florenciellales_X was not shown in Figure 5a, it ranked as the
26th most abundant lineage across all stations. The relative abundances of those isolates
retrieved from surface samples were all higher than from CML, except for Dictyochales_X
(Figure 5b), presenting similar patterns as the entire mixotrophic community (TIM results
in Figure 4a). Given the consistent and substantial responses of TIM to nutrients and
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PAR derived from field observations, we designed multifactorial bioassay experiments to
assess the impacts of light and nutrient (inorganic and organic nutrients) availability on the
growth of mixotrophs (Figure 5c).
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Distinct growth curve shapes and final abundances were presented among different
treatments for the six isolates (Figure 6a), accompanied by different disappearance rates
of prey (Figure 6b). Prey in controls (without mixotrophic grazers) all presented slower
disappearance rates compared to cultures with grazers, but to different levels among strains.
Grazers in the low nutrient control (without prey) grew to much lower concentrations,
i.e., all <1 × 103 cells mL−1, compared to 104–105 cells mL−1 when prey was added.
Shown as exponential growth rates (bars in Figure 6c), most isolates presented the highest
values when grown under high amounts of light, either when receiving high nutrients
or sufficient prey (low nutrients). Lower growth rates were observed with low-light
treatments (marked with black arrows in Figure 6c) for strain 4110 from Chrysochromulina,
4150 from Prymnesiophyceae_XXX, and 3021 from Florenciellales_X, i.e., those categorized
as trophic type 1. Growth of one isolate from Florenciella (strain 3010) and one isolate from
Chrysophyceae Clade H_X (strain 3501) did not show significant impacts by light and,
thus, were classified as trophic type 2. One additional strain 3050 from Dictyochales_X
represented slightly different characters from both Type 1 and Type 2 and were thus
categorized as Type 1/2. Specifically, they performed better under low light than Type 1
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strains when receiving high nutrients, but not as good as Type 2 strains with low light
and low nutrients. More experiments needs to be done to verify its trophic traits. For
grazing rates, most strains showed the highest clearance rates when receiving low levels
of nutrients and high amounts of light (marked with blue arrows in Figure 6d). Only two
strains belonging to Type 2 were capable of grazing much faster when receiving low light
levels and high nutrient levels (marked with red arrows in Figure 6d).
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Figure 6. (a) presents growth curves of six mixotrophic isolates grown under high light (HL) and low
light (LL), as well as high inorganic nitrogen (HN) and low inorganic nitrogen (LN) conditions. All
treatments were supplemented with Prochlorococcus prey. (b) presents removal of prey in all cultures
(ID table in Figure 5a); green lines indicate prey control without grazers and black lines were prey
with grazers. (c,d) demonstrate estimated growth rates during exponential phase and biovolume
clearance rates for each strain. Errors bars in (c,d) denote standard deviation among replicates for
each treatment, which were not shown in (a,b) for higher readability. * For grazer concentrations
in HNHL, they were divided by 50,000 cells mL−1 for strain 4110 and 5000 cells mL−1 for other
strains, and 1000 cells mL−1 for all the other treatments. * Prey abundances in all HN treatments
were divided by 107 cells mL−1, and all LN were divided by 106 cells mL−1. Arrows in (c,d) indicate
treatments that caused significantly lower growth rates (c), and significantly higher grazing rates (d).

The ANOVA results revealed a significant effect on growth by light, i.e., to increase
growth rates with increasing light, either alone, or together with nutrients and species.
However, (inorganic) nutrient availability did not show significant impact on growth rates,
as cultures supplemented with bacterial prey can sufficiently compensate for nutrient
deficiency. Less significant effects were observed for clearance rates, as strains responded
differently to changing light and nutrient conditions, indicated by the high p (>0.05) values
from both single and multi-factorial ANOVAs (Table 3).
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Table 3. ANOVA of different growth rates and clearance rates among six species cultivated under
different light (PAR) and nutrient (N) conditions (results shown in Figure 6). Individual and interac-
tive effects of light, nutrients, and species were analyzed via single factor and multi-factor ANOVAs,
respectively.

Growth Rates Clearance Rates

Single Factor Multi-Factors Single Factor Multi-Factors

PAR N Sp. PA and
N

PAR and N
and Sp. PAR N Sp. PAR and

N
PAR and N

and Sp.

p † * >0.05 >0.05 * * >0.05 >0.05 >0.05 * 0.13
F ‡ 6.5 1.7 2.1 5.1 3.6 0.00 2.98 1.35 3.96 2.02

Dfn § 1 1 5 3 5 1 1 5 3 5
Dfd ∥ 20 20 17 18 18 20 20 17 18 18

Effect ¶ + + / / / + – / / /
† Significance level of ANOVA, ‘*’ denotes p < 0.05. ‡ Variation between sample means/variation within the
samples. § Degrees of freedom in the numerator (Dfn), equals to the groups (of factors). ∥ Degrees of freedom
in the denominator (Dfd), equals to the total number of subjects in the experiment—the groups (of factors).
¶ Symbols of + and – indicate positive and negative impacts from increasing light and nutrient availability, and /
denotes “analysis unavailable”. Only factors with p values marked with * in the first row had a significant impact.

4. Discussion

In this study, we used large-scale field surveys to retrieve prominent variables that
possibly affect the trophic mode structure of eukaryotes on community levels, and across
large spatial scales, with a particular focus on three nutritional resources. We then con-
ducted finely controlled lab experiments using isolates to investigate how mixotrophic
growth responds to changing nutritional resources, in terms of both forms (inorganic
nutrients and organic nutrients) and availability. While acknowledging species-specific
variations, both field and experimental results demonstrated a close relationship between
mixotrophic prevalence and nutritional resource among inorganic nutrients, light, and prey,
which possibly introduced distinct niche preferences for mixotrophs versus autotrophic
and heterotrophic eukaryotes in the ocean.

4.1. Mixotrophic Growth Responding to Changing Nutritional Resources

Suggested by our experimental results, mixotrophy can function as an efficient strategy
for compensating for inorganic nutrient deficiency for most strains through the ingestion of
bacterial prey, but not necessarily for supplementing light limitation (Figure 6c). Among the
six studied cultures, two of them were efficient with compensating light/energy deficiency
via heterotrophic nutrition (grazing), but not the others. These results indicated that
mixotrophic controlling mechanisms for metabolic partitioning between autotrophy and
heterotrophy were species-specific. The Type 1 isolates that were light-dependent possibly
align with the ‘primarily photosynthesis and phagocytosis for nutrients’ functional group
proposed by Jones (1997) and Stoecker (1998) [43,44]. The growth rates of Type 2 isolates
seemed to be light- or nutrients- independent, and likely belong to the ‘phagocytose
when light is limiting’ or ‘perfectly balanced mixotrophy’ functional group. The Type 1/2
strain showed varying responses to light when nutrients were high or low, and are thus
seemingly to be in between or different from the other two trophic types. It is also possible
that the culture under high nutrient and low light were not well acclimated for grazing,
and more experiments need to be conducted for further verification. Based on proposed
resource allocation theories, those light-dependent mixotrophs (Type 1) probably rely on
photosynthesis for gaining most energy and organic carbon [12–14]. In comparison, the
light-independent group performed better with low light availability (Type 2), suggesting
a higher flexibility governing autotrophic and heterotrophic growth in response to the
changing conditions.
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4.2. Relationship between Mixotrophy and Nutritional Resources on Large Spatial Scale

Our field analysis also indicated that availability of three nutritional resources could
affect the relative success among three trophic strategies on community level, and across
large spatial scales. Specifically, higher-nutrient and lower-light environments could pos-
sibly promote the relative abundances of autotrophs, whereas mixotrophic community
overall proliferated from low-nutrient and high-light environments. This positive light–
mixotrophy relationship in the field can be partially explained by the possibility that the
light-dependent Type 1 mixotrophs were dominant across the investigated ocean regions.
On the other hands, Rothhaupt (1996) and Edwards et al. (2019; 2022) suggested that, dur-
ing the resource competition process, mixotrophs could outcompete heterotrophs, because
they can use extra energy gained from photosynthesis which enables them to suppress
bacterial prey to a very low level (below the threshold of heterotrophic grazers) [8,11,45].
Both mechanisms could be true, and it is worthy to conduct further studies to investigate
the fundamental mechanisms related to metabolic partitioning and resource allocation for
mixotrophic strategy.

Heterotrophic bacteria maintained relatively consistent abundances in the sampled
oceans and was not selected as main explanatory factor for TIg by RDA or PCA. Neverthe-
less, they demonstrated one of the predictors explaining TIM, based on a stepwise regression
model (Supplementary Table S2). When treated as a single variable, a strong negative cor-
relation was found between TIH and heterotrophic bacteria. Comparatively, the correlation
was positive for TIA and less significant for TIM. This interesting shift likely suggested dis-
tinct interactions between bacteria and three trophic groups. Heterotrophic bacteria benefit
from the dissolved organic carbon (DOC) excreted by autotrophs and recycle nutrients for
autotrophic growth, forming a positive relationship, whereas, for heterotrophic eukaryotes,
this negative association could be attributed to the high grazing pressure they exert on
heterotrophic bacteria [46,47]. The weaker but positive correlation between heterotrophic
bacteria and TIM could be explained by the more complex relations among bacteria (prey
and decomposer) and mixotrophs (grazer and DOC provider), as well as the lower grazing
capability/pressure from mixotrophic grazers than heterotrophs [13,23,38,48].

4.3. Environmental Variables Affecting the Prevalence of Trophic Strategies

Other oceanographic conditions such as CML, nitracline depths, and MLD also seemed
to affect mixotrophic prevalence, though they are physical processes that are more or
less associated with nutrient and light conditions. For example, deeper nitraclines can
potentially suppress nutrient supply in the surface and, therefore, increase TIM values.
Similarly, deeper chlorophyll maxima could be indicative of a higher light availability and
lower nutrient availability in the photic depths, thereby enhancing TIM. In contrast, deeper
mixed layer depths (stronger mixing) could reduce light availability and increase nutrient
concentration, which both weaken TIM. The overall positive association between CML and
nitracline depths and TIM, and the negative correlation between MLD and TIM, are in line
with their overall relationships with nutrients and light.

Previous field studies suggested that, besides nutrients [21,49] and light [50–52],
variables such as temperature [53] and carbon composition (colored dissolved organic
matters and CO2) [20] were also likely important for affecting mixotrophic prevalence.
These variables were also included in our analysis and yielded varying relationships with
TIg. These differences could possibly be due to the different environmental gradients
covered among our studies (various open oceans) versus others (North Pacific, and boreal
Canadian lakes). The stepwise regression model suggested that PAR, nutrients, density,
PIC, CML, heterotrophic bacteria, and Prochlorococcus were the top predictors explaining
TIM for the Tara Oceans dataset (Supplementary Table S2).

Indeed, it is not always straightforward to delineate relationships between a single
environmental variable and trophic mode prevalence. Results from our statistical analysis
instead provide insights into the possible correlations between them, and unnecessarily
the causational relationships. Future studies focusing on smaller regions, with in situ
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experiments targeting active trophic behaviors, will provide additional knowledge for
interpreting the relationships between trophic mode and the environment.

4.4. Methodology Caveats

One potential caveat in our methodology is that mixotrophs were annotated based on
the published literature at a species or higher taxonomic rank. These trophic annotations
did not necessarily align with in situ metabolic activities. Nevertheless, the potential or
historically evolved capability of phago-mixotrophy was sufficient to delineate their eco-
logical niche, which was the focus of this study. We also recruited longer-term averaged
values for some of the key variables (e.g., 8-day and 30-day PAR), as well as a variety of
parameters (e.g., NO3

−, NO2
−, PO4

3− and SiO4
− for nutrients), to reduce the possibility of

retrieving false relationships. A lack of trophic evidence for some of the species/lineages
could, on the other hand, cause false annotation, and variations against other studies. For
example, we annotated Micromonas, a member of Chlorophyta, as autotrophs, based on the
best knowledge we have [43,54]. However, others have argued for possible phagotrophic
evidence in Micromonas polaris [55]. We also recognize that the gene and cell abundance cor-
rection factors could be inaccurate for certain groups, as we did not have first-hand cellular
abundance data from in situ samples. Nevertheless, these calibrated abundance data could
improve accuracy for some heavily over-estimated groups, such as dinoflagellates, and for
under-estimated small flagellates.

Combining various approaches including experimental study, field observation, model
simulation, and bioinformatics tools can be a powerful solution in terms of retrieving the
most reliable data for future mixotrophy research [3,56].

5. Conclusions

This study provides the first Tara Oceans analysis for niche partitioning among three
trophic populations of mixotrophs, autotrophs, and heterotrophs of the eukaryotic commu-
nity. Our results suggested that, either on a community level or a species level, phagotrophic
mixotrophy is a trophic strategy that marine eukaryotes have evolved to survive nutrient
impoverishment and/or light limitation, deepening our understanding about the mecha-
nisms controlling their prevalence in the ocean.
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